

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by Tony Northrup and Mike Snell

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2010933008
ISBN: 978-0-7356-2740-6

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International
directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to: tkinput@
microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Martin DelRe
Developmental Editor: Karen Szall
Project Editor: Rosemary Caperton
Editorial Production: Online Training Solutions, Inc.
Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X17-21595

Exam 70-515: Web Applications Development
with Microsoft .NET Framework 4

ObjECTivE ChAPTER LEssOn

1. DEvELOPing WEb FORms PAgEs

1.1 Configure Web Forms pages. Chapter 1 Lessons 2 and 3
1.2 Implement master pages and themes. Chapter 2 Lessons 1 and 2
1.3 Implement globalization. Chapter 6 Lesson 1
1.4 Handle page life cycle events. Chapter 1

Chapter 3
Lesson 1
Lesson 1

1.5 Implement caching. Chapter 2 Lesson 3
1.6 Manage state. Chapter 3 Lessons 2 and 3

2. DEvELOPing AnD Using WEb FORms COnTROLs

2.1 Validate user input. Chapter 5 Lesson 1
2.2 Create page layout. Chapter 5 Lessons 2 and 3
2.3 Implement user controls. Chapter 7 Lesson 1
2.4 Implement server controls. Chapter 4

Chapter 7
Lessons 1 and 2
Lesson 2

2.5 Manipulate user interface controls from code-behind. Chapter 2
Chapter 4
Chapter 5

Lesson 1
Lessons 1 and 2
Lesson 2

3. imPLEmEnTing CLiEnT-siDE sCRiPTing AnD AjAX

3.1 Add dynamic features to a page by using JavaScript. Chapter 9 Lesson 2
3.2 Alter a page dynamically by manipulating the DOM. Chapter 9 Lesson 3
3.3 Handle JavaScript events. Chapter 9 Lessons 2 and 3
3.4 Implement ASP.NET AJAX. Chapter 9 Lesson 1
3.5 Implement AJAX by using jQuery. Chapter 9 Lesson 3

4. COnFigURing AnD EXTEnDing A WEb APPLiCATiOn

4.1 Configure authentication and authorization. Chapter 13 Lesson 2
4.2 Configure providers. Chapter 13 Lesson 1
4.3 Create and configure HttpHandlers and HttpModules. Chapter 10 Lesson 1
4.4 Configure initialization and error handling. Chapter 3

Chapter 8
Lesson 1
Lesson 1

4.5 Reference and configure ASMX and WCF services. Chapter 10 Lessons 2 and 3
4.6 Configure projects and solutions, and reference assemblies. Chapter 1 Lesson 3
4.7 Debug a Web application. Chapter 8 Lessons 1 and 2
4.8 Deploy a Web application. Chapter 8 Lesson 3

5. DisPLAying AnD mAniPULATing DATA

5.1 Implement data-bound controls. Chapter 12 Lesson 2
5.2 Implement DataSource controls. Chapter 12 Lesson 1
5.3 Query and manipulate data by using LINQ. Chapter 11 Lessons 1 and 2
5.4 Create and consume a data service. Chapter 10 Lessons 2 and 3
5.5 Create and configure a Dynamic Data project. Chapter 12 Lesson 3

6. DEvELOPing A WEb APPLiCATiOn by Using AsP.nET mvC 2

6.1 Create custom routes. Chapter 14 Lesson 2
6.2 Create controllers and actions. Chapter 14 Lesson 2
6.3 Structure an ASP.NET MVC application. Chapter 14 Lesson 1
6.4 Create and customize views. Chapter 14 Lesson 2

Exam Objectives The exam objectives listed here are current as of this book’s publication date. Exam objectives
are subject to change at any time without prior notice and at Microsoft’s sole discretion. Please visit the Microsoft
Learning website for the most current listing of exam objectives:
http://www.microsoft.com/learning/en/us/exam.aspx?ID=70-515#tab2

 Contents
Exam 70-515: Web Applications Development with Microsoft .NET Framework 4 i

For my partner, Chelsea Knowles
—Tony norThrup

For my wife, Carrie Snell
—Mike Snell

Contents at a Glance

Acknowledgments xxv

Introduction xxvii

ChAPTER 1 Introducing ASP.NET 4 1

ChAPTER 2 Using Master Pages, Themes, and Caching 41

ChAPTER 3 Handling Events and Managing State 97

ChAPTER 4 Using Server Controls 161

ChAPTER 5 Input Validation and Site Navigation 227

ChAPTER 6 Globalization and Accessibility 291

ChAPTER 7 Creating Custom Web Controls 329

ChAPTER 8 Debugging and Deploying 387

ChAPTER 9 Working with Client-Side Scripting, AJAX, and jQuery 453

ChAPTER 10 Writing and Working with HTTP Modules
and Web Services 551

ChAPTER 11 Connecting to and Querying Data with LINQ 623

ChAPTER 12 Working with Data Source Controls
and Data-Bound Controls 685

ChAPTER 13 Implementing User Profiles, Authentication,
and Authorization 787

ChAPTER 14 Creating Websites with ASP.NET MVC 2 831

Answers 881

Index 925

About the Authors 967

 Contents
Contents at a Glance vii

ix

Contents

 Acknowledgments xxv

 introduction xxvii
Hardware Requirements .xxviii

Software Requirements .xxviii

Using the Companion Media .xxviii
How to Install the Practice Tests xxix
How to Use the Practice Tests xxix
How to Uninstall the Practice Tests xxxi

Microsoft Certified Professional Program .xxxi

Errata and Book Support .xxxi

We Want to Hear from You . xxxii

Stay in Touch . xxxii

Chapter 1 introducing AsP.nET 4 1
Before You Begin . 2

Lesson 1: Understanding Web Communications . 3

The Web Server’s Role 4

The Web Browser’s Role 5

Understanding the Role of HTTP 5

Lesson Summary 14

Lesson Review 14

Lesson 2: Creating a Website and Adding New Webpages 15

Creating Websites 15

Creating ASPX Pages 23

Website Compilation 28

Using Assemblies 29

Lesson Summary 31

Lesson Review 31

 Contents
Contents ix

x Contents

Lesson 3: Working with Web Configuration Files . 32

Understanding the Configuration File Hierarchy 33

Processing the Configuration Files 34

Changes to .NET Framework 4 Configuration Files 34

Editing Configuration Files 34

Lesson Summary 38

Lesson Review 38

Case Scenarios . 38

Case Scenario 1: Creating a New Website 39

Case Scenario 2: Placing Files in the Proper Folders 39

Suggested Practices . 39

Create a New Website by Using Visual Studio 2010 39

Add a Webpage to the Website 40

Program a Web Application 40

Examine Settings for a Web Application 40

Take a Practice Test . 40

Chapter 2 Using master Pages, Themes, and Caching 41
Before You Begin . 42

Lesson 1: Using Master Pages . 43

Overview of Master and Content Pages 44

Creating a Master Page 45

Creating Content Pages 47

Attaching Master Pages to Content Pages 48

Referencing Custom Master Page Properties, Methods,
and Controls from Content Pages 48

Creating Nested Master Pages 51

Dynamically Changing Master Pages 52

Lesson Summary 58

Lesson Review 59

xiContents

Lesson 2: Using Themes . 60

Themes Overview 60

Creating a Theme 61

Creating a Skin File 64

Adding a Cascading Style Sheet to Your Theme 65

Rules for Applying Themes 66

Applying a Theme Programmatically 67

Lesson Summary 73

Lesson Review 74

Lesson 3: Caching . 75

Application Caching 75

Page Output Caching 80

Programmatically Invalidating Cached Pages 85

Lesson Summary 91

Lesson Review 91

Case Scenarios . 92

Case Scenario 1: Providing Consistent Formatting
for an External Web Application 92

Case Scenario 2: Improving the Performance of
a Public Website 93

Suggested Practices . 94

Implement Master Pages and Themes 94

Implement Caching 95

Take a Practice Test . 95

Chapter 3 handling Events and managing state 97
Before You Begin . 98

Lesson 1: Understanding the ASP.NET Life Cycle
and Handling Events . 99

The ASP.NET Application Life Cycle 100

Understanding the Life Cycle of an ASP.NET Webpage
and Its Controls 103

Lesson Summary 119

Lesson Review 119

xii Contents

Lesson 2: Using Client-Side State Management . 120

Choosing Client-Side or Server-Side State Management 121

View State 123

Hidden Fields 128

Cookies 129

Query Strings 133

Lesson Summary 141

Lesson Review 142

Lesson 3: Using Server-Side State Management . 143

Application State 144

Session State 145

Lesson Summary 154

Lesson Review 154

Case Scenarios . 155

Case Scenario 1: Selecting the Proper Events to Use 155

Case Scenario 2: Remembering User Credentials 156

Case Scenario 3: Analyzing Information for Individual
Users and for All Users 156

Suggested Practices . 157

Respond to Application and Session Events 157

Create Event Handlers for Pages and Controls 157

Manage State by Using Client-Based
State Management Options 158

Manage State by Using Server-Based
State Management Options 158

Maintain State by Using Database Technology 158

Take a Practice Test . 159

Chapter 4 Using server Controls 161
Before You Begin . 162

Lesson 1: Exploring Common Server Controls . 163

Web Server Controls 163

The Label Control 167

The Literal Control 169

xiiiContents

The TextBox Control 171

The CheckBox Control 172

The RadioButton Control 172

The DropDownList Control 173

The ListBox Control 175

The Button Control 175

HTML Server Controls 177

Lesson Summary 184

Lesson Review 185

Lesson 2: Exploring Specialized Server Controls . 186

The Table, TableRow, and TableCell Controls 187

The Image Control 189

The ImageButton Control 191

The ImageMap Control 192

The Calendar Control 197

The FileUpload Control 202

The Panel Control 205

The MultiView and View Controls 207

The Wizard Control 210

The Xml Control 214

Lesson Summary 223

Lesson Review 223

Case Scenarios . 224

Case Scenario 1: Determining the Type of Controls to Use 225

Case Scenario 2: Determining How to Prompt for Data 225

Case Scenario 3: Implementing a Calendar Solution 225

Suggested Practices . 226

Implement Server Controls 226

Take a Practice Test . 226

xiv Contents

Chapter 5 input validation and site navigation 227
Before You Begin . 228

Lesson 1: Performing Input Validation . 228

Understanding the Validation Framework 229

Understanding the RequiredFieldValidator Control 232

Using the CompareValidator Control 232

Using the RangeValidator Control 234

Using the RegularExpressionValidator Control 234

The CustomValidator Control 235

Lesson Summary 244

Lesson Review 244

Lesson 2: Performing Site Navigation . 245

Is Page Navigation Necessary? 246

Choosing a Method to Navigate Pages 246

Client-Side Navigation 247

Cross-Page Posting 248

Client-Side Browser Redirect 250

Server-Side Transfer 251

Using the Site Map Web Server Control 252

Lesson Summary 259

Lesson Review 259

Lesson 3: Using Web Parts . 260

What Are Web Parts? 261

The WebParts Namespace 263

Defining Web Part Zones 264

Creating Web Parts 265

Enabling Users to Arrange and Edit Web Parts 266

Connecting Web Parts 269

Personalizing Web Parts 274

Lesson Summary 286

Lesson Review 286

xvContents

Case Scenarios . 287

Case Scenario 1: Determining the Proper Validation Controls
to Implement on a User Name 288

Case Scenario 2: Implementing a Site Map 288

Case Scenario 3: Meeting Customization Requirements
for an Internal Insurance Application 288

Suggested Practices . 289

Validate User Input 289

Create Page Layout 290

Take a Practice Test . 290

Chapter 6 globalization and Accessibility 291
Before You Begin . 292

Lesson 1: Configuring Globalization and Localization 292

About ASP.NET Resources 293

Using Local Resource Files 293

Using Global Resources 300

HTML Layout Best Practices 304

Setting the Culture 305

Lesson Summary 311

Lesson Review 311

Lesson 2: Configuring Accessibility . 312

Public Accessibility Guidelines 313

How ASP.NET Controls Support Accessibility 313

Improving Visual Accessibility 314

Improving the Accessibility of Forms That
Require User Input 316

Testing Accessibility 318

Lesson Summary 324

Lesson Review 324

xvi Contents

Case Scenarios . 325

Case Scenario 1: Upgrading an Application
for Multiple Languages 325

Case Scenario 2: Making a Web Application Accessible 326

Suggested Practices . 326

Implement Globalization 326

Implement Accessibility 327

Take a Practice Test . 327

Chapter 7 Creating Custom Web Controls 329
Before You Begin . 330

Lesson 1: Creating User Controls . 331

Creating User Controls 331

Defining User Control Events 333

Defining Properties in User Controls 337

Adding a User Control to a Page 339

Dynamically Loading User Controls 339

Creating a Templated User Control 340

Lesson Summary 353

Lesson Review 353

Lesson 2: Creating Custom Web Server Controls . 355

Creating a Custom Web Server Control 356

Adding Toolbox Support for a Custom Web Server Control 364

Creating a Custom Designer for a Custom Web Server Control 370

Creating a Composite Control 372

Creating a Templated Custom Web Server Control 377

Registering Your Controls in Web.config 378

Lesson Summary 383

Lesson Review 383

Case Scenarios .384

Case Scenario 1: Sharing Controls Between Applications 385

Case Scenario 2: Providing Layout Flexibility 385

xviiContents

Suggested Practices . 385

Create a New User Control 385

Create a New Custom Web Server Control 386

Create a New Composite Web Server Control 386

Create a New Templated Control 386

Take a Practice Test . 386

Chapter 8 Debugging and Deploying 387
Before You Begin . 388

Lesson 1: Debugging Websites . 389

Configuring ASP.NET for Debugging 389

Defining Custom Error Pages 392

Debugging Remotely 394

Debugging Client-Side Script 396

Lesson Summary 400

Lesson Review 401

Lesson 2: Troubleshooting Websites . 402

Implementing Tracing 402

Monitoring a Running Web Application 412

Lesson Summary 416

Lesson Review 416

Lesson 3: Deploying Websites . 418

Publishing Web Applications 419

Web Deployment Projects 425

Web Setup Projects 427

Deploying Web Applications by Using the Copy Web Tool 439

Precompiling and Publishing ASP.NET Websites 441

Installing ASP.NET 4 on IIS 442

Lesson Summary 446

Lesson Review 447

Case Scenarios .448

Case Scenario 1: Debugging 448

Case Scenario 2: Troubleshooting 448

Case Scenario 3: Deploying a Website 449

xviii Contents

Suggested Practices . 449

Debug a Website 449

Troubleshoot a Website 450

Publish a Web Application 450

Use a Web Setup Project 450

Use the Copy Web Tool 451

Precompile and Publish a Web Application 451

Take a Practice Test . 451

Chapter 9 Working with Client-side scripting, AjAX,
and jQuery 453

Before You Begin . 454

Lesson 1: Creating AJAX-Enabled Web Forms . 455

Introducing ASP.NET AJAX 456

The AJAX Server Controls 457

Lesson Summary 469

Lesson Review 470

Lesson 2: Creating Client Scripts with the Microsoft AJAX Library 471

Creating Your Own Client Scripts 472

Creating Your Own Client Callbacks 480

Working with the Microsoft AJAX Library 483

Building Client Capabilities with AJAX 494

Lesson Summary 518

Lesson Review 518

Lesson 3: Implementing jQuery . 520

Introducing the jQuery Library 521

Selecting and Traversing the DOM 524

Handling Client-Side Events 530

Adding Effects and Animations to a Page 533

Implementing AJAX with jQuery 534

Lesson Summary 545

Lesson Review 546

xixContents

Case Scenarios . 547

Case Scenario 1: Using the ASP.NET AJAX Extensions 548

Case Scenario 2: Using the Microsoft AJAX Library 548

Case Scenario 3: Using jQuery 549

Suggested Practices . 549

Add Partial-Page Update Support to a Page 549

Create Client Code by Using the Microsoft AJAX Library 550

Write Interactive Client Code with jQuery 550

Take a Practice Test . 550

Chapter 10 Writing and Working with hTTP modules
and Web services 551

Before You Begin . 552

Lesson 1: Creating HTTP Handlers and HTTP Modules 552

Creating a Custom HTTP Handler 553

Asynchronous Handlers and Pages 558

Creating a Custom HTTP Module 566

Lesson Summary 573

Lesson Review 574

Lesson 2: Creating and Consuming XML Web Services 574

Creating an ASP.NET Web Service 576

Consuming an ASP.NET Web Service 580

Authentication and XML Web Services 586

Lesson Summary 591

Lesson Review 592

Lesson 3: Creating and Consuming WCF Services . 593

Introducing WCF 594

Creating a WCF Service with ASP.NET 596

Consuming a WCF Service in an ASP.NET Page 600

Calling a WCF Service from Client Script by Using
AJAX (REST and JSON) 603

Creating WCF Data Services 607

Lesson Summary 619

Lesson Review 619

xx Contents

Case Scenarios . 620

Case Scenario 1: Working with HTTP Requests 620

Case Scenario 2: Selecting a Service Model 621

Suggested Practices . 621

Work with XML HTTP Handlers and Modules 621

Work with XML Web Services 622

Work with WCF Services 622

Take a Practice Test . 622

Chapter 11 Connecting to and Querying Data with LinQ 623
Before You Begin . 624

Lesson 1: Getting Started with LINQ . 625

Introducing LINQ 625

Querying Data with LINQ 628

Transforming Data with LINQ 637

Lesson Summary 647

Lesson Review 647

Lesson 2: LINQ and ADO.NET . 649

LINQ to DataSet 649

LINQ to SQL 664

LINQ to Entities 672

Lesson Summary 680

Lesson Review 681

Case Scenarios . 682

Case Scenario 1: Writing LINQ Queries 682

Case Scenario 2: Working with LINQ and ADO.NET 682

Suggested Practices . 683

Write LINQ Queries 683

Work with LINQ and ADO.NET 683

Take a Practice Test .684

xxiContents

Chapter 12 Working with Data Source Controls
and Data-Bound Controls 685

Before You Begin . 686

Lesson 1: Connecting to Data with Data Source Controls 687

Understanding the Data Source Controls 687

Using Objects as Data Sources with ObjectDataSource 690

Connecting to Relational Databases by Using SqlDataSource 698

Working with Access Data Files and
AccessDataSource Controls 702

Connecting to an Entity Model by Using EntityDataSource 703

Connecting to XML Data by Using XmlDataSource 707

Connecting to LINQ-Based Data by Using LinqDataSource 711

Connecting to Site Navigation Data
by Using SiteMapDataSource 712

Lesson Summary 719

Lesson Review 720

Lesson 2: Working with Data-Bound Web Server Controls 721

Introducing Data-Bound Controls 721

Simple Data-Bound Controls 724

Composite Data-Bound Controls 728

Hierarchical Data-Bound Controls 741

Lesson Summary 753

Lesson Review 754

Lesson 3: Working with ASP .NET Dynamic Data . 755

Getting Started with Dynamic Data Websites 756

Extending and Customizing Dynamic Data 763

Using Dynamic Controls in Existing Sites 777

Lesson Summary 781

Lesson Review 782

Case Scenarios . 783

Case Scenario 1: Choosing Data Source Controls 783

Case Scenario 2: Implementing a Master-Detail Solution 783

Case Scenario 3: Adding ASP .NET Dynamic Data to a Website 784

xxii Contents

Suggested Practices . 784

Create Pages by Using Each of the Controls 784

Create a Master-Detail Solution by Using
the Data-Bound Server Controls 784

Work with Dynamic Data Websites 785

Take a Practice Test . 785

Chapter 13 Implementing User Profiles, Authentication,
and Authorization 787

Before You Begin . 788

Lesson 1: Working with User Profiles . 788

User Profile Basics 789

Configuring a User Profile Provider 790

Defining the User Profile 792

Identifying Users 794

Setting and Saving a User Profile 796

Recognizing a Returning Visitor 797

Lesson Summary 802

Lesson Review 802

Lesson 2: Using ASP .NET Membership .804

Using the WSAT to Configure Security 804

Logon Controls 807

The FormsAuthentication Class 813

The Membership Class 815

The Roles Class 816

Configuring Websites to Require Windows Authentication 817

Restricting Access to ASP .NET Websites, Files, and Folders 818

Lesson Summary 824

Lesson Review 824

Case Scenarios . 827

Case Scenario 1: Configuring Website Authorization 827

Case Scenario 2: Configuring Website Authentication 828

xxiiiContents

Suggested Practices . 829

Configure Authentication and Authorization 829

Configure Profiles 830

Take a Practice Test . 830

Chapter 14 Creating Websites with ASP.NET MVC 2 831
Before You Begin . 832

Lesson 1: Understanding ASP .NET MVC Applications 832

The ASP .NET MVC Architecture 833

The Structure of an ASP .NET MVC Application 837

Running Your First ASP .NET MVC Webpage 839

Lesson Summary 845

Lesson Review 846

Lesson 2: Creating Models, Views, and Controllers 847

Defining a Model and Business Rules 848

Creating Controllers 851

Creating Views 856

Customizing MVC Routing 867

Lesson Summary 875

Lesson Review 876

Case Scenarios . 878

Case Scenario: Creating an ASP .NET MVC Application 878

Suggested Practices . 878

Work with Controllers, Views, and Routing 879

Take a Practice Test . 879

Answers 881

Index 925

About the Authors 967

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xxv

Acknowledgments

We would like to thank the hardworking people at Microsoft Press, in particular
Rosemary Caperton, for getting us involved and for her guidance on this work.

Many thanks also to Kathy Krause and her team at OTSI (www.otsi.com) for keeping the
book on schedule and providing excellent editing suggestions. She left no stone unturned
and made us both seem like better writers than we are.

Thanks also go to our fantastic technical editor, Kenn Scribner. He added a lot to this
book by challenging our coding examples, working through the labs, getting the CD right,
and helping ensure consistency. It was truly great to have such a strong technical editor
on the team.

Finally, we would like to thank our families and friends for their patience and understanding
during the long nights and weekends that are the writing process.

 Contents
Acknowledgments xxv

xxvii

Introduction

This training kit is designed for developers who plan to take Microsoft Certified Technical
Specialist (MCTS) exam 70-515, as well as for developers who need to know how to

develop applications by using the Microsoft .NET Framework 4 and Microsoft ASP.NET. We
assume that before you begin using this kit, you have a working knowledge of Windows and
Microsoft Visual Basic or Microsoft Visual C#. The topics in this training kit cover what you need
to know for the exam as described on the Skills Measured tab for the exam, which is available at
http://www.microsoft.com/learning/en/us/exam.aspx?ID=70-515&locale=en-us#tab2.

By using this training kit, you’ll learn how to do the following:

■	 Create a web application by using web server controls, event handlers, application
state, and session state.

■	 Create websites that take advantage of master pages, themes, and cascading style sheets.

■	 Use the wide variety of controls that ship with ASP.NET, including those for validation,
navigation, user input, data binding, and much more.

■	 Create user controls and custom web server controls.

■	 Create a web application that stores user-specific information and preferences.

■	 Develop accessible web applications that can be used by a global audience.

■	 Write rich Internet applications (RIAs) by using client script, Asynchronous JavaScript
and XML (AJAX), and jQuery.

■	 Connect your web applications with data by using Microsoft ADO.NET, Microsoft
Language-Integrated Query (LINQ) queries, LINQ to SQL, the Entity Framework,
and more.

■	 Write template-driven, data-bound websites by using Dynamic Data in ASP.NET.

■	 Monitor, troubleshoot, and debug ASP.NET applications.

■	 Build service-oriented applications (SOAs) by using Hypertext Transfer Protocol (HTTP)
handlers and modules, web services, and Windows Communication Foundation (WCF).

■	 Add authentication and authorization features to your application to improve security
and add multiple access levels.

■	 Build websites based on the ASP.NET MVC 2 framework.

Refer to the objective mapping page in the front of this book to see where in the book
each exam objective is covered.

 Contents
Introduction xxvii

Hardware Requirements .xxviii

Software Requirements .xxviii

Using the Companion Media .xxviii

How to Install the Practice Tests xxix

How to Use the Practice Tests xxix

How to Uninstall the Practice Tests xxxi

Microsoft Certified Professional Program .xxxi

Errata and Book Support .xxxi

We Want to Hear from You . xxxii

Stay in Touch . xxxii

xxviii introduction

hardware Requirements
We recommend that you use a computer that is not your primary workstation to do the
practice exercises in this book, because you will make changes to the operating system and
application configuration.

To use the companion CD, you need a computer running Windows XP with Service Pack 3
(SP3), Windows Vista with SP2, Windows 7, Windows Server 2003 with SP2, Windows Server 2003
R2, Windows Server 2008 with SP2, or Windows Server 2008 R2. The computer must meet the
following minimum requirements:

■	 Personal computer with at least a 1-GHz 32-bit (x86) or 64-bit (x64) processor

■ At least 1 GB of RAM (x86 systems) or 2 GB of RAM (x64 systems)

■ At least a 40-GB hard disk

■	 DVD-ROM drive

■ Super VGA (800 x 600) or higher resolution video adapter and monitor

■ Keyboard and Microsoft mouse or compatible pointing device

software Requirements
The computer used with the companion CD-ROM should also have the following software:

■	 A web browser such as Windows Internet Explorer

■	 An application that can display PDF files, such as Adobe Acrobat Reader, which can be
downloaded at www.adobe.com/reader

■ Microsoft Visual Studio 2010 Professional, a trial version of which can be downloaded
at http://www.microsoft.com/visualstudio/en-us/products/2010-editions/professional

These requirements will support use of the companion CD-ROM.

Using the Companion media
The companion media (CD) included with this training kit contains the following:

■	 Practice tests You can reinforce your understanding of programming with ASP.NET 4
by using electronic practice tests that you customize to meet your needs from the pool
of lesson review questions in this book, or you can practice for the 70-515 certification
exam by using tests created from a pool of 200 realistic exam questions, which give
you many practice exams to ensure that you are prepared.

■	 An ebook An electronic version (eBook) of this book is included for when you do not
want to carry the printed book with you.

xxixintroduction

Note DigiTAL COnTEnT FOR DigiTAL bOOk READERs

If you bought a digital-only edition of this book, you can enjoy select content from the print
edition’s companion media. Go to http://go.microsoft.com/fwlink/?Linkid=206094 to get
your downloadable content. This content is always up to date and available to all readers.

How to Install the Practice Tests
To install the practice test software from the companion CD to your hard disk, perform the
following steps:

	 1. Insert the companion CD into your CD drive and accept the license agreement. A CD
menu appears.

Note iF ThE CD mEnU DOEs nOT APPEAR

If the CD menu or the license agreement does not appear, AutoRun might be disabled
on your computer. Refer to the Readme.txt file on the CD for alternate installation
instructions.

	 2. Click Practice Tests and follow the instructions on the screen.

How to Use the Practice Tests
To start the practice test software, follow these steps:

	 1. Click Start, click All Programs, and then select Microsoft Press Training Kit Exam Prep.
A window appears that shows all the Microsoft Press training kit exam prep suites
installed on your computer.

	 2. Double-click the lesson review or practice test you want to use.

Note LEssOn REviEWs vs. PRACTiCE TEsTs

Select the (70-515) Web Applications Development with Microsoft .NET Framework 4
lesson review to use the questions from the “Lesson Review” sections of this book.
Select the (70-515) Web Applications Development with Microsoft .NET Framework 4
practice test to use a pool of 200 questions similar to those that appear on the 70-515
certification exam.

xxx introduction

Lesson Review Options
When you start a lesson review, the Custom Mode dialog box appears so that you can con-
figure your test. You can click OK to accept the defaults, or you can customize the number
of questions you want, how the practice-test software works, the exam objectives to which
you want the questions to relate, and whether you want your lesson review to be timed.
If you are retaking a test, you can select whether you want to see all the questions again
or only the questions you missed or did not answer.

After you click OK, your lesson review starts.

■	 Article i To take the test, answer the questions and use the Next and Previous buttons
to move from question to question.

■	 Article ii After you answer an individual question, if you want to see which answers
are correct—along with an explanation of each correct answer—click Explanation.

■	 Article iii If you prefer to wait until the end of the test to see how you did, answer
all the questions, and then click Score Test. You will see a summary of the exam objec-
tives you chose and the percentage of questions you got right, both overall and per
objective. You can print a copy of your test, review your answers, or retake the test.

Practice Test Options
When you start a practice test, you choose whether to take the test in Certification Mode,
Study Mode, or Custom Mode:

■	 Certification mode  Closely resembles the experience of taking a certification exam.
The test has a set number of questions. It is timed, and you cannot pause and restart
the timer.

■	 study mode  Creates an untimed test during which you can review the correct answers
and the explanations after you answer each question.

■	 Custom mode  Gives you full control over the test options so that you can customize
them as you like. In all modes, the test user interface is basically the same but with differ-
ent options enabled or disabled depending on the mode. The main options are discussed
in the previous section, “Lesson Review Options.”

When you review your answer to an individual practice test question, you see a “References”
section that lists where in the training kit you can find the information that relates to that
question and provides links to other sources of information. After you click Test Results to
score your entire practice test, you can click the Learning Plan tab to see a list of references
for every objective.

xxxiintroduction

How to Uninstall the Practice Tests
To uninstall the practice test software for a training kit, use the Uninstall A Program option in
Windows Control Panel.

microsoft Certified Professional Program
Microsoft certifications provide the best method for proving your command of current Microsoft
products and technologies. The exams and corresponding certifications are developed to validate
your mastery of critical competencies as you design and develop, or implement and support,
solutions with Microsoft products and technologies. Computer professionals who become
Microsoft-certified are recognized as experts and are sought after industry-wide. Certification
brings a variety of benefits to the individual and to employers and organizations.

More INfo ALL ThE miCROsOFT CERTiFiCATiOns

For a full list of Microsoft certifications, go to www.microsoft.com/learning/mcp/default.asp.

Errata and book support
We’ve made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site at Oreilly.com:

	 1. Go to http://microsoftpress.oreilly.com.

	 2. In the Search box, enter the book’s ISBN or title.

	 3. Select your book from the search results.

	 4. On your book’s catalog page, under the cover image, you’ll see a list of links. Click
View/Submit Errata.

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please email Microsoft Press Book Support at tkinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

xxxii introduction

We Want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

Preparing	for	the	Exam

M icrosoft certification exams are a great way to build your resume and let the
world know about your level of expertise. Certification exams validate your

on-the-job experience and product knowledge. Although there is no substitute
for on-the-job experience, preparation through study and hands-on practice
can help you prepare for the exam. We recommend that you augment your exam
preparation plan by using a combination of available study materials and courses.
For example, you might use the Training Kit and another study guide for your “at
home” preparation, and take a Microsoft Official Curriculum course for the class-
room experience. Choose the combination that you think works best for you.

 ChAPTER 1 1

C h A P T E R 1

Introducing ASP.NET 4
The web development experience continues to evolve with Microsoft Visual Studio 2010

and Microsoft ASP.NET 4. The most important improvements are:

■ Simplified deployment of applications, settings, and data.

■ Easy redirection of search engine–friendly URLs to different pages.

■ Cascading style sheet–friendly rendering for many controls.

■ Applications that start up before the first user request.

■ Extensible request validation for more flexible security.

■ Easy setting of meta tags at run time.

■ The ability to enable view state for individual controls to reduce page sizes.

■ Static client IDs to allow web server controls to be reliably accessed from JavaScript.

■ The inclusion of AJAX jQuery scripts in Visual Studio templates.

■ Improved Language-Integrated Query (LINQ) capabilities for creation of strongly
typed queries for collections and databases.

■ Dynamic Data templates for rapid development of data-driven websites.

■ Compressed session state data.

■ A new Chart control for quick creation of interactive three-dimensional charts.

■ Built-in ASP.NET MVC 2 for creation of layered applications that are easily testable.

With these new tools, you can build highly interactive, robust web applications more
efficiently than ever. All of these enhancements were developed to give ASP.NET developers
more control and increased confidence when building and deploying the next generation
of websites.

This chapter introduces the basics of website development with ASP.NET. Lesson 1,
“Understanding Web Communications,” describes the key players in any website: the server,
the browser (or client), and Hypertext Transfer Protocol (HTTP). This serves as a basis for under-
standing the architecture of all web communications. In Lesson 2, “Creating a Website and
Adding New Webpages,” you will learn the key components that make up an ASP.NET devel-
opment site. Lesson 3, “Working with Web Configuration Files,” describes how to configure
the many aspects of an ASP.NET application.

 Contents

 Chapter 1: introducing AsP.nET 4 1
Before You Begin . 2

Lesson 1: Understanding Web Communications . 3

The Web Server’s Role 4

The Web Browser’s Role 5

Understanding the Role of HTTP 5

Lesson Summary 14

Lesson Review 14

Lesson 2: Creating a Website and Adding New Webpages 15

Creating Websites 15

Creating ASPX Pages 23

Website Compilation 28

Using Assemblies 29

Lesson Summary 31

Lesson Review 31

Lesson 3: Working with Web Configuration Files . 32

Understanding the Configuration File Hierarchy 33

Processing the Configuration Files 34

Changes to .NET Framework 4 Configuration Files 34

Editing Configuration Files 34

Lesson Summary 38

Lesson Review 38

Case Scenarios . 38

Case Scenario 1: Creating a New Website 39

Case Scenario 2: Placing Files in the Proper Folders 39

Suggested Practices . 39

Create a New Website by Using Visual Studio 2010 39

Add a Webpage to the Website 40

Program a Web Application 40

Examine Settings for a Web Application 40

Take a Practice Test . 40

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 2	 ChAPTER 1	 Introducing ASP.NET 4

Exam objectives in this chapter:
■	 Developing Web Forms Pages

■ Configure Web Forms pages.
■ Handle page life cycle events.

■	 Configuring and Extending a Web Application
■ Configure projects and solutions, and reference assemblies.

Lessons in this chapter:
■	 Lesson 1: Understanding Web Communications 3
■	 Lesson 2: Creating a Website and Adding New Webpages 15
■	 Lesson 3: Working with Web Configuration Files 32

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
in Visual Studio by using Microsoft Visual Basic or Microsoft Visual C#. In addition, you should
be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ A basic understanding of Hypertext Markup Language (HTML) and client-side scripting

■ Making assemblies available to other applications

■ Working with Visual Studio projects, files, classes, and designers

real World

Tony Northrup

V isual Studio makes it easy to jump into web development. It’s so easy, in fact,
that many developers manage to create their first applications without under-

standing the fundamentals. This chapter is designed to save you time in the long
run by teaching you the most critical web development fundamentals. Yes, you can
create a working web application without understanding the difference between
HTTP GET and HTTP PUT. However, at some point in your career (and perhaps at
some point in this book) you’re going to need to do some detailed troubleshooting,
and if you don't have a solid background, that troubleshooting is going to take you
much longer than it needs to.

 Lesson 1: Understanding Web Communications ChAPTER 1 3

Lesson 1: Understanding Web Communications

Like all client-server applications, web applications have two distinct components:

■ Client Also known as the front-end interface, the web browser presents the user
interface, accepts user input, and sends data to the server for processing.

■ server Also known as the back end, the web server responds to requests from
clients for specific pages. It responds with an HTML page that includes instructions
for how to generate the user interface.

The web browser (the client) and the web server communicate by using Hypertext Transfer
Protocol (HTTP), a text-based network protocol assigned to TCP port 80. If the server has a
certificate, the client and server can use HTTP Secure (HTTPS) to authenticate the server and
encrypt communications. HTTPS is assigned to TCP port 443.

Communications typically follow these steps:

	 1. A user enters an address, such as http://www.microsoft.com/, into the web browser.

	 2. The web browser connects by using HTTP and sends a GET request, such as GET /
(to retrieve the root page), to the web server.

	 3. The web server processes the requested page. This action might cause the server to
return static HTML or image files, or it might execute ASP.NET code that performs
workflow tasks or connects to a database.

	 4. The web server uses HTTP to send a response back to the web browser. If the
request was processed successfully, the web server returns the HTTP status code
200, along with an HTML document. If the server cannot find the page, it returns
the code 404. If the user requests an outdated or relocated page, the server returns the
code 302 and the new URL so that the browser can access the correct page. This is
known as redirection. Several other responses are possible as well, depending on the
particular situation.

	 5. The user’s web browser then processes the response by displaying the HTML page (if the
code was 200), showing an error message (if the code was 404), or loading a different
page (if the code was 302). Other server responses are similarly handled by the browser,
depending upon the response.

This process is repeated each time the user clicks a button or link.

This lesson provides an overview of the responsibilities and boundaries of a web browser
and a web server. You will also learn the basics of HTTP and how browsers and servers use it
to process user requests.

 4	 ChAPTER 1	 Introducing ASP.NET 4

After this lesson, you will be able to:
■	 Describe the web server’s role in responding to requests for resources.
■	 Describe the web browser’s role in submitting requests and presenting the

response to the user.
■	 Examine HTTP communications to determine what is being sent between the

client and server and whether the communications were successful.

Estimated lesson time: 20 minutes

The Web Server’s Role
The web server provides the content and the web browser displays it to the user. At the simplest,
a web server sends static files, such as static HTML or image files, through an HTTP connection
to a web browser.

Modern web servers do far more, however. When a web server receives a request, some of
the actions it takes are to:

	 1. verify that the request is structured legitimately. Sometimes, malicious clients
send malformed web requests to compromise web servers. Web servers must be able
to detect this and respond appropriately—usually by ignoring the request.

	 2. Authenticate itself. If the server has a Secure Sockets Layer (SSL) certificate and the
request was made with HTTPS, the web browser uses the certificate to authenticate the
server. The web server will also encrypt all content before returning it to the web browser.

	 3. Authenticate the user. If the content requires authorization, the web server verifies
that the user has submitted credentials. If the user has not been authenticated, the web
server redirects the user to an authentication form.

	 4. Authorize the user. After the Web server authenticates the user, the web server verifies
that the user is allowed to access the requested content.

	 5. Determine how to handle a request. If the web browser requested static content or
was simply determining whether cached content could still be used, the web server can
directly respond. If the web browser requested an ASP.NET page, the web server must
forward the request to ASP.NET.

	 6. handle errors. If a server cannot process the user’s request, it provides error informa-
tion to the web browser.

	 7. Cache output. Web servers can cache output to improve the response time of sub-
sequent requests. Web servers also provide caching information to web browsers, so
browsers know how long to keep content cached.

 Lesson 1: Understanding Web Communications ChAPTER 1 5

	 8. Compress output. Before returning a page to a web browser, a web server
can compress the content to reduce the bandwidth required.

	 9. Log access. Web servers typically record usage information for security and
performance-monitoring purposes.

The Web Browser’s Role
Despite the attention web browsers receive, their role is relatively simple:

	 1. send requests to the web server. If the user enters http://www.microsoft.com, the
web browser resolves the www.microsoft.com Domain Name System (DNS) address,
uses HTTP to connect to the server, and requests a page.

	 2. Authenticate the server. If the server has an SSL certificate and the request was
made with HTTPS, the web browser uses the certificate to authenticate the server and
then decrypt future communications.

	 3. Process the response. If the server has provided HTML, the browser retrieves embed-
ded objects, such as images, videos, or animations referenced in the HTML. If the server
has provided an error, redirection, or other response, the browser responds appropriately.

	 4. Display hTmL and embedded objects. Web browsers use HTML standards to deter-
mine how to display a webpage to the user. Because HTML can contain embedded objects,
a web browser might have to display dozens of objects to render a single webpage.

	 5. Run client scripts. Client scripts, such as those written in JavaScript, enable interactive
and responsive pages without reloading the page.

Understanding the Role of HTTP
HTTP is a text-based communication protocol that is used to request webpages from a web
server and send responses back to a web browser. When a webpage is requested, the browser
sends a request to the web server. The request might look like the following.

GET /default.aspx HTTP/1.1
Host: www.northwindtraders.com

More INfo  hTTP/1.1 sPECiFiCATiOn

For more information about the current HTTP standard (HTTP/1.1), see the specification at
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

The first word in the request is the command, often known as the method. In this case, the
command is GET. The command is followed by the Uniform Resource Identifier (URI) of the
resource to be retrieved. In this case, the URI is /default.aspx. Following the URI is the version
of HTTP to be used to process the command. In this case, the HTTP version is HTTP/1.1.

 6	 ChAPTER 1	 Introducing ASP.NET 4

The second line of the request (Host: www.northwindtraders.com) identifies the name of the
website. Most web servers host multiple websites with a single IP address, and need to know
the website’s name to return the correct page. This process involves using host headers to
identify the website that will handle the request.

HTTP supports other commands, as shown in Table 1-1. If a website has Distributed
Authoring and Versioning (DAV) enabled, many more commands are available, including
LOCK and UNLOCK.

TAbLE 1-1 Common HTTP/1.1 Methods

hTTP mEThOD DEsCRiPTiOn

GET Gets an object, such as a webpage, from the server. A GET request
for a specific URL (Uniform Resource Locator) retrieves the resource.
For example, GET /test.htm retrieves the test.htm resource (typically
a static file, but it could be generated dynamically).

POST Sends data to the web server for processing. This is typically what
happens when users enter data on a form and submit that data as
part of their request, but it has other meanings when used outside
the bounds of HTML forms.

HEAD Retrieves the meta information for an object without downloading
the page itself. HEAD is typically used to verify that a resource hasn’t
changed since the browser cached it.

OPTIONS Used by client applications to request a list of all supported commands.
You can use OPTIONS to check to see if a server allows a particular
command, thus avoiding wasting network bandwidth trying to send
an unsupported request.

PUT Allows a client to directly create a resource at the indicated URL on
the server. If the user has permission, the server takes the body of the
request, creates the file specified in the URL, and copies the received
data to the newly created file.

DELETE Deletes a resource on the web server if the user has permission.

TRACE Used for testing or diagnostics; allows the client to see what is being
received at the other end of the request chain.

CONNECT Reserved for use with a proxy that can dynamically switch to being a
tunnel, such as with the SSL protocol.

DEBUG Starts ASP.NET debugging. This command informs Visual Studio of the
process to which the debugger will attach.

 Lesson 1: Understanding Web Communications ChAPTER 1 7

What	Is	Distributed	Authoring	and	Versioning?

D istributed Authoring and Versioning (DAV) is a set of extensions to HTTP/1.1
that simplifies website development when work is being carried out in a team

scenario. DAV is an open standard and is available on numerous platforms. DAV
provides the ability to lock and unlock files and the ability to designate versions.

DAV is built directly on HTTP/1.1, so no other protocols, such as File Transfer Protocol
(FTP) or Server Message Block (SMB), are required. DAV also provides the ability to
query the web server for various resource properties such as file names, time stamps,
and sizes. DAV also gives developers the ability to perform server-side file copying and
moving. For example, you can use the HTTP GET and PUT commands to retrieve files
from the web servers and save them to different locations, or you can use DAV’s COPY
command to tell a server to copy a file.

The communication from the web browser to the web server is referred to as a request. In
ASP.NET, there is a Request object that is used to represent the web browser’s communications
to the web server. ASP.NET wraps the resource request in an object that can be queried in code.
By wrapping the HTTP request in a programmable object, ASP.NET provides your code access
to things such as the cookies associated with your site, the query string parameters passed with
the URL, and the path to the requested resource, and allows you to work with other relevant
request-based information.

The communication from the web server back to the web browser is wrapped in the
Response object. You can use this object to set cookies, define caching, set page expiration,
and more. When a web server responds to a request, it uses what it finds in the Response
object to write the actual, text-based HTTP response, such as the following.

HTTP/1.1 200 OK
Server: Microsoft-IIS/6.0
Content-Type: text/html
Content-Length: 38
<html><body>Hello, world.</body><html>

The first line indicates the communication protocol and version information. It also includes
the status code for the response and the reason that describes the status code. The status codes
are three-digit numbers and are grouped as shown in Table 1-2.

exaM tIp

Even if you don’t memorize every status code, you’ll need to know the five status code
groupings in Table 1-2 to troubleshoot web development problems.

 8	 ChAPTER 1	 Introducing ASP.NET 4

TAbLE 1-2 Status Code Groups

sTATUs CODE
gROUP DEsCRiPTiOn

1xx Informational: The request was received, and the server is continuing to
process.

2xx Success: The action was successfully received, understood, and accepted.

3xx Redirect Command: The client must access a different resource instead.

4xx Client Error: The request has a syntax error or the server does not know
how to fulfill the request.

5xx Server Error: The server failed to fulfill a request that appears to be valid.

In addition to the status code groups, HTTP/1.1 defines unique status codes and reasons. A
reason is nothing more than a very brief description of the status code. Table 1-3 shows a list
of common status codes and reasons.

TAbLE 1-3 Common Status Codes and Their Reasons

sTATUs CODE REAsOn

100 Continue

200 OK

201 Created

300 Multiple Choices

301 Moved Permanently

302 Found

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

407 Proxy Authentication Required

408 Request Time-out

413 Request Entity Too Large

500 Internal Server Error

501 Not Implemented

 Lesson 1: Understanding Web Communications ChAPTER 1 9

The second line of the response indicates the type of web server (Server: Microsoft-IIS/6.0).
The third line (Content-Type) indicates the type of resource that is being sent to the web
browser as part of the response. This indicator is in the form of a Multipurpose Internet Mail
Extensions (MIME) type. In this example (Content-Type: text/html), the file is an HTML text file.
The MIME type is a two-part designator that is shown as type/subtype, in which the first part
is the resource type (text, in this example) and the second part is the resource subtype (html,
in this example). Some common MIME types are shown in Table 1-4.

TAbLE 1-4 Common MIME Types

mimE TyPE DEsCRiPTiOn

text Textual information. Subtypes include plain, html, and xml.

image Image data. Subtypes are defined for two widely used image formats,
jpeg and gif, and other subtypes exist as well.

audio Audio data. Requires an audio output device (such as a speaker or head-
phones) for the contents to be heard. An initial subtype, basic, is defined
for this type.

video Video data. The subtype mpeg is often used. Typically, videos are not
transferred directly, but are read from an embedded object, such as a
JavaScript or Adobe Flash object.

application Any binary data. The subtype octet-stream is typically used.

The next line is content length (Content-Length: 38 in this example). This simply indicates
the size of the content (in “octets,” or 8-bit bytes) that follows. After the Content-Length
line, the response message is returned. The browser attempts to process the content based
on its MIME type. For example, it interprets HTML for HTML MIME types and shows a picture
for image MIME types.

Submitting Form Data to the Web Server
The HTML <form> tag can be used to create a webpage that collects data from the user and
sends the collected data back to the web server. The form tag is nested inside the <HTML> tags.
The form tags typically include information for the user in the form of text, and input tags for
defining controls such as buttons and text boxes. A typical use of the <form> tag might
look like the following.

<form method="POST" action="getCustomer.aspx">
 Enter Customer ID:
 <input type="text" name="Id">
 <input type="submit" value="Get Customer">
</form>

 10	 ChAPTER 1	 Introducing ASP.NET 4

This example form prompts the user for a customer ID, displays a text box that collects the
desired customer ID, and also displays a Submit button that initiates the sending of data to
the web server. The method attribute of the form tag indicates the HTTP command (POST)
to use when sending the request to the server. The action attribute is the relative URL of the
page to which the request will be sent.

There are two HTTP commands that can be used to submit the form data to the web
server: GET and POST. When the GET command is used, the form data is appended to the
URL as part of the query string. The query string is a collection of key–value pairs, separated
by an ampersand (&) character. The start of the query string is indicated by a question mark
(?). The following provides an example.

GET /getCustomer.aspx?Id=123&color=blue
HTTP/1.1
Host: www.northwindtraders.com

In this example, a GET request is made to the web server for a webpage called
getCustomer.aspx on the root of the website (indicated by the forward slash). The
query string contains the form data following the question mark (?).

When the GET command is used to send data to the server, the complete URL and query
string can be seen and modified in the address bar of the web browser, as shown in Figure 1-1.
This allows users to easily bookmark or link to the results of the form, which is important for
search pages. However, it’s not a good choice for authentication pages, because the user’s
credentials would be visible in the URL. It’s also not a good choice when the user needs to
transfer large amounts of information, because when Windows Internet Explorer and Inter-
net Information Services (IIS) are used, the limit for a query string is 1,024 characters (other
browsers and server implementations also have limitations, although they might not limit
the length to the values IIS and Internet Explorer use).

FigURE 1-1 Returning form results by using a GET request shows the input in the address bar.

The POST command is a better choice for submitting credentials and large amounts of
data. When the POST command is used, the data is placed into the message body of the
request as follows.

POST /getCustomer.aspx HTTP/1.1
Host: www.northwindtraders.com

Id=123&color=blue

 Lesson 1: Understanding Web Communications ChAPTER 1 11

Using the POST command removes the input from the URL and overcomes size constraints.
Instead, the data is hidden in the message body.

Sending data back to the server as part of your request is often referred to as a postback in
ASP.NET. Although its name comes from the POST command, it is possible to perform a post-
back by using the GET command already described. An ASP.NET webpage contains a property
called IsPostBack that is used to determine if data is being sent back to the web server or if
the webpage is simply being requested.

real World

Tony Northrup

There’s no better way to understand HTTP than to watch your own web browser’s
inner workings as you surf. Though you can find several free sniffer appli-

cations on the web, my favorite is Microsoft Network Monitor (available from
http://www.microsoft.com/downloads). You can also purchase several browser
add-ons that monitor HTTP within your browser session, including HttpWatch
from http://www.httpwatch.com/ and Fiddler from http://www.fiddler2.com/.

Quick Check
	 1. What protocol is used to communicate between the web browser and the web

server?

	 2. In ASP.NET, what does the Request object represent?

	 3. In ASP.NET, what does the Response object represent?

Quick Check Answers
	 1. HTTP is used for web browser and web server communication.

	 2. The Request object in ASP.NET wraps the communication from the web browser
to the web server.

	 3. The Response object in ASP.NET wraps the communication from the web server
to the web browser.

 12	 ChAPTER 1	 Introducing ASP.NET 4

PrActIcE	 Exploring hTTP

In this practice, you explore HTTP by using Telnet, the terminal emulation application that is
built into Windows.

ExErcIsE	1	 Starting and Configuring Telnet

In this exercise, you start the Telnet client and configure it to work with HTTP.

	 1. From the Windows Features Control Panel tool, add the Telnet Client feature.

	 2. Open a command prompt. You can do so by selecting Start | All Programs | Accessories
| Command Prompt.

	 3. Start Telnet. In the command prompt window, enter the following command to start
the Telnet client.

 Telnet.exe

	 4. Configure Telnet to echo typed characters. Enter the following command into the
Telnet window, which will cause locally typed characters to be displayed as you
type them.

set localecho

Telnet will respond with the following.

Local echo on

	 5. Set carriage return and line feed to On. Enter the following command to instruct
Telnet that it should treat the Enter key as a combination of carriage return and
line feed.

 set crlf

Telnet will respond with the following.

 New line mode - Causes return key to send CR & LF

	 6. Open a connection to a website. Enter the following command into the Telnet command
window to open a connection to www.bing.com on TCP port 80, the default port for a
web server.

 o www.bing.com 80

Telnet responds with the following.

 Connecting To www.bing.com. . .

Note that Telnet will not indicate that you are indeed connected.

	 7. Press Enter until the cursor moves to the next line or the top of the page. Usually you
only need to press Enter one additional time.

 Lesson 1: Understanding Web Communications ChAPTER 1 13

	 8. Attempt to retrieve the default page. Enter the following lines. After typing the second
line, press Enter two times to indicate the end of the message to the web server.

GET / HTTP/1.1
Host: www.bing.com

After you have pressed Enter two times, the Bing website will return an HTML page. Notice
that the status code is 200, which means that the server was able to return the page without
a problem. The message body contains HTML with a hyperlink to the new location.

	 9. Press Ctrl+[to return to the Telnet prompt. Repeat the process with www.contoso.com. This
time, you should receive an HTTP 301 message, which redirects you to a different page.

	 10. Press Ctrl+[to return to the Telnet prompt. Repeat the process with www.microsoft.com.
This time, you should receive an HTTP 200 message. If you examine the HTML, you’ll
notice that the web server returned an error message indicating that you did not provide
a valid HTTP User-Agent header. Browsers use the User-Agent header value to indicate
the browser’s type and capabilities.

ExErcIsE	2	 Monitoring HTTP with Network Monitor

In this exercise, you use Network Monitor to examine HTTP communications.

	 1. Visit http://www.microsoft.com/downloads and search for Network Monitor. Download
the latest version of the software and install it by using the default settings.

	 2. Restart your computer to ensure that the Network Monitor drivers are bound to your
adapters.

	 3. Launch Network Monitor.

	 4. In Network Monitor, click the New Capture button. Then click Start.

	 5. Open Internet Explorer and visit your home page. Wait for the page to load.

	 6. In Network Monitor, click the Stop button.

Network Monitor recorded all the packets that Internet Explorer transmitted and
received, and those packets are visible in the Frame Summary pane. Unfortunately,
Network Monitor also recorded communications from other network applications.

	 7. To filter the Frame Summary to display only HTTP packets, type hTTP in the Display
Filter pane, and then click Apply.

Network Monitor displays just the HTTP packets.

	 8. In the Frame Summary pane, select the first frame. In the Frame Details pane, expand
the Http section. Notice the command that was transmitted (probably GET), the URI,
and the host.

	 9. In the Frame Summary pane, select the HTTP response, which is probably the second
frame. In the Http section of the Frame Details pane, notice the StatusCode (probably
200), the server, the command that was transmitted (probably GET), the URI, and the host.

	 10. Browse through the other requests and responses, which probably include requests for
objects contained in the HTML page.

 14	 ChAPTER 1	 Introducing ASP.NET 4

Lesson Summary
■ The web server is responsible for accepting requests for a resource and sending the

appropriate response.

■ The web browser is responsible for displaying data to the user, collecting data from the
user, and sending data to the web server.

■ HTTP is a text-based communication protocol that is used to communicate between
web browsers and web servers by using TCP port 80 by default.

■ Secure HTTP (HTTPS) uses TCP port 443 by default.

■ Each HTTP method indicates the desired action. The most common methods are GET
and POST.

■ The process of sending data to a web server from a browser is commonly referred to
as a postback in ASP.NET programming.

■ You can troubleshoot HTTP by using a sniffer such as Microsoft Network Monitor.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Understanding Web Communications.” The questions are also available on the companion
CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or incorrect
are located in the “Answers” section at the end of the book.

	 1. From within an ASP.NET page, you need to run a section of code only if the user has
previously loaded the page and is submitting data as part of a form. Which Page
object property should you use?

	 A. IsCallback

	 B. IsReusable

	 c. IsValid

	 D. IsPostBack

	 2. You are troubleshooting a problem users have when submitting information with a form.
The form data does not appear in the web browser’s address bar, but you know the web
server is receiving the form data. After capturing the web communications with a sniffer,
which type of HTTP request should you examine to see the data the user submitted?

	 A. PUT

	 B. CONNECT

	 c. POST

	 D. GET

 Lesson 2: Creating a Website and Adding New Webpages ChAPTER 1 15

Lesson 2: Creating a Website and Adding new
Webpages

Visual Studio creates the initial structure for your website automatically. However, the structure
itself does nothing useful. To create a functional website, you will need to add ASPX pages and
write Visual Basic or C# code to turn the ASPX pages into dynamic HTML pages.

This lesson shows you how to create a new website with Visual Studio, describes the contents
of the default website, and teaches you how to add your own ASPX web forms.

After this lesson, you will be able to:
■	 Create a new website within Visual Studio.
■	 Understand the various configuration options available when defining a new

website.
■	 Add new web forms to a website.

Estimated lesson time: 35 minutes

Creating Websites
The Visual Studio project system allows you to define a new website project based on how
you intend to access the site content hosted on the site’s web server. You can create a web
project connected to a file-system–based server on your computer, an IIS server, or an FTP
server. The option that is right for your website project depends on how you want to run,
share, manage, and deploy your project. The following describes each option in further detail:

■ File system A file-system–based website stores all of the files for the website inside a
directory of your choosing. When you debug the website, Visual Studio runs the light-
weight ASP.NET development server that is included in Visual Studio. A file-system–based
site is great when you want to run and debug your website locally but do not want to run
a local IIS web server (or cannot due to security restrictions on your network).

■ FTP An FTP-based website is useful when you want to connect to your site via FTP to
manage your files on a remote server. This option is typically used when your website
is hosted on a remote computer and your access to the files and folders on that server
is through FTP.

■ hTTP An HTTP-based website is used when you are working with a site deployed
inside of IIS (either locally or on a remote server). This type of website might be config-
ured at the root of the IIS web server or in a virtual directory that is configured as an
application. Note that a remote server running IIS will need the WebDAV Publishing role
service or Microsoft Front Page Server Extensions 2002.

 16	 ChAPTER 1	 Introducing ASP.NET 4

Creating a Website Project
You can create a new website project directly from Visual Studio. The basic steps for doing
so are as follows:

	 1. In Visual Studio, use the File menu to create a new website (File | New | Web Site). This
launches the New Web Site dialog box, as shown in Figure 1-2. This dialog box contains
properties for setting the website type, location, Microsoft .NET Framework version,
and default programming language.

	 2. Select the website type, location, and default programming language.

	 3. You might also want to select the target framework for your project. New to Visual
Studio 2010 is the ability to code against multiple versions of the .NET Framework.
You can choose among versions 2.0, 3.0, 3.5, and 4. Unless you need to use an earlier
version, you should always use 4.

	 4. When you have defined your website, click OK to finish setting it up. Depending on
your type selection, you might be prompted to enter additional information.

FigURE 1-2 The New Web Site dialog box.

You can also use Visual Studio to create an ASP.NET web application. Use the File menu to
create a new project (File | New | Project), and then select ASP.NET Web Application or ASP.NET
Empty Web Application. Web applications and websites function and perform similarly, but web
applications differ from websites in several important ways. For example, with a web application:

■ You can create an MVC application.

■ Visual Studio stores the list of files in a project file (.csproj or .vbproj), rather than
relying on the folder structure.

■ You cannot mix Visual Basic and C#.

■ You cannot edit code without stopping a debugging session.

■ You can establish dependencies between multiple web projects.

 Lesson 2: Creating a Website and Adding New Webpages ChAPTER 1 17

■ You must compile the application before deployment, which prevents you from testing
a page if another page will not compile.

■ You do not have to store the source code on the server.

■ You can control the assembly name and version.

■ You cannot edit individual files after deployment without recompiling.

Typically, website projects are the right choice when one developer will be creating and
managing a website. Web application projects are better for enterprise environments with
multiple developers and formal processes for testing, deployment, and administration.

Creating a File-System–Based Website
A file-system–based website runs locally on the ASP.NET web server that ships with Visual
Studio. This option allows you to keep your development local until you are ready to publish
code to a server for sharing. To create a file-system–based website, you use the New Web Site
dialog box and select File System from the Web Location list box (see Figure 1-2). You then
simply set a valid folder location for storing your website files locally on a hard drive.

Visual Studio creates the folder for your site and adds two content webpages (Default.aspx
and About.aspx), their code-behind files, and a master file named Site.master, with a code-
behind file. The default website template also creates the folder App_Data, as well as a
configuration file called Web.config. When the website opens, Visual Studio displays the
Default.aspx page in HTML Source view, where you can see the page’s HTML elements.
Figure 1-3 shows an example of the IDE after a new website has been created.

FigURE 1-3 The structure of a newly created website.

 18	 ChAPTER 1	 Introducing ASP.NET 4

CREATING A FILE-SYSTEM–BASED WEBSITE ON A SERVER
For learning and testing purposes, you should create websites on your local computer. However,
in a production environment, you might need to create and update websites stored on remote
servers, such as servers running Windows Server 2008 R2 and IIS 7.5.

IIS 7.5 does not support Front Page Server Extensions because it uses WebDAV natively.
Therefore, you cannot use HTTP to create the website. However, you can create a file-system–
based or FTP website. Of those two, the file-system–based website is preferred (the reasons
for which are explained in the “Creating a Website with FTP” section later in this chapter).

To create a file-system–based website on a remote server running Windows Server 2008
R2, follow these high-level steps on the server:

	 1. Install .NET Framework 4 on the server (if it has not yet been installed).

	 2. Install IIS 7.5 with the ASP.NET role service.

	 3. After IIS is installed, open the IIS Manager. In the IIS Manager, create a new website
that uses the ASP.NET 4 application pool.

	 4. Grant web developer user accounts NTFS Write permissions for the website folder.

	 5. From Windows Explorer, share the website folder. Grant web developer user accounts
Change share permissions.

Then, on your development computer, follow these steps:

	 1. Use Windows Explorer to map a network drive to the shared folder.

	 2. Use Visual Studio to create a file-system–based website by specifying the drive letter
of the WebDAV network drive.

When you debug or start without debugging from Visual Studio, it will run the website
by using the lightweight ASP.NET development server that is included in Visual Studio.
However, you can open the remote server’s website by using Internet Explorer or another
web browser, to verify that the site functions correctly on the website.

CREATING A FILE-SYSTEM–BASED WEBSITE WITH WEBDAV
The easiest way to publish a website to a server is to map a drive to the server. If firewall restric-
tions prevent you from mapping a drive, you can publish the website across HTTP by using
WebDAV. On a server running Windows Server 2008 R2, follow the steps in the previous section
to configure IIS, but do not share the folder by using Windows Explorer. Instead, configure
WebDAV by following these high-level steps:

	 1. Add the WebDAV Publishing role service to IIS.

	 2. In the IIS Manager, add a WebDAV Authoring Rule to grant your user account access to
Read, Write, and Source for the new website.

	 3. Enable WebDAV on the server.

 Lesson 2: Creating a Website and Adding New Webpages ChAPTER 1 19

	 4. On your client computer, map a network drive to the website’s URL. You can do this
from a command prompt by running the following command.

net use * http://<website_url>

	 5. On your client computer, use Visual Studio to create a file-system–based website by
specifying the drive letter of the WebDAV network drive.

Creating a Website with HTTP
Most production websites and many development websites are hosted on computers
running a version of Windows Server and IIS. IIS is not required when you are developing
ASP.NET applications with Visual Studio, however, because Visual Studio includes a light-
weight ASP.NET development server.

If you want to use IIS, you can publish files by using the file-system–based web location
(described in the previous section) or the FTP web location (described in the next section). If
the computer is running Windows 7, Windows Server 2008 (but not Windows Server 2008 R2),
or earlier Windows operating systems, you can also create a website by using the HTTP web
location type.

Before you can create a website by using HTTP, you must install the following Windows
features:

■ Internet Information Services\Web Management Tools\IIS 6 Management Compatibility
\IIS 6 Metabase And IIS 6 Configuration Compatibility

■ Internet Information Services\World Wide Web Services\Application Development
Features\ASP.NET

To create a website that uses IIS running on your local computer, follow these steps:

	 1. Launch Visual Studio by right-clicking the application icon and clicking Run As
Administrator.

	 2. In Visual Studio, use the File menu to create a new website (File | New | Website). This
launches the New Web Site dialog box, as shown earlier in Figure 1-2.

	 3. Select the website type and default programming language.

	 4. Click the Web Location list, and then click HTTP.

	 5. Click the Browse button to open the Choose Location dialog box.

	 6. Click the Local IIS button.

	 7. Click the Create New Web Application button, type a name for your application, and
then press Enter. Figure 1-4 shows a new web application being configured.

 20	 ChAPTER 1	 Introducing ASP.NET 4

FigURE 1-4 Choosing the location of a new website that will use IIS.

	 8. If you have an SSL certificate installed in IIS, select the Use Secure Sockets Layer
check box.

	 9. Click Open.

	 10. Click OK.

Visual Studio creates a new web application on your local IIS server.

If you are connecting to a remote server, the remote server must have .NET Framework 4,
ASP.NET, and Front Page Server Extensions installed and enabled. Microsoft does not support
Front Page Server Extensions on IIS 7.5 and Windows Server 2008 R2, however. Therefore, you
cannot create a new website that uses the HTTP deployment capabilities of Visual Studio on
the most recent Microsoft server operating systems. If you receive the error message shown
in Figure 1-5, create the website by using the file system or FTP.

FigURE 1-5 Creating a new HTTP site requires Front Page Server Extensions.

 Lesson 2: Creating a Website and Adding New Webpages ChAPTER 1 21

Creating a Website with FTP
An FTP-based website is one that communicates with a remote server over FTP. This can be
useful if you are using a hosting provider’s server, communicating to it over FTP, and want to use
Visual Studio to edit your files directly on the server. To create an FTP-based website project,
first configure the web server as described in the “Creating a File-System–Based Website on a
Server” section earlier in this chapter. Additionally, you must install the FTP Server role service
on the server hosting the website.

When the server is properly configured, use Visual Studio to create a new website. In the
New Web Site dialog box, from the Web Site Type drop-down list, select FTP. You then need
to provide the FTP address for your site, such as ftp://www.contoso.com.

When you click OK in the New Web Site dialog box, you are prompted for a set of additional
FTP parameters. This includes choosing between active and passive mode and selecting login
credentials.

You should only use FTP when working with a web hosting provider that does not support
file-system–based websites, WebDAV, or Front Page Server Extensions because, by default,
FTP sends user credentials unencrypted. If you must use FTP, change your password regularly
to minimize the potential impact of compromised credentials.

Website Solution Files
When a website is created, Visual Studio creates a solution file (.sln) and a hidden solution user
options file (.suo). By default, these files are created in the My Documents\Visual Studio 2010
\Projects folder for websites. This is also true for those sites with actual root folders that are
stored elsewhere. A solution file is an XML file that contains information such as the following:

■ A list of the projects that are to be loaded into Visual Studio to make up the entire
solution

■ The default language for the solution

■ A list of project dependencies

■ Source control information, such as Microsoft Visual Studio Team Foundation Server

■ A list of add-ins that are available

The solution user options file is a binary file that contains various user settings related to
the IDE for the project. These files are not shared among developers (as a solution file would
be). Settings in this file include the following:

■ The task list

■ Debugger break points and watch window settings

■ Visual Studio window locations

 22	 ChAPTER 1	 Introducing ASP.NET 4

Note that the solution files are not located in your website’s folder because they are specific
to Visual Studio and are not required in the deployed website. Also, a solution can contain
many websites and Visual Studio projects, so it is best to keep the solution files in an inde-
pendent folder. Some solution files also can be developer specific, meaning that developers
might want to configure solution files based on their preferences.

A Visual Studio website also does not contain an associated project file. However, a Visual
Studio web application does have a project file associated with it. Because it includes a project
file, the web application is useful to developers who are building applications with Visual Studio
and not just working with websites.

The Content of a Newly Created Website
If you create a website by using the default ASP.NET Web Site template, Visual Studio adds the
default objects shown in Table 1-5. The order of the objects listed is the order in which you’ll
see them in the Visual Studio Solution Explorer window, which is the window in Visual Studio
that you’ll use to open and edit files, work with source control (if the appropriate bindings are
established for the solution), and visualize the website’s layout at a glance. If you don’t see
Solution Explorer, you can open it by using View | Solution Explorer.

TAbLE 1-5 ASP.NET 4 Website Template Default Objects

ObjECT nAmE DEsCRiPTiOn

Account Contains user management forms for registering new users, logging in,
and changing passwords

App_Data Will contain application data files (.mdf and .xml files) if you access a
local database

Scripts Contains client-side JQuery JavaScripts used by some standard ASP.NET
components

Styles Contains the default site.css style sheet

About.aspx The default About page

Default.aspx The default page that appears when a user accesses your site without
specifying a page in the URI

Global.asax Code for Application and Session events, including Application.Start,
Application.End, Application.Error, Session.Start, and Session.End

Site.master Defines the header for the default site pages, including the menu structure

Web.config The site configuration file

By right-clicking your site in Solution Explorer and clicking Add ASP.NET Folder, you can also
add the folders in Table 1-6. These folders are protected by ASP.NET. If users attempt to browse
to any of these folders (except App_Themes), they will receive an HTTP 403 Forbidden error.

 Lesson 2: Creating a Website and Adding New Webpages ChAPTER 1 23

TAbLE 1-6 ASP.NET 4 Special Folders

FOLDER nAmE DEsCRiPTiOn

App_Browsers Contains custom browser definition files (.browser files) that ASP.NET
uses to identify browsers and determine their capabilities. The .NET
Framework includes a standard set of browser definition files in
<windir>\Microsoft.NET\Framework\<ver>\CONFIG\Browsers.

App_Code Contains source code for classes (.cs, .vb, and .jsl files) that the developer
intends to compile as part of the application.

App_Global-
Resources

Contains resources (.resx and .resources files) that are compiled into
satellite assemblies and have a global scope. Resource files are used
to externalize text and images from your application code. This helps
you support multiple languages and design-time changes without
recompilation of source code.

App_Local-
Resources

Contains resources (.resx and .resources files) that are scoped to a specific
page, user control, or master page in an application.

App_Themes Contains subfolders, each of which defines a specific theme (or look) for
your site. A theme consists of files (such as .skin, .css, and image files) that
define the appearance of webpages and controls.

App_Web-
References

Contains web reference files (.wsdl, .xsd, .disco, and .discomap files) that
define references to web services.

Bin Contains compiled assemblies (.dll files) for code that the application
requires to execute. Assemblies in the Bin folder are automatically ref-
erenced in your application.

Creating ASPX Pages
After your website has been created, the next step is to begin adding pages to the site. An ASP.NET
page is also known as a web form and can be composed of a single file or a pair of files.

Single-File vs. Code-Behind Pages
An ASPX page always has two separate components: layout and code. The layout is expressed
by using HTML, a formatting language that web designers specialize in. The code is written in
ASP.NET, usually with Visual Basic .NET or C#, programming languages that web developers
specialize in.

ASP.NET allows you to store both the layout and code in a single file, or to store them in
separate files (a technique known as code-behind). If you are handling both the web design
and web development roles, you might use the single-file method. If another individual will
perform the layout work, or might in the future, code-behind is the preferred choice. If you
are not sure, use the code-behind method, because it is easier to organize and more widely
accepted in the development community.

 24	 ChAPTER 1	 Introducing ASP.NET 4

The following code samples show a single-file web form that displays the current time. Note
that the page is primarily standard HTML. The sections in bold are processed by ASP.NET on the
server, however, and replace the ASP.NET Label control with the current time (as generated by
the DateTime.Now.ToString static method) when the TimeLabel.Load event occurs.

Sample of Visual Basic Code

<%@ Page Language="VB" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR
/xhtml1/DTD/xhtml1-transitional.dtd">
<script runat="server">
Protected Sub TimeLabel_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles TimeLabel.Load
 TimeLabel.Text = DateTime.Now.ToString
End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Single-File Web Form</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 The time is:
 <asp:Label ID="TimeLabel" runat="server" onload="TimeLabel_Load"></asp:Label>
 </div>
 </form>
</body>
</html>

Sample of C# Code

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR
/xhtml1/DTD/xhtml1-transitional.dtd">
<script runat="server">
protected void TimeLabel_Load(object sender, EventArgs e)
{
 TimeLabel.Text = DateTime.Now.ToString();
}
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Single-File Web Form</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 The time is:
 <asp:Label ID="TimeLabel" runat="server" onload="TimeLabel_Load"></asp:Label>
 </div>
 </form>
</body>
</html>

 Lesson 2: Creating a Website and Adding New Webpages ChAPTER 1 25

Notice that the runat=”server” attribute is defined in the script block. This indicates that
the code contained within the script block will run on the server (and not on the client). On
execution, ASP.NET will create server-side objects that contain this code as well as an instance
of the Page class to contain the controls defined inside the page as instances of their type
(System.Web.UI.WebControls.Label, for example).

By default, Visual Studio creates new ASP.NET web applications by using the code-behind
structure. The following code samples show the same application written by using the code-
behind technique. The ASPX file (code-behind.aspx) is as follows.

Sample of Visual Basic Code

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Code-behind.aspx.cs"
Inherits="Code_behind" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR
/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Code-behind Web Form</title>
</head>
<body>
 <form id="form1" runat="server">
 The time is:
 <asp:Label ID="TimeLabel" runat="server" onload="TimeLabel_Load"></asp:Label>
</body>
</html>

Sample of C# Code

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Code-behind.aspx.cs"
Inherits="Code_behind" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR
/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Code-behind Web Form</title>
</head>
<body>
 <form id="form1" runat="server">
 The time is:
 <asp:Label ID="TimeLabel" runat="server" onload="TimeLabel_Load"></asp:Label>
 </form>
</body>
</html>

Notice that the Visual Basic and C# code samples differ only by the page language in the
first line of the file. Although each web form can only contain either Visual Basic or C#, you
can have both a web form with Visual Basic and a web form with C# in the same website
project (but not within a web application project). The code-behind file would be named
code-behind.aspx.vb (for Visual Basic) or code-behind.aspx.cs (for C#).

 26	 ChAPTER 1	 Introducing ASP.NET 4

Sample of Visual Basic Code

Protected Sub TimeLabel_Load(ByVal sender As Object, ByVal e As System.EventArgs)_
 Handles TimeLabel.Load
 TimeLabel.Text = DateTime.Now.ToString
End Sub

Sample of C# Code

public partial class Code_behind : System.Web.UI.Page
{
 protected void TimeLabel_Load(object sender, EventArgs e)
 {
 TimeLabel.Text = DateTime.Now.ToString();
 }
}

Notice that the code-behind layout file is almost identical to the single-file web form; it’s
missing only the <script> section. All of the code from the <script> section was moved into
the code-behind file.

real World

Tony Northrup

Before ASP.NET, Microsoft’s web development language was a scripting language
called ASP (Active Server Pages). In ASP, you intermixed code and HTML freely,

writing code in any part of a webpage that needed to be dynamic. In my mind, the
single-file coding structure was introduced only to help ease the transition from ASP
to ASP.NET. It has little practical use to today’s .NET Framework developer.

Even if you don’t work with a web designer, the code-behind structure is much
easier for a web developer to maintain. You can make changes to ASPX pages
without seeing code or even recompiling the application. On all but the simplest
of webpages, storing code and layout in a single file would be overly cluttered.

When you reach Chapter 14, “Creating Websites with ASP.NET MVC 2,” you’ll discover
that code-behind files aren’t always used with model-view-controller (MVC). They’re
still available, and Visual Studio creates the code-behind file by default, but MVC’s
separation of presentation and logic limits the amount of code associated directly
with ASPX files.

 Lesson 2: Creating a Website and Adding New Webpages ChAPTER 1 27

The Anatomy of an ASPX Page
A page in ASP.NET contains user interface layout information, code that executes on the
server, and directives to both connect the layout with the code and to tell ASP.NET how
the page should be processed. A standard ASP.NET page has an .aspx extension. A typical
ASPX page includes three sections: page directives, code, and page layout. These sections
are defined as follows:

■ Page directives This section is used to set up the environment and specifies how
the page should be processed. This is where you can indicate an associated code file,
a development language, a transaction, and more. A page directive resembles the
following.

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master"
AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %>

■ Code This section contains code to handle events that execute on the server based on
the ASP.NET page processing model. In single-file pages, the code is stored within one or
more <script runat=”server”></script> blocks. If you use a code-behind file, the code is
stored in a separate file.

■ Page layout The page layout is written by using HTML that includes the HTML body,
markup, and style information. The HTML body might contain HTML tags, Visual Studio
controls, user controls, code, and simple text.

How to Create an ASPX Page
Follow these steps to create an ASPX page:

	 1. With a website open in Visual Studio, click the Website menu and then click Add
New Item.

	 2. In the Add New Item dialog box (see Figure 1-6), in the Installed Templates list, select
the programming language for the web form (such as Visual Basic or Visual C#).

FigURE 1-6 Adding a new web form to your website.

 28	 ChAPTER 1	 Introducing ASP.NET 4

	 3. In the middle pane, click Web Form, and then type a name for the web form.

	 4. To use a separate code-behind file, select the Place Code In Separate File check box.

	 5. You can opt to select the Select Master Page check box to select a page on which to
base the look of your new web form. Master pages allow you to create a consistent look
and feel for your entire website. We cover master pages in more detail in Chapter 2,
“Using Master Pages, Themes, and Caching.”

	 6. Click Add. If prompted, select a master page, and then click OK.

Website Compilation
Deploying an ASP.NET website can be as simple as copying your web application files to a web
server. The first time a user (usually, the developer testing the deployment) opens a webpage,
ASP.NET automatically compiles the application into an assembly and loads it into your site’s
application domain so that the request can be addressed. This can take a few seconds, slowing
down any requests received before ASP.NET has finished compiling the application.

This model is referred to as dynamic compilation. It has several pros and cons, including
the following:

■ Pro Changes to a site file will result in an automatic recompilation of the resource.
This allows for easier deployment.

■ Pro The entire application does not need to be recompiled every time a change is
made to a single page or component. This is great for large websites.

■ Pro Pages that contain compilation errors do not prevent other pages in the web-
site from running. This means that you can test websites that contain pages still in
development.

■ Con This model requires users who request pages before compilation is complete
to take a compilation performance hit. That is, the first request for an uncompiled
resource will be slower than subsequent requests.

■ Con This model requires your source code to be deployed to the server. Default IIS
settings protect the source code, reducing the risk of source code being downloaded
by unauthorized users.

Visual Studio also allows you to precompile your website. When you do so, your entire
site is compiled and error checked, and only the layout code and associated assemblies are
deployed to the web server. Precompilation has the following pros and cons:

■ Pro This model provides verification that all the pages and their dependencies can be
compiled. This includes code, markup, and the Web.config file.

■ Pro Performance for the first user requesting a resource is improved, because he or
she is not required to take the compilation hit.

■ Con Precompiled websites can be more difficult to deploy and manage, because you
have to compile and then copy only the necessary files to the server (versus simply
copying your code files to the server).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 2: Creating a Website and Adding New Webpages ChAPTER 1 29

Quick Check
	 1. Where are solution files created by default?

	 2. Which ASP.NET page model separates layout from code?

Quick Check Answers
	 1. By default, solution files are created in the My Documents\Visual Studio 2010\

Projects folder.

	 2. The code-behind programming model separates user-interface layout markup
from code.

Using Assemblies
The .NET Framework stores individual classes and entire libraries in assemblies. With ASP.NET,
you might never have to think about assemblies; if you create stand-alone websites with custom
classes, Visual Studio will automatically compile your custom classes along with your ASP.NET
code the first time a user requests a page.

If you use a custom class from multiple applications (including both ASP.NET and Windows
applications), you can choose to compile that class into a separate assembly. Then, you can ref-
erence that assembly from your Visual Studio projects by using the Add Reference dialog box.

When you reference an assembly, you can choose to store a copy of the class’ assembly with
every ASP.NET website that uses it, or you can store a single copy in the global assembly cache
and have all applications access it from the central location. Typically, it is easier to manage
assemblies and deploy websites when you store assemblies within the ASP.NET website folder
structure.

You can view and manage the global assembly cache by opening the %windir%\assembly\
folder in Windows Explorer. You can automatically add signed assemblies to the global
assembly cache by using a setup project. To manually add an assembly, copy it to the
%windir%\assembly\ folder. To remove an assembly, right-click it in Windows Explorer
and then click Uninstall.

PrActIcE	 Creating a new Website and Adding a Page

In this practice, you create a new website and explore its contents by using Visual Studio 2010.
After that, you add a new webpage to the website.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion CD” in this book’s
Introduction.

 30	 ChAPTER 1	 Introducing ASP.NET 4

ExErcIsE	1	 Creating a New Website

In this exercise, you create a new, file-based website by using Visual Studio.

	 1. Start Visual Studio.

	 2. Create a file-based website. From within Visual Studio, select File | New | Web Site to
open the New Web Site dialog box.

	 3. In the New Web Site dialog box, make sure the Web Site Type drop-down list box is set
to File System. Click Browse to open the Choose Location dialog box. Then select File
System, create the %Documents%\visual studio 2010\Websites\myFirstsite folder,
and click Open. Click OK.

	 4. Explore the new website. In the Solution Explorer window (View | Solution Explorer), and
notice the special folder called App_Data and the webpage called Default.aspx. Click the
plus (+) sign beside the Default.aspx file to reveal its code-behind page.

	 5. In Windows Explorer, navigate to the actual folder that contains the solution file. This
should be %Documents%\Visual Studio 2010\Projects\MyFirstSite. You can open this file
and view it in Notepad. Also, notice that the actual web project files are not stored in
this location.

	 6. Navigate to the folder containing your website files. This should be %Documents%\
Visual Studio 2010\WebSites\MyFirstSite. Here you can see your Default.aspx page, its
code-behind file, the App_Data directory, and the Web.config file.

	 7. In Visual Studio, double-click the Default.aspx page in Solution Explorer. Then switch to
Design view by selecting View | Designer.

	 8. From the toolbox, drag a Label control into the body of the Default.aspx page. In the
Properties pane, change the ID to TimeLabel.

	 9. Click the Events button in the Properties pane. Double-click the Load event to create an
event handler for the TimeLabel.Load event, which runs each time ASP.NET renders the
TimeLabel control.

	 10. In the default TimeLabel.Load event handler, configure the TimeLabel control to display
the current time by adding the following line of code.

Visual Basic
TimeLabel.Text = DateTime.Now.ToString

C#
TimeLabel.Text = DateTime.Now.ToString();

	 11. Next, compile the website. In Visual Studio, select Build | Build Web Site. Return to your
website directory. Notice that it is unchanged. Visual Studio compiled your site but is
hiding the results from you. Had this been a web application project, you would see a
Bin directory and the compiled code placed in that directory.

 Lesson 2: Creating a Website and Adding New Webpages ChAPTER 1 31

	 12. View the Default.aspx page in a browser. In Visual Studio, select Debug | Start Without
Debugging. After a moment, you should see the default webpage rendered with the
current time displayed at the location where you dropped the Label control.

	 13. Use your browser to view the webpage source. Find the portion of the source HTML
that displays the current time. Note that ASP.NET replaced the Label control with the
current time, but did not modify the surrounding markup.

ExErcIsE	2	 Adding a New Webpage

In this exercise, you add a new webpage to the website that you just created.

	 1. Add a new webpage. In Visual Studio, from the Website menu, select Add New Item.
In the Add New Item dialog box, select Web Form. In this case, set the page name to
Page2.aspx. Next, clear the Place Code In Separate File check box and click Add.

	 2. Observe the result in Visual Studio. There should be no code-behind file for the file.

	 3. Edit Page2.aspx. As you did in the previous exercise, add a Label control named TimeLabel.

	 4. Create the TimeLabel.Load event handler, as you did in the previous exercise.

	 5. Add the code from the previous exercise to the TimeLabel.Load event handler in the
<script> section to set TimeLabel.Text to the current time.

	 6. Run the page in a web browser and observe the results.

Lesson Summary
■ You can use Visual Studio to publish websites to an IIS web server by using either

HTTP or FTP. During development, you can test websites by using your local file
system, without running a web server.

■ You can create dynamic webpages by using ASPX web forms. ASP web forms separate
the HTML layout from the .NET Framework code. Generally, you will store the HTML
layout and the code in separate files, by using the code-behind technique. You do have
the option of storing both the code and the HTML layout in a single file, however.

■ ASP.NET automatically compiles a website the first time a user retrieves a webpage.
To avoid any delay for the first several requests, you can precompile a website when
publishing it.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Creating a Website and Adding New Webpages.” The questions are also available on the
companion CD in a practice test if you prefer to review them in electronic form.

 32	 ChAPTER 1	 Introducing ASP.NET 4

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or incorrect
are located in the “Answers” section at the end of the book.

	 1. If you want to create a website on a remote computer running IIS 6.0 that does not
have Front Page Server Extensions installed, which website type will you create?

	 A. Remote HTTP

	 B. File system

	 c. FTP

	 D. Local HTTP

	 2. Joe created a new website by using Visual Studio 2010, setting the website type
to File, and setting the programming language to C#. Later, Joe received an elabo-
rate webpage from his vendor, which consisted of the Vendor.aspx file and the
Vendor.aspx.vb code-behind page. What must Joe do to use these files?

	 A. Joe can simply add the files into the website, because ASP.NET 4 supports websites
that have webpages that were programmed with different languages.

	 B. The Vendor.aspx file will work, but Joe must rewrite the code-behind page by
using C#.

	 c. Both files must be rewritten in C#.

	 D. Joe must create a new website that contains these files and set a web reference to
the new site.

Lesson 3: Working with Web Configuration Files

You use Extensible Markup Language (XML) configuration files to store settings that control
different aspects of an ASP.NET website. Most ASP.NET websites have a single XML Web.config
file in the application’s root directory; however, you can add Web.config files to any subfolder to
change the behavior of that section of your website.

This lesson presents an overview of configuring websites by using configuration files.

After this lesson, you will be able to:
■	 Understand the configuration file hierarchy.
■	 Use the graphical user interface (GUI) configuration tool to make changes to

configuration files.

Estimated lesson time: 15 minutes

 Lesson 3: Working with Web Configuration Files ChAPTER 1 33

Understanding the Configuration File Hierarchy
Configuration files allow you to manage the many settings related to your website. Each
file is an XML file (with the extension .config) that contains a set of configuration elements.
The elements define options such as security information, database connection strings, and
caching settings. A site might actually be configured with multiple .config files. Therefore, it
is important to understand how these files work together to establish and override various
settings.

Configuration files are applied to an executing site based on a hierarchy. Generally, this means
that there is a global configuration file for all sites on a server. This file, called Machine.config,
is typically found in the %SystemRoot%\Microsoft.NET\Framework\<versionNumber>\CONFIG\
directory.

The Machine.config file contains settings for all .NET application types, such as Windows,
Console, ClassLibrary, and web applications. These settings are global to the server. Some of
the settings in the Machine.config file can be overridden by settings in Web.config files that
are further down in the hierarchy, whereas other settings are more global in nature. The
global ones are owned by the .NET Framework, so they are protected and cannot be over-
ridden by the Web.config files.

The Machine.config file defines default settings for all sites running on a server, as long
as another Web.config file further down the chain does not override any of these settings. To
change settings for all websites on a computer, you can edit the root Web.config file, located
in the same folder as the Machine.config file.

To change settings for an individual website, use the site-specific Web.config file located
in the website’s root folder. You can also add Web.config files to individual applications and
folders within a website. Figure 1-7 shows the ASP.NET configuration hierarchy.

 %SystemRoot%\Microsoft.NET\Framework\
<versionNumber>\CONFIG\Machine.config

Global machine

%SystemRoot%\Microsoft.NET\Framework\
<versionNumber>\CONFIG\Web.config

Root Web.config

<wwwroot>\Web.configWebsite

<wwwroot>\<web_app>\<dir>\Web.configFolder

<wwwroot>\<web_app>\Web.configWeb application

FigURE 1-7 The configuration file hierarchy.

 34	 ChAPTER 1	 Introducing ASP.NET 4

Processing the Configuration Files
When you initially run your web application, the ASP.NET runtime environment builds a cache
of the configuration settings for your web application by flattening the layers of configuration
files as follows:

	 1. ASP.NET retrieves the Machine.config file settings.

	 2. ASP.NET adds the settings from the root Web.config file to the cache, overwriting any con-
flicting settings that were created earlier when ASP.NET retrieved the Machine.config file.

	 3. If there is a Web.config file at the root of the website, ASP.NET reads this file into the
cache, overwriting existing entries.

	 4. If there is a Web.config file at the web application level, ASP.NET reads it into the cache,
also overwriting any existing settings. The resulting cache contains the settings for this
website.

	 5. If you have subdirectories in your web application, each subdirectory can have a Web.config
file that includes settings that are specific to the files and folders that are contained within
the subdirectory. To calculate the effective settings for the folder, ASP.NET reads the website
settings (steps 1–4), and then reads this Web.config file into the cache for this folder, over-
writing (and thereby overriding) any existing settings.

Changes to .NET Framework 4 Configuration Files
All versions of the .NET Framework from 2.0 to 3.5 used the same configuration files. Because
so much had changed since .NET Framework 2.0, Visual Studio 2008 SP1 created Web.config
files for new web projects that were more than 125 lines long. This massive amount of XML
made it difficult for developers to keep track of settings.

The .NET Framework 4 includes a new version of the Common Language Runtime (CLR),
along with a new Machine.config file specific to .NET 4. The new Machine.config file includes
the ASP.NET settings that earlier versions of Visual Studio had to add to individual Web.config
files, allowing Visual Studio 2010 to create much simpler default Web.config files. As a result,
your default Web.config files will only be about 40 lines.

Editing Configuration Files
Because they are XML files, the configuration files can be opened and modified with any text
editor or XML editor. Visual Studio 2010 also provides the Web Site Administration Tool (WSAT),
which can be used to modify many of the configuration file settings. You can access this tool by
selecting Website | ASP.NET Configuration. The WSAT allows you to edit the following categories
of the configuration files:

■ security This setting allows you to manage users and configure permissions for your
website.

■ Application Configuration This category is used to modify flexible, application-specific
settings that function as application-wide constants. Figure 1-8 shows the Application tab
of the WSAT.

 Lesson 3: Working with Web Configuration Files ChAPTER 1 35

■ Provider Configuration The configuration file contains settings that allow you to
specify the database provider to use for maintaining membership and roles, which
you can tailor by using this WSAT feature.

FigURE 1-8 The Application tab of the WSAT.

The WSAT lets you create and modify website settings that are not inherited. If a setting is
inherited and cannot be overridden, the setting will be unavailable.

The IIS Manager included with IIS 7.5, as shown in Figure 1-9, allows you to edit many
common ASP.NET configuration settings by using a GUI.

FigURE 1-9 The ASP.NET settings in IIS 7.5.

 36	 ChAPTER 1	 Introducing ASP.NET 4

Quick Check
	 1. Is the format of a configuration file CSV, XML, or binary?

	 2. If a setting exists in the root Web.config file and also in the Web.config file at the
web application level but with a different value, which Web.config file takes
precedence?

Quick Check Answers
	 1. The configuration file is stored in XML format.

	 2. The Web.config file at the web application level takes precedence unless the
setting has been configured to prevent overriding.

PrActIcE	 modifying a Website Configuration

In this practice, you use the WSAT to modify a website’s configuration by enabling debugging
on the website. After that, you view the changes in the Web.config file.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion CD” in this book’s
Introduction.

ExErcIsE	 Creating the New Web.config File

In this exercise, you start Visual Studio and open the website created in the previous practice.

	 1. Open the MyFirstSite website from the previous practice.

oN the CoMpaNIoN MedIa

Alternatively, you can open the completed Lesson 2 practice project in the samples
installed from the companion CD.

	 2. Open the WSAT by selecting Website | ASP.NET Configuration.

	 3. Click the Application tab to display the application settings.

	 4. Click the Configure Debugging And Tracing link to open the page shown in Figure 1-10.

 Lesson 3: Working with Web Configuration Files ChAPTER 1 37

FigURE 1-10  The Configure The Settings For Debugging And Tracing Your Application page.

	 5. Select the Enable Debugging check box to enable debugging for the current website.
If you watch your browser closely, you’ll see that selecting this check box performs a
postback to the web server, which causes the WSAT to update the corresponding
setting in the Web.config file.

	 6. Close the WSAT.

	 7. In Visual Studio, open the Web.config file. The new Web.config file will contain the
following code (along with other unrelated settings).

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 </system.web>
</configuration>

Notice that the file contains the setting to set debug to true. This turns on debugging
for the website.

 38	 ChAPTER 1	 Introducing ASP.NET 4

Lesson Summary
■ Websites are configured based on a hierarchy of XML configuration files, starting with

the Machine.config file, followed by the Web.config file that is in the same folder.
After that, you might have a Web.config file in the root of the website, in each web
application, and in any subdirectory in a web application.

■ The configuration files can be edited with a text editor, an XML editor, the WSAT, or the
IIS Manager.

■ The WSAT is used to add and modify the website settings.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 3,
“Working with Web Configuration Files.” The questions are also available on the companion
CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or incorrect
are located in the “Answers” section at the end of the book.

	 1. You want to make a configuration setting change that will be global to all web and
Windows applications on the current computer. Which file do you change?

	 A. Global.asax

	 B. Application Web.config

	 c. Machine.config

	 D. Root Web.config

	 2. You want to make a configuration setting change that will affect only the current web
application. Which file will you change?

	 A. The Web.config file that is in the same folder as the Machine.config file

	 B. The Web.config file in the root of the web application

	 c. The Machine.config file

	 D. The Global.asax file

Case scenarios

In the following case scenarios, you apply what you’ve learned in this chapter. You can find
answers to these questions in the “Answers” section at the end of this book.

 Suggested Practices ChAPTER 1 39

Case Scenario 1: Creating a New Website
You are assembling a group of developers to create a new website for a company named
Wide World Importers. Each developer will have Visual Studio 2010 installed on his or her
mobile computer. Additionally, you have created a development server running Windows
Server 2008 R2 to host different development versions of the website.

Each developer is creating an independent component of the website. You want each
developer to be able to debug the web application independently, even when disconnected
from your network. Additionally, you need to be able to evaluate stable versions of each
developer’s component of the website on your development server.

	 1. How can you allow developers to debug their components while disconnected from
the network, and still be able to evaluate the entire site on your development server?

	 2. What types of websites will you create?

Case Scenario 2: Placing Files in the Proper Folders
You have created a new website for a company named Wide World Importers. The new site
will use a third-party component called ShoppingCart.dll to process customer purchases. This
component requires a Microsoft SQL Server 2005 Express Edition database. The database files
are named Purchases.mdf (a data file) and Purchases.ldf (a transaction log file). In addition,
you will add a new class file called ShoppingCartWrapper.vb or ShoppingCartWrapper.cs,
which will be used to simplify the use of the ShoppingCart.dll component.

	 1. In what folder(s) will you place these files?

	 2. What is the benefit of using these locations?

suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Create a New Website by Using Visual Studio 2010
For this task, you should complete at least Practice 1. If you want a more well-rounded
understanding of all of the website types, you should also complete Practice 2.

■ Practice 1 Become familiar with websites by creating a file-system–based website.
Also create a local HTTP-based website and explore the differences.

■ Practice 2 You will need a remote computer with IIS, FTP, and Front Page Server
Extensions installed. Create an FTP-based website and explore the options. Create a
remote HTTP website and explore the options.

 40	 ChAPTER 1	 Introducing ASP.NET 4

Add a Webpage to the Website
For this task, you should complete at least Practice 1. If you want a more well-rounded
understanding of adding a webpage, you should also complete Practice 2.

■ Practice 1 Create any type of website. Add a webpage that has a code-behind page.
Add a webpage that does not have a code-behind page.

■ Practice 2 Add another webpage, selecting a different programming language.

Program a Web Application
For this task, you should complete the previous two practices first.

■ In a webpage that you have created, add code to test the IsPostBack property of the
webpage and display a message if the webpage is posted back.

Examine Settings for a Web Application
For this task, you should complete all practices from the previous sections.

■ Locate the Machine.config file and open it with Notepad.

■ Explore the various settings that exist in the Machine.config file.

■ Locate and open the Web.config file that exists in the same folder as the
Machine.config file.

■ Examine the settings that exist in this file.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you
can look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 2 41

C h A P T E R 2

Using Master Pages, Themes,
and Caching
Microsoft ASP.NET is designed to allow developers to focus on writing code while

minimizing the time they spend on design elements such as layout, fonts, and colors.
Because organizations tend to regularly change their design elements, it’s important that
those elements be separated from the code.

ASP.NET provides the ability to create master pages to separate the common elements,
such as a logo and navigation, from the content of individual pages. Each master page
represents a single file that controls the layout of all pages within a site. When you use
master pages, your websites will be more consistent and easier to maintain.

To give you central control over aesthetics, including colors, fonts, and user interfaces,
ASP.NET provides themes. Themes centralize the settings that define the appearance of a
site, allowing you to change the look of every page on a site with one update. You can
also switch between themes, allowing different users to have different experiences.

Though it will never directly add functionality to a website, caching is one of the most
important features of ASP.NET. By properly implementing caching, you can improve the
responsiveness of a site, reduce the processor utilization of your web server, and decrease
the number of file system and database queries. Proper caching can allow you to get more
out of less hardware, reducing server costs.

Exam objectives in this chapter:
■	 Developing Web Forms Pages

■ Implement master pages and themes.
■ Implement caching.

■	 Developing and Using Web Forms Controls
■ Manipulate user interface controls from code-behind.

Lessons in this chapter:
■	 Lesson 1: Using Master Pages 43
■	 Lesson 2: Using Themes 60
■	 Lesson 3: Caching 75

 Contents

 ChAPTER 2 41

 Using master Pages, Themes, and Caching 41
Before You Begin . 42

Lesson 1: Using Master Pages . 43

Overview of Master and Content Pages 44

Creating a Master Page 45

Creating Content Pages 47

Attaching Master Pages to Content Pages 48

Referencing Custom Master Page Properties, Methods,
and Controls from Content Pages 48

Creating Nested Master Pages 51

Dynamically Changing Master Pages 52

Lesson Summary 58

Lesson Review 59

Lesson 2: Using Themes . 60

Themes Overview 60

Creating a Theme 61

Creating a Skin File 64

Adding a Cascading Style Sheet to Your Theme 65

Rules for Applying Themes 66

Applying a Theme Programmatically 67

Lesson Summary 73

Lesson Review 74

Lesson 3: Caching . 75

Application Caching 75

Page Output Caching 80

Programmatically Invalidating Cached Pages 85

Lesson Summary 91

Lesson Review 91

Case Scenarios . 92

Case Scenario 1: Providing Consistent Formatting for an External Web
Application 92

Case Scenario 2: Improving the Performance of a Public Website 93

Suggested Practices . 94

Implement Master Pages and Themes 94

Implement Caching 95

Take a Practice Test . 95

 42	 ChAPTER 2	 Using Master Pages, Themes, and Caching

before you begin

To complete the lessons in the chapter, you should be familiar with developing applications
with Microsoft Visual Studio by using Microsoft Visual Basic or Microsoft Visual C#. In addition,
you should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Hypertext Markup Language (HTML) and client-side scripting

■ Creating a new website

■ Adding web server controls to a webpage

real World

Tony Northrup

Master pages, themes, and caching weren’t included in the original Microsoft
.NET Framework. In fact, even with .NET 4 they’re optional—any website can

be created without using any of these components.

Microsoft added these capabilities because real-world developers demanded them.
Take master pages—in theory, developers could include common components, such
as a header and navigational controls, as user controls in every page on their sites.
In practice, however, developers had a hard time maintaining sites after the initial
release because some types of updates would require them to change every page
on their site.

The performance gains you can get from caching used to be something developers
thought about only after the site was completely functional. In 2010, however, Google
made website performance a factor in their search results, meaning that reducing
ASP.NET rendering time could increase the popularity—and profitability—of a web-
site. You won’t need to use caching while you’re learning website development in a
learning environment, but when you create real-world websites, you’ll need every
tool you have to improve website performance, and there’s simply nothing more
effective at reducing ASP.NET page generation time than caching.

 Lesson 1: Using Master Pages ChAPTER 2 43

Lesson 1: Using master Pages

Windows applications have common elements to their user interface (UI). For example, if there
is a menu bar, it’s at the top of the window. Below that is a toolbar. Application status informa-
tion appears at the bottom of the window. Because different applications tend to have these
elements in the same places, it’s easy for users to navigate within different applications.

Modern design applies the same philosophy to websites. Generally, websites have a logo at
the top left of the page. A search box usually appears in the top middle or top right. Positioned
below the logo and search box are navigation links. At the bottom of the page, below the page’s
unique content, users can find website copyright and contact information. By following these
common guidelines, users can easily navigate your site the first time they visit it.

In ASP.NET, you can use master pages to provide a common structure to all pages in a site.
Master pages isolate the common elements of a site’s UI, such as the logo, search, and naviga-
tion, from each page’s unique content. Individual ASPX pages you create are displayed within
the master page when rendered for users. If you need to update part of the master page—such
as copyright information in the page footer—you don’t need to recompile individual pages.

This lesson describes how to create and use master pages in your applications.

real World

Tony Northrup

A ll websites require consistency. Before master pages were available, I used to
create custom controls for every component that would be repeated through-

out a website, including the logo, the navigation bar, and the page footer. That way,
if I needed to change an aspect of one of the common components, I could make
the change in one place and have it reflected throughout the site.

That worked great, unless I wanted to add or remove a component, or change the
layout of the components. Then I’d have to go into every single webpage and make
the change. After that, I’d have to test every page to make sure I hadn’t made any
mistakes.

Now master pages allow me to make centralized changes to the entire site by editing
one file. It speeds up the development of content pages, too, because I don’t have
to worry about copying and pasting the structure for the shared controls. It’s still
important to test every page after making changes to the master, however.

 44	 ChAPTER 2	 Using Master Pages, Themes, and Caching

After this lesson, you will be able to:
■	 Explain the purpose of master and content pages.
■	 Describe the process of creating master and content pages.
■	 Use different techniques for attaching content to a master page.
■	 Reference controls and properties on a master page from a content page.
■	 Explain how event handling works in master pages.
■	 Create nested master pages.
■	 Programmatically switch between master pages to provide user-selected

templates.

Estimated lesson time: 45 minutes

Overview of Master and Content Pages
An ASP.NET master page defines the common layout of the pages in your site. Advantages of
using master pages include the following:

■ They allow you to centralize the common functionality of your pages so that you can
make updates in just one place.

■ They make it easy to create one set of controls and code and apply the results to a set
of pages. For example, you can use controls on the master page to create a menu that
applies to all pages.

■ They give you fine-grained control over the layout of the final pages by allowing you
to control how the placeholder controls are rendered.

■ They provide object models that allow you to customize the master pages from indi-
vidual content pages.

A master page is defined with the file extension .master. Master pages are very similar
to regular ASPX pages. They contain text, HTML, and server controls; they even have their
own code-behind files. One difference is that a master page inherits from the MasterPage
class instead of the Page class. Another is that instead of an @ Page directive at the top of
the page source, master pages contain an @ Master directive. Following this are the com-
mon things you would expect to see in the source code of an ASP.NET page such as <html>,
<head>, and <form> elements. You can then embed your own source inside the master
page, such as a company logo, navigation elements, and a footer.

You use master pages in conjunction with content pages. A content page contains page-
specific content and inherits its shell from its master page. To enable pages to insert content
into a master page, you must add one or more ContentPlaceHolder controls to the content
page. This defines an area for content pages to add their page-specific text, HTML, and
server controls.

 Lesson 1: Using Master Pages ChAPTER 2 45

At run time, master pages and content pages are processed as follows:

	 1. A user requests a page by typing the Uniform Resource Locator (URL) of the content page.

	 2. When the page is fetched, the @ Page directive is read. If the directive references a
master page, the master page is read as well. If this is the first time the page has been
requested, both pages are compiled.

	 3. The master page with the updated content is merged into the control tree of the
content page.

	 4. The content of each Content control is merged into the corresponding ContentPlaceHolder
control in the master page.

	 5. The resulting merged page is rendered to the browser as a single page.

Creating a Master Page
You create a master page through the Add New Item dialog box. You lay out a master page
in a similar manner as you would any ASPX page. You can use tables, styles, controls, and so
forth, to define your page. The following code shows a sample master page.

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="Site.master.cs"
Inherits="SiteMaster" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1
/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head runat="server">
 <title></title>
 <link href="~/Styles/Site.css" rel="stylesheet" type="text/css" />
 <asp:ContentPlaceHolder ID="HeadContent" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form runat="server">
 <div class="page">
 <div class="header">
 <div class="title">
 <h1>
 Contoso, Inc.
 </h1>
 </div>
 <div class="clear hideSkiplink">
 <asp:Menu ID="NavigationMenu" runat="server" CssClass="menu"
EnableViewState="false"
 IncludeStyleBlock="false" Orientation="Horizontal">
 <Items>
 <asp:MenuItem NavigateUrl="~/Default.aspx" Text="Home"/>
 <asp:MenuItem NavigateUrl="~/Products.aspx" Text="Products"/>
 <asp:MenuItem NavigateUrl="~/Services.aspx" Text="Services"/>
 <asp:MenuItem NavigateUrl="~/About.aspx" Text="About"/>
 <asp:MenuItem NavigateUrl="~/Contact.aspx" Text="Contact"/>
 </Items>
 </asp:Menu>

 46	 ChAPTER 2	 Using Master Pages, Themes, and Caching

 </div>
 </div>
 <div class="main">
 <asp:ContentPlaceHolder ID="MainContent" runat="server"/>
 </div>
 <div class="clear">
 </div>
 </div>
 <div class="footer">
 Copyright <%=DateTime.Now.Year.ToString()%>, Contoso Inc.
 </div>
 </form>
</body>
</html>

In this example, the master page identifies a style sheet for the site, defines the top-level
navigation for the site, and defines the site’s footer. Notice the empty <title></title> tags in
the <head> section. Pages that use this master sheet can specify the title by specifying the
title attribute in the @ Page directive.

In addition, notice the ContentPlaceHolder controls. The first (here named HeadContent) is
used to allow content pages to add information into the <head> section of the master page.
For example, pages might add a page-specific <description> section. The second placeholder
(here named MainContent) is used to define the actual page content. Figure 2-1 illustrates
how this master page looks in Design view.

FigURE 2-1  A master page in Design view.

 Lesson 1: Using Master Pages ChAPTER 2 47

Creating Content Pages
You add content pages to your site the same way you add any ASPX page. However, in the
Add New Item dialog box, you select the Select Master Page check box. This allows you to
select a master page for your ASPX page. Alternatively, you can associate an ASPX page to a
master page by using the MasterPageFile attribute in the @ Page directive.

A content page provides the markup for the ContentPlaceHolder controls defined in a
master page. When you create a new page and base it on a master page, Visual Studio pro-
vides you with an ASPX page that contains the content placeholder elements for the master
page. You are then left to nest page-specific information inside the content placeholder
controls.

The following page source demonstrates a content page derived from the master page defined
earlier. Note that all text and controls must be within a Content control or the page will generate an
error. Otherwise, the page behaves exactly like a standard ASP.NET page.

<%@ Page Language="VB" MasterPageFile="~/Site.master"
 AutoEventWireup="true" CodeFile="Login.aspx.vb" Inherits="Login"
 title="Contoso Login" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <h2>
 Log In
 </h2>
 <p>
 Please enter your username and password.
 <asp:HyperLink ID="RegisterHyperLink" runat="server" EnableViewState="false">Reg
ister</asp:HyperLink> if you don’t have an account.
 </p>
</asp:Content>

Notice that in the @ Page directive, the MasterPageFile attribute is set to the master page,
Site.master. Inside this same directive is the title attribute. This allows you to set the actual
title for the content page. This title will be used when the master page and content page are
merged and output to the browser.

Note mAsTER PAgE sETTings

In general, the master page structure has no effect on how you construct your content
pages or program against them. However, in some cases, if you set a page-wide property
on the master page, it can affect the behavior of the content page. For example, if you
set the EnableViewState property on the content page to true but set the same property
to false in the master page, view state is effectively disabled because the setting on the
master page takes priority.

 48	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Attaching Master Pages to Content Pages
You can attach a master page to content pages by specifying a page directive or configuring
the master page in a Web.config file. By default, Visual Studio configures the MasterPageFile
property of the @ Page directive, as the following demonstrates.

<%@ Page Language="VB" MasterPageFile="MySite.Master" %>

You can also define a master page for a site, application, or folder by defining the
masterPageFile property of the <pages> element in a Web.config file (note that the XML-
based Web.config file is case sensitive). If you use this approach, all ASP.NET pages in the
scope of the Web.config file that have Content controls are merged with the specified
master page. If an ASP.NET page does not contain Content controls, the master page is
not applied. The following shows an example of the <pages> element in a Web.config file.

<pages masterPageFile="MySite.Master" />

Quick Check
	 1. Which control is required when you are defining a master page?

	 2. Which control is required when you are implementing a content page?

Quick Check Answers
	 1. You must have at least one ContentPlaceHolder control defined per master page.

	 2. You place Content controls on content pages. One Content control is added to
the page for each ContentPlaceHolder control identified by the master page.

Referencing Custom Master Page Properties, Methods,
and Controls from Content Pages
You can leverage master pages to define application-specific settings on which content pages
depend. For example, if many content pages need a user’s login ID, you can set this value inside
the master page and then make it available to content pages as a property of the master page.
This saves you from having to look the value up or track it on all pages or in the session state.

The basic process to reference master page properties from a content page is as follows:

	 1. Create a public property in the master page code-behind file.

	 2. Add the @ MasterType declaration to the ASPX content page.

	 3. Reference the master page property from the content page by using the syntax
Master.<Property_Name>.

 Lesson 1: Using Master Pages ChAPTER 2 49

The sections that follow describe this process in more detail. You can follow a similar
process if you need to expose master page methods or reference properties of control
values on the master page. In this way, you can map a property to a control’s value.

real World

Tony Northrup

Strive to minimize the dependencies between master and content pages. The fewer
references you create between master and content pages, the fewer problems

you’ll encounter when you update them, and the easier it is to have different devel-
opers working on each.

Most websites require some interaction between the master and content pages,
however. When a website requires a dependency, make the content page refer-
ence the master page, and not the other way around. Because you will have many
different content pages for each master page, referencing methods, properties,
or controls on content pages is bound to cause problems.

Though we don’t discuss this in this book, you can use events to communicate
between master and content pages. For example, if you need content pages to
adjust their content based on the selection users make from a drop-down list on
the master page, you could expose an event on the master page that is triggered
when the user makes a choice. Then, content pages could subscribe to the event.
In this way, the master page is sending messages directly to the content page—
but the master page is not directly dependant on the content page. If another
developer creates a content page and doesn’t respond to the event, it won’t cause
a problem for the master page.

Creating a Public Property in the Master Page
Content pages can reference any public property declared in the master page code-behind
file. For example, the following code sample defines the property SharedInfo in the master
page code-behind file. In this example, the master page provides strong typing for the
session variable, SharedInfo.

Sample of Visual Basic Code

Public Property SharedInfo() As String
 Get
 Return CType(Session("SharedInfo"), String)
 End Get
 Set(ByVal value As String)
 Session("SharedInfo") = value
 End Set
End Property

 50	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Sample of C# Code

public String SharedInfo
{
 get { return (String)Session["SharedInfo"]; }
 set { Session["SharedInfo"] = value; }
}

Session variables are an easy way to store user-specific information during a user’s visit.
Similarly, application variables store information that can be accessed by any user. Neither
provides strong typing, however, which makes exposing them by using public properties a
useful way to access these shared objects. For more information about session and applica-
tion variables, refer to Chapter 3, “Handling Events and Managing State.”

Connecting to Master Page Properties from Content Pages
You must add the @ MasterType declaration to the ASPX content page to reference master
properties in a content page. This declaration is added just below the @ Page declaration.
The following code demonstrates this.

<%@ Page Language="VB" MasterPageFile="~/Site.master"
 AutoEventWireup="true" CodeFile="Login.aspx.vb" Inherits="Login"
 title="Contoso Login" %>
<%@ MasterType VirtualPath="~/Site.master" %>

After you add the @ MasterType declaration, you can reference properties in the master
page by using the Master class. For example, the following code sets the infoLabel control’s
Text property to the SharedInfo property exposed by the master page.

Sample of Visual Basic Code

infoLabel.Text = Master.SharedInfo

Sample of C# Code

infoLabel.Text = Master.SharedInfo;

If you later change the master page associated with a content page, make sure you implement
the same public properties to ensure that the content pages continue to function correctly.

If you are creating multiple master pages that might be referenced by the same set of
content pages, you should derive all master pages from a single base class. Then specify the
base class name in the @ MasterType declaration. This enables the content page to reference
the same properties, regardless of which master page is being used.

 Lesson 1: Using Master Pages ChAPTER 2 51

Referencing Controls in the Master Page
In addition to properties, you can also reference and update controls in the master page from
an individual content page. One way is to encapsulate the control’s property in a property of
the master page (as demonstrated earlier). This is often a clean solution, as the master page
developer is exposing these properties on purpose and thereby creating a contract with the
content pages.

The other means of referencing a control on the master page from a content page is through
the Master.FindControl method. You need to supply this method with the name of the control you
want it to find. This approach requires the content page to have knowledge of the master page.
Master.FindControl returns a Control object, which you then need to cast to the correct control
type. After you have this reference, you can read or update the object as if it were local to the
content page.

The following code (which belongs in the Page_Load method of the content page) demon-
strates this method by updating a Label control named Brand in the master page.

Sample of Visual Basic Code

Dim MyLabelBrand As Label = CType(Master.FindControl("LabelBrand"), Label)
MyLabelBrand.Text = "Fabrikam"

Sample of C# Code

Label MyLabelBrand = (Label)Master.FindControl("LabelBrand");
MyLabelBrand.Text = "Fabrikam";

In this example, a local variable named MyLabelBrand is set to reference a Label control on
the master page. After you have this reference, you can use it to customize information in a
master page’s LabelBrand control.

Creating Nested Master Pages
Sometimes, web design might require multiple levels of master pages. For example, every single
page on your site might have the same logo, search box, and copyright information. However,
although pages within your online store might include navigation for product categories and
a shopping cart link, pages within the community discussion section of your site would include
forum navigation and links for user profile management. In this scenario, you could create a
top-level master page for the logo, search box, and copyright information. You could then nest
different master pages for the store and community sections of your website.

You can create a child master page from the Add New Item dialog box in Visual Studio by
selecting the Select Master Page check box, as shown in Figure 2-2. You will then need to select
the parent master page. Visual Studio will automatically specify the necessary declarations.

 52	 ChAPTER 2	 Using Master Pages, Themes, and Caching

FigURE 2-2 Declaring a child master page.

When nested, child master pages still use the .master extension. However, the child master
pages also define the attribute MasterPageFile set in the @ Master declaration. This attribute
points to the parent master page. The following example demonstrates a child master page
with a parent master page named Site.master.

<%@ Master Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
CodeFile="CommunityMasterPage.master.cs" Inherits="Account_CommunityMasterPage" %>

<asp:Content ID="Content1" ContentPlaceHolderID="HeadContent" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" Runat="Server">
 <h2>Sub Department</h2>
 <asp:panel runat="server" id="panel1" backcolor="LightBlue">
 <asp:ContentPlaceHolder ID="ContentPlaceHolderSubDept" runat="server" />
 </asp:panel>
</asp:Content>

The child master page typically contains content controls that are mapped to content place-
holders on the parent master page. In this respect, the child master page is laid out like any
content page. However, the child master page also has one or more content placeholders of its
own. This defines the areas where its content pages can put their content.

Dynamically Changing Master Pages
You define the master page in a content page’s @ Page declaration. However, that doesn’t
mean you cannot switch to a different master page programmatically. Changing master pages
allows you to provide different templates for different users. For example, you might give users
a choice of different colors and styles (you can also do this with themes, as discussed in the next
lesson). You could also use different master pages to format data for different browsers or dif-
ferent mobile devices.

 Lesson 1: Using Master Pages ChAPTER 2 53

To dynamically change master pages, follow these high-level steps:

	 1. Create two or more master pages with the same ContentPlaceHolder controls and public
properties. Typically, you create one master page, copy it to create the second master
page, and make any necessary modifications. Note that, from this point forward, you
must make any changes to the ContentPlaceHolder controls or public properties to all
master pages to ensure compatibility.

	 2. Provide a way for users to switch between master pages. (This step is optional.) If the
master page should be the user’s choice (for example, if color and layout are the primary
differences), add links to your master pages to enable users to switch between pages.
You need to define the current master page within the content page, however, so you
can choose to store the setting in the Session variable or in another object that is acces-
sible to both the master and content pages.

For example, the following code can be called from a link or button on the master page
to set a Session variable to the name of a different master page. After you define the
master page within the content page, reload the page.

Sample of Visual Basic Code

Session("masterpage") = "~Master2.master"
Response.Redirect(Request.Url.ToString)

Sample of C# Code

Session["masterpage"] = "~/Master2.master";
Response.Redirect(Request.Url.ToString());

	 3. Define the master page in the content page’s Page_PreInit method. Page_PreInit is the
last opportunity you have to override the default master page setting, because later
handlers (such as Page_Init) reference the master page. For example, the following
code defines the master page based on the Session object.

Sample of Visual Basic Code

Sub Page_PreInit(ByVal sender As Object, ByVal e As EventArgs)
 If Not (Session("masterpage") Is Nothing) Then
 MasterPageFile = CType(Session("masterpage"), String)
 End If
End Sub

Sample of C# Code

void Page_PreInit(Object sender, EventArgs e)
{
 if (Session["masterpage"] != null)
 MasterPageFile = (String)Session["masterpage"];
}

When you switch master pages, you need to make sure both pages define exactly the same
content placeholder control names. Exercise 2 in this lesson’s practice walks you through this
process step by step.

 54	 ChAPTER 2	 Using Master Pages, Themes, and Caching

PrActIcE	 Using master and Content Pages

In this practice, you create two different master pages. Each master page defines an alterna-
tive layout for the page. You then create a content page based on the master page. Finally,
you add code to allow users to set their master page preference dynamically.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Creating Master Pages and a Content Page

In this exercise, you create a new ASP.NET website with two master pages and a content page.

	 1. Open Visual Studio and create a new website by using the ASP.NET Web Site template
in either C# or Visual Basic.

	 2. Copy the Contoso logo (contoso.gif) from the samples installed from the companion CD
to the root folder of your website. Copy the style sheets (Site.css and Colorful-Site.css) from
the samples installed from the companion CD to the Styles subfolder of your website.

	 3. Add a new master page to your website and name it Professional.master. In the
<head> section, add a reference to the Site.css style sheet you copied. The reference
will resemble the following.

<link href="~/Styles/Site.css" rel="stylesheet" type="text/css" />

	 4. Purely for practice, add a menu bar to your master page. Make sure there is a content
placeholder in the <head> section named headContent. Also verify that there is a
content placeholder in the <body> section named mainContent. These are the same
names used by the default Site.master page in the ASP.NET Web Site template; using
the same names will allow you to manually change a page template without making
other edits. Your page should look like the one in Figure 2-3.

FigURE 2-3  Creating the Professional.master page.

 Lesson 1: Using Master Pages ChAPTER 2 55

	 5. Save the Professional.master page. Then click File, and click Save Professional.master
As. Save a second copy of the master page and name it Colorful.master. Change the
style sheet reference from

<link href="~/Styles/Site.css" rel="stylesheet" type="text/css" />

to

<link href="~/Styles/Colorful-Site.css" rel="stylesheet" type="text/css" />

If you compare the Colorful-Site.css file to the Site.css file, you’ll notice that in the
Colorful-Site.css file the header and menu layout elements have a yellow background
instead of a white background.

	 6. Add a new web form to your site and name it home.aspx. In the Add New Item dialog
box, select the Select Master Page check box, then click Add. In the Select A Master Page
dialog box, select Professional.master. If you select the Professional.master file in Visual
Studio, you can simply click the Website menu, click Add Content Page, and then rename
the file home.aspx.

	 7. Open Home.aspx in Design view, and create the page by following these steps:

	 a. Verify that the content placeholders have the proper IDs: HeadContent and
MainContent.

	 b. Inside ContentPlaceholderMain, add a TextBox control and name it UserNameTextBox.

	 c. Add a DropDownList control named SitePrefDropDownList.

	 d. Add two ListItem elements to the DropDownList control, name them Professional
and Colorful, and assign them the values Professional and Colorful. You can do so
by clicking the smart tag in Design view and choosing Edit Items. This will launch
the ListItem Collection Editor.

	 e. Set the SitePrefDropDownList.AutoPostBack property to true.

	 f. Add an OK Button control named OKButton.

Figure 2-4 shows how your page might now look in Design view.

FigURE 2-4 Defining a content page.

	 8. Build your project and open the resulting Home.aspx page in a browser. Verify that it
displays correctly. Note that the page does not do anything yet; we will add code in
the next exercise.

 56	 ChAPTER 2	 Using Master Pages, Themes, and Caching

	 9. In Design view, double-click the OK button on the Home.aspx page to create and open
the button’s Click event handler. Add code to the ButtonSubmit_Click method to deter-
mine whether the user provided a value in the TextBoxUserName text box. If the user
did, use the name he or she typed to define a Session variable named UserName and
change the welcome message in the master page LabelWelcome accordingly. The
following code demonstrates this.

Sample of Visual Basic Code

Protected Sub OKButton_Click(ByVal sender As Object, ByVal e As System.
EventArgs) Handles OKButton.Click
 If NameTextBox.Text <> [String].Empty Then
 Session("UserName") = NameTextBox.Text
 Dim welcome As Label = DirectCast(Master.FindControl("GreetingLabel"),
Label)
 welcome.Text = String.Format("Welcome, {0}!", Session("UserName"))
 End If
End Sub

Sample of C# Code

protected void OKButton_Click(object sender, EventArgs e)
{
 if (NameTextBox.Text != String.Empty)
 {
 Session["UserName"] = NameTextBox.Text;
 Label welcome = (Label)Master.FindControl("GreetingLabel");
 welcome.Text = String.Format("Welcome, {0}!", Session["UserName"]);
 }
}

	 10. Next, open the code-behind file for Professional.master. If you are using Visual Basic, add
a Page.Load event handler. (For C# versions, the handler is provided for you by Visual
Studio when the page source code is created.) In the Page.Load event handler, check
to see if there is a Session variable named UserName. If there is, change the welcome
message in the master page accordingly. The following code demonstrates this.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Session("UserName") IsNot Nothing Then
 GreetingLabel.Text = String.Format("Welcome, {0}!", Session("UserName"))
 End If
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (Session["UserName"] != null)
 {
 GreetingLabel.Text = String.Format("Welcome, {0}!",
Session["UserName"]);
 }
}

 Lesson 1: Using Master Pages ChAPTER 2 57

	 11. Open the About.aspx page. Using the source view, change the master page to
Professional.master by editing the @ Page declaration and changing MasterPageFile
to ~/Professional.master. You can easily change the master page because the two
ContentPlaceHolder server controls on the master page have the same IDs.

	 12. Build your project and open the Home.aspx page. Type your name in the NameTextBox
control and then click OK. Verify that the page successfully changes GreetingLabel in the
master page. Browse to the About.aspx page and then come back to the Home.aspx
page. The page should pull your user name from session state. If you wait longer than
20 minutes before visiting another page, session state will expire and the user’s name
will no longer be available.

Note that you can add other pages by using the same Professional.master master page, and
if the user has entered a name on the Home.aspx content page, the master page will display
that name.

ExErcIsE	2	 Allowing Users to Dynamically Select Their Master Pages

In this exercise, you add functionality to a content page to change the master page dynamically
in your code.

	 1. Continue editing the project you created in the previous exercise.

oN the CoMpaNIoN MedIa

Alternatively, you can open the completed Lesson 1, Exercise 1 project in the samples
installed from the CD. For more information about the project files and other content
on the CD, see “Using the Companion Media” in this book’s Introduction.

	 2. Open Home.aspx in Design view. Double-click the drop-down list control to generate
the default event handler. In the event handler, define the session variable, Template, by
using the selected value. Then call Server.Transfer to reload the current page so that the
updated master template can be used immediately. The following code demonstrates
how to do this.

Sample of Visual Basic Code

Protected Sub DropDownListSitePref_SelectedIndexChanged(_
 ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles DropDownListSitePref.SelectedIndexChanged
 Session("Template") = SitePrefDropDownList.SelectedValue
 Server.Transfer(Request.Path)
End Sub

Sample of C# Code

protected void DropDownListSitePref_SelectedIndexChanged(
 object sender, EventArgs e)
 {
 Session["Template"] = SitePrefDropDownList.SelectedValue;
 Server.Transfer(Request.Path);
 }

 58	 ChAPTER 2	 Using Master Pages, Themes, and Caching

	 3. Add a Page_PreInit method to your code. In the Page_PreInit method, check to see if
there is a Session variable named Template. If there is, use it to change the MasterPageFile
object to the selected template’s file name. The following code demonstrates this.

Sample of Visual Basic Code

Protected Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit

 If Not (Session("Template") Is Nothing) Then
 MasterPageFile = String.Format("~/{0}.master", CType(Session("Template"),
String))
 End If

End Sub

Sample of C# Code

protected void Page_PreInit(object sender, EventArgs e)
{
 if (Session["Template"] != null)
 MasterPageFile = String.Format("~/{0}.master", (String)Session["Template"]);
}

	 4. Build your application and then open the Home.aspx page. Click the Color Scheme
list and then click Professional. The page automatically reloads because the
DropDownList.AutoPostBack property is set to true. The newly loaded page has
a yellow header because the page is now using the Colorful.master master page,
which uses the Colorful-Site.css style sheet.

For additional practice, define the SitePrefDropDownList selection based on the Template
session variable so that the user’s selection is remembered when the page is reloaded.

Lesson Summary
■ Master pages provide templates that you can use to create consistent webpages

throughout an application.

■ To use master pages, first create a master page and add site layout information and
other common elements. Then add one or more ContentPlaceHolder controls to the
master page.

■ To create the content pages, add standard web forms to your site but select the Select
Master Page check box when creating the page. You then add content to the page
inside the content area defined by the master page.

■ To reference public properties in a master page, add the @ MasterType declaration to
the content page and reference the property by using Master.<Property_Name>. To
reference controls in a master page, call Master.FindControl from the content page.

 Lesson 1: Using Master Pages ChAPTER 2 59

■ Nested master pages fit into the ContentPlaceHolder controls on a master page but can
contain other content pages. To create a nested master page, add a master attribute to
the @ Master page declaration and specify the parent master page.

■ To programmatically change the master page from a content page, set the page’s
MasterPageFile property and reload the page by using Server.Transfer.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Using Master Pages.” The questions are also available on the companion CD in a practice
test, if you prefer to review them in electronic form.

Note  AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. Which of the following statements about referencing master page methods and
properties is true? (Choose all that apply.)

	 A. Content pages can reference private properties in the master page.

	 B. Content pages can reference public properties in the master page.

	 c. Content pages can reference public methods in the master page.

	 D. Content pages can reference controls in the master page.

	 2. You are converting an existing web application to use master pages. To maintain com-
patibility, you need to read properties from the master page. Which of the following
changes are you required to make to ASPX pages to enable them to work with a master
page? (Choose all that apply.)

	 A. Add an @ MasterType declaration.

	 B. Add an @ Master declaration.

	 c. Add a MasterPageFile attribute to the @ Page declaration.

	 D. Add a ContentPlaceHolder control.

	 3. You need to change the master page of a content page at run time. In which page
event should you implement the dynamic changing?

	 A. Page_Load

	 B. Page_Render

	 c. Page_PreRender

	 D. Page_PreInit

 60	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Lesson 2: Using Themes

Many applications target multiple groups of customers. For example, imagine a business-to-
business site that you create for each of your partners to leverage. They, in turn, might want
to leverage portions of your site for their customers. It doesn’t take long to recognize the
need for a different-looking version of the site for each of your partners. Each partner might
want its own colors and styles. Partners might also need to change some of the graphics on
the site if they intend to expose it to their customers. In this case, you need to create a sepa-
rate theme for each of your partners.

An ASP.NET theme is a collection of styles, property settings, and graphics that define
the appearance of pages and controls on your website. A theme can include skin files, which
define property settings for ASP.NET web server controls; cascading style sheet (.css) files
that define colors, graphics, the size and placement of controls, and the overall appearance
of your site. You can easily create new themes to give your entire site a different look.

This lesson describes how to create and leverage ASP.NET themes.

After this lesson, you will be able to:
■	 Use themes to easily change the overall appearance of a website or all the sites

in a domain.
■	 Use themed skins to specify attributes for controls on a single page or an entire

website.
■	 Create a style sheet that defines the styles used throughout your site’s theme.
■	 Easily switch between themes for a page or a site, and programmatically base

theme choice on a user preference selection.

Estimated lesson time: 35 minutes

Themes Overview
The webpages that belong to the same website will invariably contain controls that have
many properties in common across pages. These include properties for setting things such
as background color, font size, foreground color, and other styles. You can manually set the
properties for every control on every page in your site. However, that is time consuming, error
prone (because you might overlook some settings), and difficult to change (because a change
would have to sweep across your entire site). Instead, you can use ASP.NET themes.

 Lesson 2: Using Themes ChAPTER 2 61

Themes save you time and improve the consistency of a site by applying a common set of
control properties, styles, and graphics across all pages in a website. Themes can be centralized,
allowing you to quickly change the appearance of all the controls on your site from a single file.
ASP.NET themes consist of the following set of elements:

■ skins These are files with .skin extensions that contain common property settings
for buttons, labels, text boxes, and other controls. Skin files resemble control mark-
ups but contain only the properties you want to define as part of the theme to be
applied across pages.

■ Cascading style sheets These are files with .css extensions that contain the style prop-
erty definitions for HTML markup elements and other custom style classes. A style sheet
is linked to a page, master page, or entire site. ASP.NET applies the styles to the page.

■ images and other resources Images (such as a corporate logo) along with other
resources can be defined inside a theme. This allows you to switch out the images
when you switch themes for a site.

Not all of these items are required to define a theme. You can mix and match as neces-
sary. The sections that follow further describe the use of themes and demonstrate how to
implement them.

Creating a Theme
You create themes inside the special App_Themes ASP.NET folder. This folder is in your ASP.NET
application root. The folder contains a separate folder for each theme in your site. You then add
the corresponding skins, style sheets, and images to the theme folders. To define a theme for a
single ASP.NET application, you can follow these steps:

	 1. Add an App_Themes folder to your web application. In Visual Studio, right-click your
website in Solution Explorer, click Add ASP.NET Folder, and then click Theme.

	 2. Within the App_Themes folder, you define an individual folder for each theme in your
application. For example, you could create theme folders named Red and Blue. The
name you set for the folder is also the name of your theme. You use this name when
referencing the theme.

You can have multiple themes in a web application, as Figure 2-5 illustrates. ASP.NET
automatically creates your first theme. To create additional themes, right-click the
App_Themes folder in Solution Explorer, click Add ASP.NET Folder, and then click
Theme.

 62	 ChAPTER 2	 Using Master Pages, Themes, and Caching

FigURE 2-5  Creating multiple themes by adding subfolders to the App_Themes folder.

	 3. Next, you add skin files, style sheets, and images that make up your theme to your
theme folder. Many times you define the first theme, copy it to the second, and then
change the items as necessary.

	 4. The next step is to apply the theme to your site. You can do so at the individual
page level by adding the Theme or StyleSheetTheme attribute to the @ Page
directive and setting the attribute’s value to the name of your theme (which is
the folder name).

Alternatively, you can apply the theme to an entire website or to individual appli-
cations and folders by adding the <pages Theme=”themeName”> element or the
<pages StyleSheetTheme=”themeName”> element to the <system.web> section of
a Web.config file. This will automatically apply the theme to all pages in your site.

Note  ThEmE vs. sTyLEshEETThEmE

If you use the StyleSheetTheme attribute, settings can be overridden because properties
defined by StyleSheetTheme are applied before a page’s control property set. If you use
the Theme attribute, settings cannot be overridden because properties defined by Theme
are applied after a page’s properties.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 2: Using Themes ChAPTER 2 63

Creating a Global Theme
ASP.NET also supports the concept of global themes. Global themes work exactly like standard
themes; pages or applications must specify the theme by name. However, global themes are
stored centrally and can be specified by any website running on a server. In this way, global
themes only need to be maintained in one location on each server.

Instead of defining the theme in the <application_root>\App_Themes folder, you define a
global theme in one of the following folders:

■ <iis_default_root>\Aspnet_client\system_web\<version>\Themes Use this folder
for applications running in Internet Information Services (IIS). For example, for
the current version of the .NET Framework, you would add your theme to the
C:\inetpub\wwwroot\aspnet_client\system_web\4_0_30319\ folder.

■ %systemRoot%\microsoft.nET\Framework\<version>\AsP.nETClientFiles\Themes
Use this folder for file-system–based web applications.

Like standard themes, global themes must be contained in a folder with the name of the
theme. You cannot use Visual Studio to directly create a global theme. However, you can
create a theme for a web application and then move it to the global Themes folder.

Visual Studio does not recognize global themes; however, ASP.NET will apply your theme
properly when you retrieve the page in the browser. If your application has a theme with
the same name as a global theme, ASP.NET uses the application theme and ignores the
global theme.

Quick Check
	 1. In which folder should you place themes for an application?

	 2. In which folder should you place global themes for IIS websites?

Quick Check Answers
	 1. Place themes for an application in the App_Themes folder.

	 2. Place global themes in the <iisdefaultroot>\Aspnet_client\System_web\<version>
\Themes folder.

 64	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Creating a Skin File
Skin files serve to define default settings for server control appearance attributes. Each server
control has attributes for things such as font, background color, width, height, and more.
Many of these appearance attributes are common among the controls on your site. Both
style sheets and skin files allow you to set these properties once and apply them to multiple
places in your site.

A skin file differs from a style sheet in that the skin file uses the attributes of the actual
control and not just a set of standard HTML style elements. In addition, skin files will be
applied at the control level automatically by ASP.NET. Style elements, on the other hand,
can be applied automatically only to HTML items. For ASP.NET controls, you must set the
style class manually in your markup code.

You can add a skin file by following these steps:

	 1. In Solution Explorer, right-click your theme and then click Add New Item.

	 2. In the Add New Item dialog box, click Skin File. Type a name for your skin file (which
always has a .skin extension), and then click Add.

Typically, you will create a separate skin file for every control type. However, you can embed
skins for multiple controls in a single file.

Skin files contain two types of skins: default skins and named skins:

■ Default skins A default skin automatically applies to all controls of the same type
when a theme is applied to a page. A skin is considered a default skin if it does not
have a SkinID attribute. For example, if you create a default skin for a Calendar control,
the control skin applies to all Calendar controls on pages that use the theme. You
cannot define multiple default skins for a single control type within a theme.

Default skins are matched exactly by control type, so a Button control skin applies to
all Button controls, but not to LinkButton controls, or to controls that derive from the
Button object.

■ named skins A named skin is a control skin with a SkinID property set to a specific
name value. Named skins do not automatically apply to controls by type. Instead,
you explicitly apply a named skin to a control by setting the ASP.NET control’s SkinID
property (as you would a style sheet class). Creating named skins allows you to set
different skins for different instances of the same control in an application.

The following is a default control skin for a Button control. It defines the foreground and
background colors as well as font information.

<asp:Button runat="server"
 BackColor="Red"
 ForeColor="White"
 Font-Name="Arial"
 Font-Size="9px" />

 Lesson 2: Using Themes ChAPTER 2 65

Converting that default skin to a named skin is as easy as adding the SkinID attribute. For
example, this named skin could be applied to Label controls.

<asp:Label runat="server"
 SkinId="Title"
 Font-Size="18px" />

Adding Images to Your Theme
Themes also allow you to switch out the images on your site. This is done through the skin
file. To do this, you simply add a named skin of the Image control type to the skin file. You
then set its SkinID appropriately.

For example, suppose you need to change the company logo for a site based on a specific
theme. In this case, you would create a different theme for each company. Inside each theme’s
directory, you would add the appropriate image file. You could then create a skin file that con-
tained the Image declaration as follows.

Company A’s Skin File

<asp:Image runat="server" SkinID="CompanyLogo"
 ImageUrl="~/App_Themes/Contoso/contoso.jpg" />

Company B’s Skin File

<asp:Image runat="server" SkinID="CompanyLogo"
 ImageUrl="~/App_Themes/Fabrikam/fabrikam.jpg" />

Notice that in both skin files the SkinID is set to CompanyLogo. However, each defines a
different logo file (ImageUrl). You can use this skin by first setting a page’s Theme directive to
either Contoso or Fabrikam (the name of the theme folder). You then add an Image control
to the page and set its SkinId attribute appropriately. The following code shows an example.

<asp:Image ID="Image1" SkinID="CompanyLogo" runat="server" />

ASP.NET will then grab the correct company logo based on the skin file. If you switch
themes, the logo will automatically switch as well.

Adding a Cascading Style Sheet to Your Theme
A cascading style sheet contains style rules that are applied to elements in a webpage. Cas-
cading style sheet styles define how elements are displayed and where they are positioned on
the page. Instead of assigning attributes to each element on your page individually, you can
create a general rule that applies attributes whenever a web browser encounters an instance
of an element or an element that is assigned to a certain style class.

To add a cascading style sheet to your website, right-click the name of your theme in Solution
Explorer and select Add New Item. You can then select the Style Sheet item template. Here you
define styles for HTML elements and your own custom style classes, which are those preceded
by a dot (.).

 66	 ChAPTER 2	 Using Master Pages, Themes, and Caching

The following are a few simple styles in a style sheet.

body
{
 text-align: center;
 font-family: Arial;
 font-size: 10pt;
}
.topNav
{
 padding: 0px 0px 0px 20px;
}
.header
{
 text-align: left;
 margin: 20px 0px 20px 0px;
}
.footer
{
 margin: 20px 0px 20px 0px;
}

When the theme is applied to a page, ASP.NET adds a reference to the style sheet to the
head element of the page. In the HTML, this reference looks something like the following.

 <link href="SiteStyles.css" rel="themeName/stylesheet" type="text/css" />

Visual Studio provides several tools for creating and managing styles in your application.
These include the style builder, the style manager, IntelliSense in the style sheet, and more.
Of course, style sheets are not reserved for just themes; style sheets can be used for any site,
regardless of whether it uses a theme.

exaM tIp

Cascading style sheets are not part of ASP.NET; they work for any type of website. They
aren’t specifically covered in the exam objectives and won’t be covered in much detail in
this book. However, cascading style sheets are a critical component of web design, and all
web developers need to be familiar with them. There are many good topics and discussions
on the Microsoft Developer Network (http://msdn/microsoft.com) regarding style sheets,
including “Web Server Controls and CSS Styles” at http://msdn.microsoft.com/library
/h4kete56.aspx.

Rules for Applying Themes
We’ve already looked at the ways in which you can apply themes to your pages or to the entire
site. However, your site might have multiple, often conflicting, style definitions for the same set
of controls. That is, you might have a standard style sheet, a theme, and actual styles defined
directly on the controls. The definition that gets applied is determined by a standard prece-
dence order followed by ASP.NET.

 Lesson 2: Using Themes ChAPTER 2 67

Within ASP.NET, attributes and elements take precedence in the following order (first to last):

	 1. Theme attributes in the @ Page directive

	 2. <pages Theme=”themeName”> elements in the <system.web> section of a
Web.config file

	 3. Local control attributes

	 4. StyleSheetTheme attributes in the @ Page directive

	 5. <pages StyleSheetTheme=”themeName”> elements in a Web.config file

In other words, if you specify a Theme attribute in the @ Page directive, settings in the
theme take precedence and override any settings you’ve specified directly for controls on the
page. However, if you change the Theme attribute to use the StyleSheetTheme attribute, you
have changed the precedence, and now control-specific settings take precedence over the
theme settings.

For example, this directive applies a theme that would override control properties.

<%@ Page Theme="SampleTheme" %>

In other words, if SampleTheme specifies that Label controls use a red font, but you specify
a blue font for a Label control, the labels appear with a red font.

The following directive changes the theme to a style sheet theme.

<%@ Page StyleSheetTheme="SampleTheme" %>

In this case, any changes you make to local control properties will override settings in the
theme. Therefore, continuing the previous example, if SampleTheme specifies that Label con-
trols are red but you override these to blue at the control level, the labels will show as blue.
However, Label controls that do not have a color specified will appear as red.

You can also disable themes for a specific page by setting the EnableTheming attribute of
the @ Page directive to false.

<%@ Page EnableTheming="false" %>

Similarly, to disable themes for a specific control, set the control’s EnableTheming property
to false.

Applying a Theme Programmatically
Themes are useful for centralized management of the styles in your application. You might
create a second theme as you experiment with changing the look and feel of your site.
However, you might also need to create multiple themes that get switched based on the
identification or preference of the user.

To apply a theme programmatically, set the page’s Theme property in the Page_PreInit
method. The following code demonstrates how to set the theme based on a query string
value; however, this works equally well if you use cookies, session state, or other approaches.

 68	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Sample of Visual Basic Code

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.PreInit

 Select Case Request.QueryString("theme")
 Case "Blue"
 Page.Theme = "BlueTheme"
 Exit Select
 Case "Pink"
 Page.Theme = "PinkTheme"
 Exit Select
 Case Else
 Page.Theme = "GreenTheme"
 Exit Select
 End Select
End Sub

Sample of C# Code

Protected void Page_PreInit(object sender, EventArgs e)
{
 switch (Request.QueryString["theme"])
 {
 case "Blue":
 Page.Theme = "BlueTheme";
 break;
 case "Pink":
 Page.Theme = "PinkTheme";
 break;
 default:
 Page.Theme = "GreenTheme";
 break;
 }
}

To programmatically apply a style sheet theme (which works just like a theme but doesn’t
override control attributes), use the Page.StyleSheetTheme property.

Similarly, you can apply a theme to specific controls by setting the control’s SkinID property
in the Page_PreInit method. The following code shows how to set the skin for a control named
Calendar1.

Sample of Visual Basic Code

Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.PreInit

 Calendar1.SkinID = "BlueTheme"

End Sub

Sample of C# Code

void Page_PreInit(object sender, EventArgs e)
{
 Calendar1.SkinID = "BlueTheme";
}

 Lesson 2: Using Themes ChAPTER 2 69

PrActIcE	 Creating and Applying Themes

In this practice, you create a new website and define two themes for that site.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Creating and Applying a Theme

In this exercise, you create two local themes, one for each of two vendors. You then apply
and test the themes. Finally, you add code to allow the user to dynamically change the
theme of the site.

	 1. Open Visual Studio and create a new ASP.NET website named ThemesLab by using
either C# or Visual Basic.

	 2. Add the App_Themes folder to your website. Right-click the site in Solution Explorer,
click Add ASP.NET Folder, and then click Theme.

	 3. Create two theme folders. Name them Contoso and Fabrikam. To add the second
theme, right-click the App_Themes folder, click Add ASP.NET Folder, and then
click Theme.

	 4. Inside the Contoso theme folder, add the Contoso.gif logo from the samples installed
from this book’s CD. Then add the Fabrikam.gif logo to the Fabrikam theme.

	 5. Add a .skin file to the Contoso theme and name it Logo. Add skins for the logo
Image, a TextBox control, and a Button control. Your skin file for Contoso should
look as follows.

<asp:Image ImageUrl="~/App_Themes/Contoso/Contoso.gif"
 SkinID="Logo" runat="server" />

<asp:TextBox runat="server"
 BorderColor="Blue" BorderWidth="1pt" Font-Names="Arial" Font-Size="10pt"
 ForeColor="Brown" ></asp:TextBox>

<asp:Button runat="server"
 BorderColor="Blue" BorderWidth="1pt" Font-Bold="true"
 BackColor="White" ForeColor="DarkBlue" />

 70	 ChAPTER 2	 Using Master Pages, Themes, and Caching

	 6. Repeat the same process for the Fabrikam theme, but use different colors. Your skin
file for Fabrikam should look as follows.

<asp:Image ImageUrl="~/App_Themes/Fabrikam/Fabrikam.gif"
 SkinID="Logo" runat="server" />

<asp:TextBox runat="server"
 BorderColor="Orange" BorderWidth="1pt" Font-Names="Arial" Font-Size="10pt"
 ForeColor="Brown" ></asp:TextBox>

<asp:Button runat="server"
 BorderColor="DarkOrange" BorderWidth="1pt" Font-Bold="true"
 BackColor="DarkOrange" ForeColor="White" />

	 7. Add a style sheet to your Contoso theme and name it style.css. Within the style
sheet, define styles to set the default font and font size for the HTML body. Your
style sheet should resemble this.

body
{
 font-family : Tahoma;
 font-size : 10pt;
}

	 8. Copy this same style sheet to the Fabrikam folder, but change the font-family style to
script and the font-size style to 20pt.

	 9. Open the Default.aspx page in Source view. Set the Theme property in the @ Page
directive to Fabrikam.

	 10. Add the following controls within the <BodyContent> content placeholder:

■ image control Set the SkinId to Logo.

■ Textbox control Set the CssClass to textbox. This control will get part of its style
from the skin and part from the style sheet.

■ button control Add a Button control to the page. Set the CssClass to button. This
control will also get part of its style from the skin and part from the style sheet.

 Lesson 2: Using Themes ChAPTER 2 71

Your .aspx markup should look similar to the following (the Visual Basic @ Page directive
is shown).

<%@ Page Theme="Fabrikam" Title="Home Page" Language="VB" MasterPageFile="~/
Site.Master" AutoEventWireup="false"
 CodeFile="Default.aspx.vb" Inherits="_Default" %>
<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadConte
nt">
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <asp:Image ID="Image1" SkinID="Logo" runat="server" />

 <asp:TextBox ID="TextBoxUname" runat="server"
 CssClass="textBox"></asp:TextBox>

 <asp:Button ID="ButtonSubmit" runat="server" Text="Hello"
 CssClass="button" />
</asp:Content>

	 11. Run your Default.aspx page in a browser. You should see the full Fabrikam theme
applied to the page. This includes the logo, skin, and style sheet. Figure 2-6 shows
the page in a web browser. Close the page.

FigURE 2-6  The Fabrikam theme applied to the Default.aspx page.

 72	 ChAPTER 2	 Using Master Pages, Themes, and Caching

	 12. Next, remove the Theme attribute from the Default.aspx @ Page directive. Instead, add
the Theme attribute to the <pages> element within <system.web> in the Web.config
file, and set the theme to Contoso.

<pages theme="Contoso"/>

This should switch the site’s theme. Run the application again. You should now see a
new theme applied to the site, as shown in Figure 2-7.

FigURE 2-7  The Contoso theme applied to the Default.aspx page via the Web.config file.

	 13. Finally, allow the user to switch themes at run time when he or she clicks the button.
First, add an event handler to the button’s click event that sets a Session variable to
the theme that is not currently active. After setting the Session variable, reload the
current page with Server.Transfer. Finally, add a PreInit event to the page that reads
the theme from the session and applies it to the page. Your code should resemble the
following.

Sample of Visual Basic Code

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.PreInit
 If Session("theme") IsNot Nothing Then
 Page.Theme = DirectCast(Session("theme"), String)
 End If
End Sub

Protected Sub ButtonSubmit_Click(ByVal sender As Object, ByVal e As System.
EventArgs) Handles ButtonSubmit.Click
 If Page.Theme = "Contoso" Then
 Session("theme") = "Fabrikam"
 Else
 Session("theme") = "Contoso"
 End If
 Server.Transfer(Request.Path)
 End Sub

 Lesson 2: Using Themes ChAPTER 2 73

Sample of C# Code

public partial class _Default : System.Web.UI.Page
{
 protected void Page_PreInit(object sender, EventArgs e)
 {
 if (Session["theme"] != null)
 {
 Page.Theme = (string)Session["theme"];
 }
 }

 protected void ButtonSubmit_Click(object sender, EventArgs e)
 {
 string theme = Page.Theme;

 //switch themes
 if (theme == "Contoso")
 {
 Session["theme"] = "Fabrikam";
 }
 else
 {
 Session["theme"] = "Contoso";
 }
 Server.Transfer(Request.Path);
 }
}

Run the application and click the button a couple of times. Notice that the theme
and style sheet change at run time. If you were to set the Page.Theme directly from
the Button.Click event handler, the .NET CLR would throw an exception because you
cannot set the page theme after the Page.PreInit event has been handled. For that
reason, the code sample calls Server.Transfer to cause page processing to begin again.

Lesson Summary
■ To create a theme, add an App_Themes subfolder to your application. Then, for each

theme in your site, add a folder. The folder’s name becomes the name of your theme.

■ Themes can contain skin files, a style sheet, graphics, and other resources.

■ You can apply a theme at the page level, at the site level (through the Web.config file),
or at the individual control level.

 74	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Using Themes.” The questions are also available on the companion CD in a practice test, if
you prefer to review them in electronic form.

Note  AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. Which of the following theme applications will override an attribute that you specified
directly on a control? (Choose all that apply.)

	 A. A theme specified by using @ Page Theme=”MyTheme”

	 B. A theme specified by using @ Page StyleSheetTheme=”MyTheme”

	 c. A <pages Theme=”themeName”> element in the Web.config file

	 D. A <pages StyleSheetTheme=”themeName”> element in the Web.config file

	 2. Which of the following is a valid skin definition inside a skin file?

	 A. <asp:Label ID="Label1" BackColor="#FFE0C0" ForeColor="Red" Text="Label"></

asp:Label>

	 B. <asp:Label ID="Label1" runat="server" BackColor="#FFE0C0" ForeColor="Red"

 Text="Label"></asp:Label>

	 c. <asp:Label runat="server" BackColor="#FFE0C0" ForeColor="Red"></asp:Label>

	 D. <asp:Label BackColor="#FFE0C0" ForeColor="Red"></asp:Label>

	 3. You need to allow users to choose their own themes. In which page event should you
specify the user-selected theme?

	 A. Page_Load

	 B. Page_Render

	 c. Page_PreRender

	 D. Page_PreInit

 Lesson 3: Caching ChAPTER 2 75

Lesson 3: Caching

ASP.NET caching stores frequently accessed data or whole webpages in memory, where they can
be retrieved faster than they could be from a file or database. This helps to improve the perfor-
mance and increase the scalability (in terms of number of users serviced) of a web application.
As an example, if you have a product catalog in an e-commerce application, you might consider
putting a lot of the catalog data into cache. Data that changes infrequently and is accessed by
a lot of users is a good candidate for caching. The first access of this data would load it into the
cache; subsequent requests would be served from the cache until the cache expires.

ASP.NET and the .NET Framework enable you to take advantage of caching without requiring
you to write a lot of code to deal with the complexities of caching, such as cache expiration,
updates, and memory management. There are two different types of caching in ASP.NET:

■ Application caching This represents a collection that can store any object in memory
and automatically remove the object based on memory limitations, time limits, or
other dependencies.

■ Page output caching This is ASP.NET’s ability to store a rendered page, portion of a
page, or version of a page in memory to reduce the time required to render the page
in future requests.

This lesson covers both application caching and page output caching.

After this lesson, you will be able to:
■	 Use application caching to store frequently accessed data that takes a relatively

long time to access.
■	 Use page output caching to improve the response time of page requests.

Estimated lesson time: 40 minutes

Application Caching
Application caching (also called application data caching) is the process of storing data (not
pages) in a cache object. The cache object is available as a property of the Page object. It
represents a collection class of type System.Web.Caching.Cache. The Page.Cache property
actually uses an application-wide cache (not just a page-specific cache). This means that
a single Cache object exists for your entire application; items in the Cache can be shared
between user sessions and requests.

 76	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Using the Cache Object
You work with the Cache object as you would with Session or similar objects. You can assign
items directly to the cache by giving them a name (key) and assigning them an object (value).
You retrieve objects from the cache by checking for the key.

Always verify that an item is not null. If a value is null, that value either hasn’t been cached
or it has expired from the cache. If an item is null, you should retrieve it from the original source
and, in most cases, place it into the cache.

The following code sample demonstrates how to cache and retrieve a String object with
the Cache collection.

Sample of Visual Basic Code

Cache("Greeting") = "Hello, cache!"
If Cache("Greeting") IsNot Nothing Then
 Label1.Text = DirectCast(Cache("Greeting"), String)
Else
 Label1.Text = "Hello, world!"
End If

Sample of C# Code

Cache["Greeting"] = "Hello, cache!";
if (Cache["Greeting"] != null)
 Label1.Text = (string)Cache["Greeting"];
else
 Label1.Text = "Hello, world!";

You wouldn’t normally cache a static string in your application; you’d more likely cache a file,
a database query result, or other data that is shared and expensive to obtain. You can cache any
object type, including your own custom types as long as they are serializable. However, just
as you would from any generic collection, you must cast the object back to the correct type
when you access it from the cache.

Inserting Items into the Cache
The previous example demonstrates that you can use the Cache object as you would Session or
Application. You can access much more sophisticated functionality, however, by using the Insert
method to add an item to the cache and control how that item gets removed from the cache.
This functionality includes automatic removal based on a specific period of time, removal when
a file changes, or removal when another cache object expires.

Insert has a number of overloads based on the many parameters you can set when adding
an item to the cache. The following list outlines the parameters of the Cache.Insert method:

■ key This is the name (as a String) that you’ll use to access the cached object in the
Cache collection. The key must be unique in the cache.

■ value This is the data (as an Object) that you want to cache.

 Lesson 3: Caching ChAPTER 2 77

■ dependencies A CacheDependency object identifies a file or a key to another item in
the cache. When the file or related cached item is changed, this will trigger this cached
object to be removed from the cache.

If you cache a file, you should configure a dependency for the file so that it is removed
from the cache after being modified. This helps ensure that your cache never becomes
stale. You might also call the parameter onRemoveCallback to reload the cached item.

■ absoluteExpiration This is the time (as a DateTime object) at which the object
should be removed from the cache. This is absolute and therefore does not take
into consideration whether the item has been recently accessed by a user. If you
do not wish to use absolute expiration, you can set this property to System.Web
.Caching.Cache.NoAbsoluteExpiration.

■ slidingExpiration This is the time (as a TimeSpan object) after which the object
should be removed from the cache if it has not been accessed by a user. Set this to
System.Web.Caching.Cache.NoSlidingExpiration if you don’t want to use it.

■ priority This is a CacheItemPriority enumeration value that you can use to determine
which objects are removed first when memory starts to run low (this process is called
scavenging). Lower priority objects are removed sooner. The values for priority, from
lowest (most likely to be removed) to highest (least likely to be removed) include the
following:

■ Low

■ BelowNormal

■ Normal (Default is equivalent to Normal)

■ AboveNormal

■ High

■ NotRemovable

■ onRemoveCallback This is an event handler that is called when the object is removed
from the cache. This can be null if you don’t want to specify a callback method.

Defining a Cache Dependency
A cache dependency links a cached item to something else such as a file or another item in
the cache. ASP.NET monitors the dependency and invalidates the cache if the dependent
item changes. The following code sample demonstrates how to make a cache dependency
based on a file. If the file the cache is dependent upon changes, the object is removed
from the cache.

Sample of Visual Basic Code

Cache.Insert("FileCache", File.ReadAllText("SourceFile.txt"), _
 New System.Web.Caching.CacheDependency(Server.MapPath("SourceFile.txt")))

 78	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Sample of C# Code

Cache.Insert("FileCache", File.ReadAllText("SourceFile.txt"),
 new System.Web.Caching.CacheDependency(Server.MapPath("SourceFile.txt")));

You can also create multiple dependencies for a single cached item. The following
example demonstrates how to use an AggregateCacheDependency object to add an item
to the cache that is dependent on both an item named CacheItem1 and a file named
SourceFile.xml.

Sample of Visual Basic Code

Dim dep1 As CacheDependency = New CacheDependency(Server.MapPath("SourceFile.txt"))
Dim keyDependencies2 As String() = {"CacheItem1"}
Dim dep2 As CacheDependency = New System.Web.Caching.CacheDependency(Nothing, _
 keyDependencies2)
Dim aggDep As AggregateCacheDependency = New System.Web.Caching.
AggregateCacheDependency()
aggDep.Add(dep1)
aggDep.Add(dep2)
Cache.Insert("FileCache", File.ReadAllText("SourceFile.txt"), aggDep)

Sample of C# Code

System.Web.Caching.CacheDependency dep1 =
 new System.Web.Caching.CacheDependency(Server.MapPath("SourceFile.txt"));
string[] keyDependencies2 = { "CacheItem1" };
System.Web.Caching.CacheDependency dep2 =
 new System.Web.Caching.CacheDependency(null, keyDependencies2);
System.Web.Caching.AggregateCacheDependency aggDep =
 new System.Web.Caching.AggregateCacheDependency();
aggDep.Add(dep1);
aggDep.Add(dep2);
Cache.Insert("FileCache", File.ReadAllText("SourceFile.txt"), aggDep);

Setting an Absolute Cache Expiration
To cache an object for a set amount of time, pass the absoluteExpiration parameter to the
Cache.Insert method. This parameter sets a time in the future at which your data should
expire. The DateTime.Now object has a variety of methods for adding a specific number
of minutes to the current time. The following example demonstrates this.

Sample of Visual Basic Code

Cache.Insert("FileCache", "CacheContents", Nothing, DateTime.Now.AddMinutes(10), _
 Cache.NoSlidingExpiration)

Sample of C# Code

Cache.Insert("FileCache", "CacheContents", null, DateTime.Now.AddMinutes(10),
 Cache.NoSlidingExpiration);

 Lesson 3: Caching ChAPTER 2 79

Setting a Sliding Cache Expiration
If you want your most frequently used cached objects to stay in your cache longer, you can
specify a sliding expiration. A sliding expiration indicates the amount of time that must elapse
between subsequent requests before an item is removed from the cache. Each time a new
request comes in for an item, the sliding scale restarts.

You set a sliding expiration by passing a TimeSpan to the slidingExpiration parameter
of the Insert method. The TimeSpan is the time after the last read request that the cached
object will be retained. This example shows you how to keep an object in cache for 10
minutes after the last request.

Sample of Visual Basic Code

Cache.Insert("CacheItem7", "Cached Item 7", _
 Nothing, System.Web.Caching.Cache.NoAbsoluteExpiration, New TimeSpan(0, 10, 0))

Sample of C# Code

Cache.Insert("CacheItem7", "Cached Item 7",
 null, System.Web.Caching.Cache.NoAbsoluteExpiration, new TimeSpan(0, 10, 0));

Especially with a sliding cache expiration, it is possible that heavy usage will result in an
item never being removed from the cache, preventing updates to the original object from
being accessed. By defining an absolute expiration in addition to a sliding expiration, you
can be sure an object is eventually removed. When possible, add a cache dependency to
your absolute and sliding cache expirations to immediately remove the cached object
when the original is updated.

Quick Check
	 1. How can you cause a cached object to be automatically invalidated after a specific

amount of time?

	 2. Where is Cache data stored—in memory, on the hard disk, in a database, or on a
state server?

	 3. What types of data can you store in the Cache collection?

	 4. What must you do before you use an object you retrieved from the Cache
collection?

Quick Check Answers
	 1. Call the Cache.Insert method and provide a dependency.

	 2. The Cache object is stored in memory on the server.

	 3. You can store any type of data in the Cache collection. However, when you
retrieve the data, you must cast it to the correct type.

	 4. You must verify that the object is not null and then cast it to the correct type. If it
is null, you must retrieve it from the original source rather than from the Cache.

 80	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Page Output Caching
After a web browser retrieves a page, the browser often keeps a copy of the page on the local
computer. The next time the user requests the page, the browser simply verifies that the cached
version is still valid, and then displays the cached page to the user. This improves the respon-
siveness of the site by decreasing the time required to load the page. It also reduces the load
on the server because the server is not required to render a page.

Client-side caching requires that each individual user retrieve a dynamically generated
version of your page. If one user visits your website 100 times, your web server only has
to generate the page once. If 100 users visit your website once, your web server needs to
generate the page 100 times.

To improve performance and reduce rendering time, ASP.NET also supports page output
caching. With page output caching, ASP.NET can keep a copy of a rendered ASP.NET webpage
in memory on the server. The next time a user requests it—even if it’s a different user—ASP.NET
can return the page almost instantly. If a page takes a long time to render (for example, if the
page makes multiple database queries), this can significantly improve performance. If you have
a lot of activity on your server, it can also increase your scalability, because resources used to
retrieve data can be freed.

If your page shows dynamic information or is customized for individual users, you don’t want
the same version of the page sent from the cache to every user. Fortunately, ASP.NET gives you
flexible configuration options to meet almost any requirement. You can even implement user
controls to do partial-page caching while generating other portions of the page dynamically.

real World

Tony Northrup

Page output caching is the most effective way to reduce ASP.NET rendering time.
After all, if the page output is cached, ASP.NET skips the rendering process

entirely and just sends the HTML that it’s already generated. If a page takes 0.5
seconds to generate, a single line of code to enable page output caching will
improve the page’s performance by 0.5 seconds.

In the real world, rendering time is just one component of website performance. On
my personal ASP.NET website (http://www.northrup.org), ASP.NET takes about 0.01
to 0.02 seconds to generate most pages. I’m pretty proud of that, especially because
the website is running on an old computer and every page requires multiple data-
base queries. Yet, if you visit the site, pages won’t appear nearly that quickly.

 Lesson 3: Caching ChAPTER 2 81

According to Google Webmaster Tools (https://www.google.com/webmasters/tools/),
the average page on my site takes about 3.5 seconds to load. So the time it takes
ASP.NET to query the database and generate my page is less than 1 percent of the
page load time. Obviously, if I want to improve the performance of my website, I’ll
need to look elsewhere.

For most sites, the biggest factor in performance is actually network latency—the
time it takes a packet to travel from the client to the server and back. Other than
using a well-connected web hosting provider, there’s not much you can do to
improve network latency for public websites—after all, you don’t have any control
over how your users connect to the Internet.

Typically, the second biggest factor in website performance is the number of indi-
vidual objects browsers need to load to display your page. Every image, style sheet,
JavaScript, and Flash object on your page requires the web browser to send a sepa-
rate Hypertext Transfer Protocol (HTTP) request across the Internet. Try to minimize
the number of objects embedded in a page by combining multiple style sheets and
JavaScripts and using text buttons and links instead of image links. If a browser
needs to load more than six objects, consider distributing the objects between
different hostnames to allow web browsers to request the files simultaneously—a
process known as parallelization. For example, instead of loading all the thumbnails
on a page from www.northrup.org, I load thumbnails from images1.northrup.org,
images2.northrup.org, and images3.northrup.org.

The larger the files you’re sending, the more your performance is limited by band-
width. Bandwidth can be limited by either your server’s Internet connection or the
client’s Internet connection, so your best bet is always to reduce the size of your web-
pages. Shorten your webpages, enable HTTP compression, minify your JavaScripts,
and increase the compression of images, sounds, and videos.

Latency, embedded objects, and bandwidth are the biggest factors, but there are
many smaller factors. Use a fast Domain Name System (DNS) provider and mini-
mize the number of different hostnames. Whenever possible, enable client-side
caching for the longest period of time possible. Link to your style sheet at the top
of your webpage, and embed your analytics at the bottom. To get more tips and
to performance-test your own site, visit http://www.webpagetest.org/.

 82	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Declaratively Configuring Caching for a Single Page
You can configure each ASP.NET page in your site to be cached independently. This gives you
granular control over which pages get cached and how they get cached. You manage this by
adding the @ OutputCache directive to the top of a page’s markup. You can configure this
directive by using the attributes shown in Table 2-1.

TAbLE 2-1 OutputCache Attributes

ATTRibUTE DEsCRiPTiOn

Duration The number of seconds to cache the page. This is the only required
parameter.

Location One of the OutputCacheLocation enumeration values, such as Any, Client,
Downstream, Server, None, or ServerAndClient. The default is Any.

CacheProfile The name of the cache settings to associate with the page. The default
is an empty string ("").

NoStore A Boolean value that determines whether to prevent secondary storage
of sensitive information.

Shared A Boolean value that determines whether user control output can be
shared with multiple pages. The default is false.

VaryByParam A semicolon-separated list of strings used to vary the output cache.
By default, these strings correspond to a query string value sent
with Get method attributes, or a parameter sent by using the Post
method. When this attribute is set to multiple parameters, the output
cache contains a different version of the requested document for
each combination of specified parameters. Possible values include
none, an asterisk (*), and any valid query string or Post parameter
name. Either this attribute or the VaryByControl attribute is required
when you use the @ OutputCache directive on ASP.NET pages and
user controls. A parser error occurs if you fail to include it. If you do
not want to specify a parameter to vary cached content, set the value
to none. If you want to vary the output cache by all parameter values,
set the attribute to an asterisk (*).

VaryByControl A semicolon-separated list of strings used to vary a user control’s output
cache. These strings represent the ID property values of ASP.NET server
controls declared in the user control.

SqlDependency A string value that identifies a set of database and table name pairs
on which a page or control’s output cache depends. Note that the
SqlCacheDependency class monitors the table in a database that the
output cache depends on, so that when items in a table are updated,
those items are removed from the cache when table-based polling is
used. When notifications (in Microsoft SQL Server) are used with the
value CommandNotification, ultimately a SqlDependency class is used
to register for query notifications with the computer running SQL Server.

 Lesson 3: Caching ChAPTER 2 83

ATTRibUTE DEsCRiPTiOn

VaryByCustom Any text that represents custom output caching requirements. If this
attribute is given a value of browser, the cache is varied by browser
name and major version information. If a custom string is entered, you
must override the GetVaryByCustomString method in your application’s
Global.asax file.

VaryByHeader A semicolon-separated list of HTTP headers used to vary the output
cache. When this attribute is set to multiple headers, the output cache
contains a different version of the requested document for each com-
bination of specified headers.

The Location, CacheProfile, and NoStore attributes cannot be used in user controls (.ascx
files). The Shared attribute cannot be used in ASP.NET pages (.aspx files).

The following example demonstrates how to cache a page for 15 minutes, regardless of
the parameters passed to the page.

<%@ OutputCache Duration="15" VaryByParam="none" %>

If the page might display differently based on parameters, provide the names of those query
string parameters in the VaryByParam attribute. The following example caches a different copy
of the page for different values provided in the search or category query string parameters.

<%@ OutputCache Duration="15" VaryByParam="search;category" %>

If you want to invalidate a cache based on an ASP.NET control, you will need to identify
the name that ASP.NET assigns to the control. You might think you can simply specify the
control name for VaryByParam or VaryByControl, but ASP.NET generates more complex names.

To identify the ASP.NET-generated name for a control, first create your web form and add
the control that you plan to vary by. Run the page and view the source in your web browser.
Within the HTML source, find the control and make note of the name parameter. The following
HTML source shows DropDownList and TextBox controls. The ASP.NET-generated names that
you would need to specify as parameters for VaryByParam or VaryByControl are shown in bold.

<select name="ctl00$MainContent$ChoiceDropDownList" id="MainContent_ChoiceDropDownList">
 <option value="One">One</option>
 <option value="Two">Two</option>
 <option value="Three">Three</option>
</select>
<input name="ctl00$MainContent$UserNameTextBox" type="text" id="MainContent_
UserNameTextBox" />

Therefore, if you wanted to invalidate the cache if values in either field were changed, you
would need to use the following OutputCache declaration.

<%@ OutputCache Duration="15"
 VaryByParam="ctl00$MainContent$ChoiceDropDownList;ctl00$MainContent$UserNameTextBox"
%>

 84	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Partial-Page Caching
To cache a portion of an ASP.NET webpage, move the portion of the page that you want to
cache into an .ascx user control. Then, add the @ OutputCache directive to the user control.
That user control will be cached separately from the parent page. For more information about
user controls, refer to Chapter 7, “Creating Custom Web Controls.”

Programmatically Configuring Caching for a Single Page
If you need to make run-time decisions about output caching, you can do so by using the
Response.Cache object. The available programmatic methods do not correspond directly to
the attributes provided by the @ OutputCache directive, but they provide basic functionality:

■ Response.Cache.setExpires Use this method to specify the number of seconds that
the page is to be cached.

■ Response.Cache.setCacheability Use this method to specify an HttpCacheability
enumeration value, such as HttpCacheability.Public (which enables caching at both
the client and the server) or HttpCacheability.Server (which enables caching at the
server but disables caching at the client).

■ Response.Cache.setvalidUntilExpires Pass this method a true value to configure the
cache to ignore cache-invalidation headers.

Using Substitution to Update Caches
Some pages might not be eligible for caching because they have simple elements that must be
dynamically generated. As an alternative to creating separate user controls for the dynamic
elements and configuring a different caching policy for those user controls, you can use sub-
stitution. ASP.NET provides two cache substitution techniques:

■ The Response.Writesubstitution method You add static placeholders to your page in
places where dynamic content is required, and then use the Response.WriteSubstitution
method to specify a method that replaces portions of a cached page with dynamically
generated content. To specify the substitution method, call WriteSubstitution and pass a
callback method with an HttpResponseSubstitutionCallback signature.

Note sUbsTiTUTiOn WiTh CAChED UsER COnTROLs

You can’t use substitution to update cached user controls where output caching is
applied at the user control level.

■ The substitution control Substitution controls are similar to Label controls, but
Substitution controls are exempt from output caching. The only useful property
is Substitution.MethodName, which you use to specify the method that generates
the content that is inserted at the location of the Substitution control. The method
specified by MethodName must accept an HttpContext parameter and return a
String. The String value is inserted into the response at the Substitution control

 Lesson 3: Caching ChAPTER 2 85

location when the cached page is returned to the user. The following code dem-
onstrates how to specify a substitution method that displays the current time in a
Substitution control named Substitution1.

Sample of Visual Basic Code

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 ‘ Specify the callback method.
 Substitution1.MethodName = "GetCurrentDateTime"
End Sub

‘ The Substitution control calls this method to retrieve the current date and
time.
‘ This section of the page is exempt from output caching.
Shared Function GetCurrentDateTime(ByVal context As HttpContext) As String
 Return DateTime.Now.ToString()
End Function

Sample of C# Code

void Page_Load(object sender, System.EventArgs e)
{
 // Specify the callback method.
 Substitution1.MethodName = "GetCurrentDateTime";
}

// The Substitution control calls this method to retrieve the current date and
time.
// This section of the page is exempt from output caching.
public static string GetCurrentDateTime (HttpContext context)
{
 return DateTime.Now.ToString();
}

The AdRotator control also performs postcache substitution, by default, to constantly
display new ads.

Programmatically Invalidating Cached Pages
Often you want to cache pages, but specific events might require you to stop using the
cached page. For example, a page that displays results from a database query should only
be cached until the results of the database query change. Similarly, a page that processes a
file should be cached until the file is changed. Fortunately, ASP.NET gives you several ways
to invalidate cached pages.

Determining Whether to Return a Cached Page Prior to Rendering
To directly control whether a cached version of a page is used or whether the page is
dynamically regenerated, respond to the ValidateCacheOutput event and set a valid value
for the HttpValidationStatus attribute. Then, from the Page.Load event handler, call the
AddValidationCallback method and pass an HttpCacheValidateHandler object with your
method.

 86	 ChAPTER 2	 Using Master Pages, Themes, and Caching

The following example demonstrates how to create a method to handle the ValidatePage
event.

Sample of Visual Basic Code

Public Shared Sub ValidatePage(ByVal context As HttpContext, _
 ByVal data As [Object], ByRef status As HttpValidationStatus)

 If Not (context.Request.QueryString("Status") Is Nothing) Then
 Dim pageStatus As String = context.Request.QueryString("Status")

 If pageStatus = "invalid" Then
 status = HttpValidationStatus.Invalid
 ElseIf pageStatus = "ignore" Then
 status = HttpValidationStatus.IgnoreThisRequest
 Else
 status = HttpValidationStatus.Valid
 End If
 Else
 status = HttpValidationStatus.Valid
 End If

End Sub

Sample of C# Code

public static void ValidateCacheOutput(HttpContext context, Object data,
 ref HttpValidationStatus status)
{
 if (context.Request.QueryString["Status"] != null)
 {
 string pageStatus = context.Request.QueryString["Status"];

 if (pageStatus == "invalid")
 status = HttpValidationStatus.Invalid;
 else if (pageStatus == "ignore")
 status = HttpValidationStatus.IgnoreThisRequest;
 else
 status = HttpValidationStatus.Valid;
 }
 else
 status = HttpValidationStatus.Valid;
}

Notice that this code sample uses logic to specify one of the HttpValidationStatus values to
control how the page is cached:

■ httpvalidationstatus.invalid This causes the cache to be invalidated so that the page
is dynamically generated. The newly generated page is stored in the cache, replacing
the earlier cached version.

 Lesson 3: Caching ChAPTER 2 87

■ httpvalidationstatus.ignoreThisRequest This causes the current page request to
be dynamically generated without invalidating the previously cached version of the
page. The dynamically generated page output is not cached, and future requests
might receive the previously cached output.

■ httpvalidationstatus.valid This causes ASP.NET to return the cached page.

The following sample demonstrates how to configure your event handler (a method named
ValidateCacheOutput) so that it is called when ASP.NET determines whether to use the cached
version of the page.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Response.Cache.AddValidationCallback(_
 New HttpCacheValidateHandler(AddressOf ValidatePage), Nothing)

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 Response.Cache.AddValidationCallback(
 new HttpCacheValidateHandler(ValidateCacheOutput), null);
}

ASP.NET calls the method you specify when it determines whether to use the cached version
of the page. Depending on how you set the HttpValidationStatus in your handler, ASP.NET will
use a cached page or a new, dynamically generated version.

Creating a Cache Page Output Dependency
To create a cache page output dependency, call one of the following Response methods:

■ Response.AddCacheDependency This makes the validity of a cached response
dependent on a CacheDependency object.

■ Response.AddCacheitemDependency and Response.AddCacheitemDependencies
These make the validity of a cached response dependent on one or more other
items in the cache.

■ Response.AddFileDependency and Response.AddFileDependencies These make
the validity of a cached response dependent on one or more files.

 88	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Configuring Caching for an Entire Application
You can configure output caching profiles that you can easily reference from pages in your
application. This provides centralized configuration of output caching. To create a cache
profile, add the <caching><outputCacheSettings><outputCacheProfiles> section to your
Web.config file’s <system.web> element, as the following sample demonstrates.

<caching>
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="OneMinuteProfile" enabled="true" duration="60"/>
 </outputCacheProfiles>
 </outputCacheSettings>
</caching>

Caching profiles support most of the same attributes as the @ OutputCache direc-
tive, including Duration, VaryByParameter, VaryByHeader, VaryByCustom, VaryByControl,
SqlDependency, NoStore, and Location. Additionally, you must provide a Name attribute
to identify the profile, and you can use the Enabled attribute to disable a profile if necessary.

After you create a cache profile, reference it from within a page by using the CacheProfile
attribute of the @ OutputCache directive, as the following example demonstrates. You can
override specific attributes on a per-page basis.

<%@ OutputCache CacheProfile="OneMinuteProfile" VaryByParam="none" %>

PrActIcE	 Using Page Output Caching to improve Performance

In this practice, you configure page output caching for a simple ASP.NET web application.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Enabling Page Output Caching

In this exercise, you enable page output caching for an ASP.NET webpage.

	 1. Open Visual Studio and create a new website called Cachedsite, using the language of
your preference.

	 2. Next, you will add controls to a page and enable output caching. To get started, open
Default.aspx and add the following controls to the BodyContent ContentPlaceHolder.

■ A Label control named ChosenLabel.

 Lesson 3: Caching ChAPTER 2 89

■ A DropDownList control named ChoiceDropDownList. Add three ListItem controls
to the DropDownList (one for each choice).

■ A Button control named submitbutton.

Within BodyContent, your markup should resemble the following.

<asp:Label ID="ChosenLabel" runat="server" Text="Label"></asp:Label>

<asp:DropDownList ID="ChoiceDropDownList" runat="server">
 <asp:ListItem>One</asp:ListItem>
 <asp:ListItem>Two</asp:ListItem>
 <asp:ListItem>Three</asp:ListItem>
</asp:DropDownList>

<asp:Button ID="SubmitButton" runat="server" Text="OK" />

	 3. Add an event handler for the Button control’s Click event. Add code to display the user’s
selected choice and the current time in the ChosenLabel control. The following code
shows an example.

Sample of Visual Basic Code

Protected Sub SubmitButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonSubmit.Click

 ChosenLabel.Text = String.Format("{0} at {1}", ChoiceDropDownList.
SelectedValue, _
 DateTime.Now.TimeOfDay.ToString())

End Sub

Sample of C# Code

protected void SubmitButton_Click(object sender, EventArgs e)
{
 ChosenLabel.Text = String.Format("{0} at {1}", ChoiceDropDownList.
SelectedValue,
 DateTime.Now.TimeOfDay.ToString());
}

	 4. Run the project from Visual Studio. Note that each time you choose a different item
from the list and click the button, the name of the chosen item and the current time
are displayed at the top of the page.

	 5. Return to Visual Studio and open the Default.aspx page in Source view. Add a page out-
put cache directive to the top of the page so that the page is automatically cached for
10 seconds. Do not specify any dependencies. The following code sample demonstrates
how to do this.

<%@ OutputCache Duration="10" VaryByParam="none" %>

 90	 ChAPTER 2	 Using Master Pages, Themes, and Caching

	 6. Update the Web.config file to allow viewing of the Trace.axd file, which shows how long
ASP.NET takes to render webpages. We can use this to determine whether the .NET
Framework used a cached or uncached version of a page. Add the following line to
the <system.web> section.

<trace enabled="true"/>

	 7. Run the page again in a web browser. Make a choice from the list and notice that the
page updates correctly. Immediately make another choice from the list, and notice that
the page name does not change and that it continues to display the previous time.

Make note of the time, and repeatedly choose different pages from the list until 10
seconds have passed. After 10 seconds, notice that the page updates correctly and
again shows the current time. This demonstrates that page output caching is working
correctly; however, the caching prevents the form from functioning as intended.

	 8. Later in this exercise, you will change the OutputCache settings to invalidate the cache
when the user selects a different value for ChoiceDropDownList. While you have the
page open, view the HTML source in your browser. Make note of the name value for
the drop-down list, which will resemble ctl00$MainContent$ChoiceDropDownList.

	 9. In your web browser, open Trace.axd at the root of the webpage. Examine the first
request, and notice that the Trace Information section shows the time required for
different phases of the page generation process, including Begin PreInit, Begin Load,
and Begin Render. Return to Trace.axd and examine the second request. Notice that
the Trace Information section is empty, indicating that the page was accessed from the
cache rather than generated by ASP.NET.

	 10. Return to Visual Studio and open the Default.aspx page in Source view. Modify
the page output cache to cache content for 20 seconds and vary the cache based
on the DropDownList control. You must specify the name you identified in the HTML
source. The following code sample demonstrates how to do this (though the name of
your control might be different).

<%@ OutputCache Duration="20" VaryByParam="ctl00$MainContent$ChoiceDropDownList" %>

	 11. Run the page again in a web browser. Choose an item from the list, and notice the time
displayed. Immediately choose another item from the list, and notice that the page
updates correctly. Quickly choose the previous item from the list again.

Because of the change you made to the OutputCache declaration, ASP.NET caches a sepa-
rate version of the page for each value of the DropDownList control that you choose, and
each expires 20 seconds after it is generated. Examine the results generated by Trace.axd
to verify that some page requests were returned from cached results.

 Lesson 3: Caching ChAPTER 2 91

Lesson Summary
■ You can use the Cache object to store data of any type. You can then access the cached

data from other webpages in your application. The Cache object is an excellent way to
reduce the number of database calls and file reads. Use the Cache.Add and Cache.Insert
methods to add an object to the cache with a dependency to ensure that the cached
object does not become stale.

■ Page output caching stores a copy of a rendered page (or user control) in the server’s
memory. Subsequent requests for the resources are served from memory. Page output
caching practically eliminates rendering time.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 3,
“Caching.” The questions are also available on the companion CD in a practice test, if you
prefer to review them in electronic form.

Note  AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You are creating an ASP.NET webpage that displays a list of customers generated by
a database query. The user can filter the list so that only customers within a specific
state are displayed. You want to maximize the performance of your web application
by using page output caching. You want to ensure that users can filter by state, but
you are not concerned about displaying updates to the list of customers because
the customer list doesn’t change very frequently. Which declarative @ OutputCache
attribute should you configure?

	 A. VaryByParam

	 B. VaryByHeader

	 c. SqlDependency

	 D. VaryByCustom

	 2. You need to programmatically configure page output caching. Which object
would you use?

	 A. Request

	 B. Response

	 c. Application

	 D. Server

 92	 ChAPTER 2	 Using Master Pages, Themes, and Caching

	 3. You want to cache an object but have it automatically expire in 10 minutes. How
can you do this?

	 A. Directly define the Cache item.

	 B. Call Cache.Get.

	 c. Call Cache.Insert.

	 D. Cast DateTime.Now.AddMinutes(10) to the Cache type.

	 4. Which tool can you use to create a cache dependency? (Choose all that apply.)

	 A. An HTTP header

	 B. A file

	 c. A time span

	 D. A registry key

	 E. Another object in the Cache

Case scenarios

In the following case scenarios, you apply what you’ve learned about how to implement master
pages, themes, and caching. If you have difficulty completing this work, review the material in
this chapter before beginning the next chapter. You can find answers to these questions in the
“Answers” section at the end of this book.

Case Scenario 1: Providing Consistent Formatting for an
External Web Application
You are an application developer working for Humongous Insurance. You are responsible for
updating an external web application based on user requests. Currently, the web application’s
primary uses are:

■ Enabling subscribers to search for and identify providers.

■ Providing a reference for subscribers who need to know what is and isn’t covered.

■ Enabling subscribers to contact customer service representatives with questions.

■ Providing portals to subscribers to enable them to read updates about Humongous
Insurance and general health care topics.

 Case Scenarios ChAPTER 2 93

You have a backlog of email from users. Although you have quite a few positive messages,
today you are reading through the negative messages to identify ways to update the applica-
tion to better serve users. Following is the text of email received from users:

■ As I browsed the site, I felt like I was visiting several different sites. The layout of the
page changed, and the logo is even different on some pages.

■ Awful. There are so many different fonts that it looks like a ransom note. Why does
every page look different? Get an editor.

■ Nice website, but the colors are awful.

Answer the following questions for your manager:

	 1. How can you provide a consistent layout for the site?

	 2. How can you address the concerns about the inconsistency of fonts?

	 3. How can you ensure that a developer does not set the incorrect font on a control?

	 4. How can you enable users to change the colors of the website?

Case Scenario 2: Improving the Performance of a Public
Website
You are a developer for Contoso, Ltd, a video rental company. Fortunately, the company’s
website has been getting busier and busier. Currently, both the web server and the back-end
database are hosted on a single computer. Unfortunately, you’ve discovered that the server that
runs the site and database isn’t powerful enough to meet peak demand. During the busiest
hours, you discover that processor utilization is very high.

You discuss the problems with other people at your organization. Following is a list of
company personnel interviewed and their statements:

■ Dariusz korzun, Database Administrator I did some analysis on the SQL Server
database performance as you asked. The biggest problem is that when a user clicks
on a movie genre on the website, such as comedy or drama, your application performs
a very processor-intensive query to find the appropriate movies. I’ve optimized the
indexes already, so there’s nothing we can do besides upgrading the server or querying
the database less often.

■ Wendy Richardson, iT manager The company is doing well, but we don’t have any
budget to upgrade the server. So find a way to make the application more efficient.

 94	 ChAPTER 2	 Using Master Pages, Themes, and Caching

Answer the following questions for your manager:

	 1. Is there a way you can use the application Cache object to improve performance?

	 2. How can you make sure stale cache information isn’t sent to users after the company
adds new movies?

	 3. Each page on the website is personalized with the current users’ preferences. Is there a
way you can use page output caching to improve performance?

suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Implement Master Pages and Themes
For this task, you should complete Practices 1, 2, and 4 to gain experience in using master
pages and themes. Practice 3 shows you how to create pages formatted for mobile devices,
and you should complete it if you are interested in client-specific rendering. Practice 5 helps
you understand how themes can be used with custom controls, which is important to test
if you create custom controls that other developers use.

■ Practice 1 Using a copy of the most recent web application you created, implement
a master page model and convert your existing ASPX pages to content pages.

■ Practice 2 Using a copy of the most recent web application you created, create
multiple master pages and give users the option of switching between master pages
based on their layout and color preferences.

■ Practice 3 Create a web application that detects the client device and switches
master pages based on the client type. For traditional web browsers, display a navi-
gation bar on the left side of the screen. For mobile clients, consider displaying all
content in a single column.

■ Practice 4 Using a copy of the most recent web application you created, add a theme
to configure all controls with consistent colors.

■ Practice 5 Create a custom control and experiment with setting the attributes by
using themes.

 Take a Practice Test ChAPTER 2 95

Implement Caching
For this task, you should complete Practices 1 and 2 to learn more about application caching.

■ Practice 1 Using the most recent real-world ASP.NET web application you created
that accesses a database, use the Cache object to store a copy of database results.
View the Trace.axd page before and after the change to determine whether caching
improves performance.

■ Practice 2 Using the most recent real-world ASP.NET web application you created,
enable output caching as thoroughly as possible without forcing users to experience
outdated content.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just the lesson review questions in this chapter, or you can test yourself on all the
70-515 certification exam objectives. You can set up the test so it closely simulates the experi-
ence of taking a certification exam, or you can set it up in study mode so you can look at the
correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 3 97

C h A P T E R 3

Handling Events and
Managing State
The biggest difference between Windows and web applications is not the user interface;

it’s the life cycle. Users open a Windows application and work with it for hours at a
time, and when they close it, the application has the opportunity to save their data. Web
requests are much more short term. A user might request one page from your website
and never return. Even if a user spends hours on your site, each individual request requires
controls and objects to be created and finally destroyed.

Because pages and controls must be created for every user request, you must understand
the Microsoft ASP.NET page life cycle in order to build pages efficiently and respond to user
input reliably. ASP.NET provides different events for each major stage in the life cycle, and
you can respond to any of them. Add controls too late in the page life cycle, and you will
lose your themes, skins, and stored data. Handle the wrong control event, and your user
interface won’t behave correctly.

Because ASP.NET destroys any objects you’ve created within a page after the page is
rendered, objects you create won’t be available during the user’s next request. ASP.NET
provides several ways to persist data between requests:

■ view state With view state, data is stored within controls on a page. For example,
if a user types an address into a TextBox and view state is enabled, the address will
remain in the TextBox between requests.

■ hidden fields As with the view state approach, a hidden field is stored as a field
on a page. The view state technique and hidden fields only work for multiple requests
to a single page.

■ session state With session state management, data is stored for use within any
page in a user’s visit. For example, if a user provides a name, your application could
retain it for the rest of the user’s visit by storing it in session state.

■ Cookies With cookies, data is stored on the user’s computer. Your application can
ask a user’s browser to store data in a file and send it back to the website with each
request. Unlike session state, cookies can be accessed across different visits.

 Contents

 ChAPTER 3 97

 handling Events and managing state 97
Before You Begin . 98

Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events . . 99

The ASP.NET Application Life Cycle 100

Understanding the Life Cycle of an ASP.NET Webpage
and Its Controls 103

Lesson Summary 119

Lesson Review 119

Lesson 2: Using Client-Side State Management . 120

Choosing Client-Side or Server-Side State Management 121

View State 123

Hidden Fields 128

Cookies 129

Query Strings 133

Lesson Summary 141

Lesson Review 142

Lesson 3: Using Server-Side State Management . 143

Application State 144

Session State 145

Lesson Summary 154

Lesson Review 154

Case Scenarios . 155

Case Scenario 1: Selecting the Proper Events to Use 155

Case Scenario 2: Remembering User Credentials 156

Case Scenario 3: Analyzing Information for Individual Users and for
All Users 156

Suggested Practices . 157

Respond to Application and Session Events 157

Create Event Handlers for Pages and Controls 157

Manage State by Using Client-Based State Management Options 158

Manage State by Using Server-Based State Management Options 158

Maintain State by Using Database Technology 158

Take a Practice Test . 159

 98	 ChAPTER 3	 Handling Events and Managing State

■ Query strings With query strings, data is stored in a URL. If you need to store infor-
mation about a page so that the link can be bookmarked or shared, add it to the query
string. Users can easily edit query strings, however.

■ Application state When application state is used, data is stored on a server that is
accessible by any page running within the application. Application state can be accessed
from different users’ sessions, but it is lost if the application is restarted.

To build efficient and reliable web applications, you must understand when to use
each of these state management techniques. The first lesson of this chapter describes
the ASP.NET life cycle and shows you how to handle page and control events. The second
and third lessons describe how to use client-side and server-side state management to
store your application data.

Exam objectives in this chapter:
■	 Developing Web Forms Pages

■ Handle page life cycle events.
■ Manage state.

Lessons in this chapter:
■	 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events 99
■	 Lesson 2: Using Client-Side State Management 120
■	 Lesson 3: Using Server-Side State Management 143

before you begin

To complete the lessons in the chapter, you should be familiar with developing applications
with Microsoft Visual Studio by using Microsoft Visual Basic or Microsoft Visual C#. In addition,
you should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Hypertext Markup Language (HTML) and client-side scripting

■ Creating a new website

■ Adding web server controls to a webpage

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 99

real World

Tony Northrup

V isual Studio makes it so easy to handle events that many developers don’t really
understand them. You can double-click a button in the Visual Studio designer

and write some code that runs when the user clicks it. Technically, you’re handling an
event, even though you don’t need to understand how the event works. It’s nice that
Visual Studio is beginner friendly, but what happens when you need to add a button
to a page at run time, modify one of the button’s properties before the button is
displayed, or programmatically change the button’s HTML?

ASP.NET exposes every step of the webpage creation process by using events, and
when you understand those steps and how to handle the events, you can do anything.
Literally—anything. You can move view state information to the bottom of a form.
You can intercept the user’s request and alter or redirect the request, tricking ASP.NET
into thinking that the request came from a different browser. You can even wait until
ASP.NET has completely rendered the page, and then edit the HTML before sending it
back to the user.

In the real world, developers are never on the job for more than a couple of months
before they encounter challenges that require weaving code into non-default events.
I don’t expect you to memorize every event (though it wouldn’t hurt for the exam),
but you do need to be familiar with the various page and control events so that you
know what you can do with ASP.NET when you finally encounter that seemingly
insurmountable challenge.

Lesson 1: Understanding the AsP.nET Life Cycle and
handling Events

Pages, and the controls on them, have a life cycle. At different stages in the life cycle, ASP.NET
raises events. For each event, you can create methods that run code to customize the behavior
of pages and controls.

This lesson describes the life cycle of ASP.NET webpages and controls. You will learn how to
respond to user interactions, such as the click of a button. You will also learn how to customize
the page life cycle to alter the page layout at run time.

 100	 ChAPTER 3	 Handling Events and Managing State

After this lesson, you will be able to:
■	 Describe the life cycle of an ASP.NET webpage and its controls.
■	 Create event handlers to run code at different stages in the page and control

life cycles.

Estimated lesson time: 30 minutes

The ASP.NET Application Life Cycle
It is important to have a solid understanding of the life cycle of an ASP.NET application when
you are working with server-side state management. This life cycle defines how the applica-
tion server starts and stops your application, isolates it from other applications, and executes
your code.

In production environments, ASP.NET applications run within a web server. The web server
is usually Internet Information Services (IIS) hosted on a recent version of Windows Server,
such as Windows Server 2008 R2, which includes IIS 7.5. The following stages constitute the
application life cycle of an ASP.NET application running on IIS 7.5:

	 1. A user first makes a request for a page in your site.

	 2. The request is routed to the processing pipeline, which forwards it to the ASP.NET
runtime.

	 3. The ASP.NET runtime creates an instance of the ApplicationManager class. The
ApplicationManager instance represents the Microsoft .NET Framework domain that
will be used to execute requests for your application. An application domain isolates
global variables from other applications and allows each application to load and
unload separately as required.

	 4. After the application domain has been created, an instance of the HostingEnvironment
class is created. This class provides access to items inside the hosting environment, such
as directory folders.

	 5. ASP.NET creates instances of the core objects that will be used to process the request.
This includes HttpContext, HttpRequest, and HttpResponse objects.

	 6. ASP.NET creates an instance of the HttpApplication class (or an instance is reused). This
class is also the base class for a site’s Global.asax file. You can use this class to trap events
that happen when your application starts or stops. When ASP.NET creates an instance of
HttpApplication, it also creates the modules configured for the application, such as the
SessionStateModule.

	 7.	 Finally, ASP.NET processes requests through the HttpApplication pipeline. This pipeline
also includes a set of events for validating requests, mapping URLs, accessing the cache,
and more. These events are of interest to developers who want to extend the Application
class, but they are outside the scope of this book.

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 101

Responding to Application Events
The HttpApplication class provides several events that you can handle to perform actions when
ASP.NET raises certain events at the application level. These include actions such as initializing
variable values when your application starts, logging requests to your application, handling
application-level errors, and more. ASP.NET raises these events based on your application
starting, stopping, handling a request, and so on; the events do not work on a per-user level.

You handle the event for the stage of the application life cycle you intend to intercept.
Events are mapped automatically if you follow the Application_ naming structure. The following
list shows the method you would add to the Global.asax file (described next) and when ASP.NET
raises the event:

■ Application_start The Start event is raised when your application is started by IIS
(usually as the result of a user request). This event is useful for initializing variables
that are scoped at the application level.

■ Application_End The End event is raised when your application stops or shuts down.
This event is useful if you need to free application-level resources or perform some sort
of logging.

■ Application_Error The Error event is raised when an unhandled error occurs and rises
up to the application scope. You could use this event to perform worst-case, catch-all
error logging.

■ Application_LogRequest The LogRequest event is raised when a request has been
made to the application. You can use this event to write custom logging information
regarding a request.

■ Application_PostLogRequest The PostLogRequest event is raised after the logging
of a request has completed.

These are just the most commonly used Application events. Others include Application_
BeginRequest, Application_EndRequest, ResolveRequestCache, and many others. These events
map to the application processing pipeline. For more information about other events, look up
the HttpApplication class in the MSDN library and read “INFO: Application Instances, Application
Events, and Application State in ASP.NET” at http://support.microsoft.com/kb/312607.

You can implement these events by adding a Global.asax file, also known as the Global
Application Class, to your project. Visual Studio does not create a code-behind file for it by
default. Instead, it has a script block that you use to add code for these events. Visual Studio
2010 automatically creates a Global.asax file for you when you use the ASP.NET Web Site
template to create a website. If you use the ASP.NET Empty Web Site template, follow these
steps to create the Global.asax file:

	 1. Open your website in Visual Studio. In Solution Explorer, right-click your website
project file and select Add New Item to open the Add New Item dialog box.

	 2. In the Add New Item dialog box, select the Global Application Class item, and then
click Add to add the file to your project.

 102	 ChAPTER 3	 Handling Events and Managing State

Visual Studio will add a Global.asax file to your project. The file already contains stubbed-
out method signatures for Application_Start, Application_End, and Application_Error. It
also includes method signatures for Session_Start and Session_End. These are described
later in this lesson.

The following code shows an example of a Global.asax file. In this example, the application-
level variable UsersOnline is defined at application start. The variable is incremented when a new
user comes to the site and starts a session. The variable is decremented when a session ends.
(The session end code is only called for InProc session state management, which is covered in
Lesson 3, “Using Server-Side State Management.”

 Sample of Visual Basic Code

<%@ Application Language="VB" %>
<script runat="server">
 Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 Application("UsersOnline") = 0
 End Sub

 Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
 Application.Lock()
 Application("UsersOnline") = CInt(Application("UsersOnline")) + 1
 Application.UnLock()
 End Sub

 Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)
 Application.Lock()
 Application("UsersOnline") = CInt(Application("UsersOnline")) - 1
 Application.UnLock()
 End Sub
</script>

Sample of C# Code

<%@ Application Language="C#" %>
<script runat="server">
 void Application_Start(object sender, EventArgs e)
 {
 Application["UsersOnline"] = 0;
 }

 void Session_Start(object sender, EventArgs e)
 {
 Application.Lock();
 Application["UsersOnline"] = (int)Application["UsersOnline"] + 1;
 Application.UnLock();
 }

 void Session_End(object sender, EventArgs e)
 {
 Application.Lock();
 Application["UsersOnline"] = (int)Application["UsersOnline"] - 1;
 Application.UnLock();
 }
</script>

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 103

Note  mOniTORing AsP.nET

You don’t need to write custom code to monitor the number of active application
users. Instead, use one of the hundreds of different ASP.NET counters available from
the Performance Monitor snap-in. For example, the ASP.NET Applications\Sessions Active
counter gives you a good idea of the current number of users.

Writing and Reading Application State Data
You can read and write application-level state data by using the Application collection (an
instance of the HttpApplicationState class). Because multiple webpages might be running
simultaneously on different threads, you must lock the Application object when making
calculations and performing updates to application-level data. For example, the following
code locks (and later unlocks) the Application object for a single thread before incrementing
and updating an application-level variable.

Sample of Visual Basic Code

Application.Lock()
Application("PageRequestCount") = CInt(Application("PageRequestCount")) + 1
Application.UnLock()

Sample of C# Code

Application.Lock();
Application["PageRequestCount"] = ((int)Application["PageRequestCount"]) + 1;
Application.UnLock();

If you don’t lock the Application object, it is possible for another page to change the variable
between the time that the process reads the current value and the time it writes the new value.
This could cause a calculation to be lost. You do not need to lock the Application object when
initializing variables in Application_Start. Whenever possible, you should use the Cache object
instead. Caching is discussed in Chapter 2, “Using Master Pages, Themes, and Caching.”

The values of an Application variable are of the Object type. Therefore, when you read
them, you must cast them to the appropriate type. There is no need to lock a variable for a
read, because multiple threads can read the same data without causing any problems.

Understanding the Life Cycle of an ASP.NET Webpage
and Its Controls
The page life cycle starts when a user requests a webpage through a browser. The web server
then processes the page through a series of stages before returning the results to the user’s
browser. These processing stages define the life cycle of a webpage. Figure 3-1 shows a high-
level overview of the page processing life cycle.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 104	 ChAPTER 3	 Handling Events and Managing State

User
Browser

Web server

Request page Forward request

 Stage 1: Compile page (if necessary)
 (page request) Pull from cache (if available)

 Stage 2: Set request and response
 (start) Determine IsPostBack

 Stage 3: Initialize page controls (but not their properties)
 (page init) Apply page theme

 Stage 4: If PostBack, load control properties from view state
 (load)

 Stage 5: Validate page and validator controls
 (validation)

 Stage 6: Call control event handlers (for PostBack requests)
 (PostBack event handling)

 Stage 7: Save view state
 (rendering) Render controls and display the page

 Stage 8: Unload request and response
 (unload) Perform cleanup
 Page is ready to be discarded

Return
response

FigURE 3-1 The life cycle of an ASP.NET page.

When a webpage is requested, the server creates objects associated with the page, along
with all of its child control objects, and uses these to render the page to the browser. When the
final stage is complete, the web server destroys these objects to free up resources to handle
additional requests. This allows the web server to handle more requests from more users.

Page Life Cycle Events
As ASP.NET processes a page through its stages, various events are raised for the page and
its related controls. You write code to handle these events and thus respond to various actions
related to the processing of a page.

For example, you might want to write code that gets called when a page is first loaded
(stage 4) to determine whether the user is requesting the page or posting back to the server.
The first time a user requests a page, you often need to initialize controls and their data. You
usually do not need to do this when the form posts back, however.

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 105

It’s also important to know the order in which events are called, so that your code runs in
the proper sequence. Table 3-1 contains an ordered list of the more common events that are
triggered when a page is processed by ASP.NET.

TAbLE 3-1 Page Life Cycle Events

EvEnT DEsCRiPTiOn

PreInit This is the first real event you might handle for a page. You usually
use this event only if you need to set values such as master page or
theme.
This event is also useful when you are working with dynamically
created controls for a page without a master page. You should
create the controls inside this event.

Init This event fires after each control has been initialized. You can
use this event to change initialization values for controls.

If you need to dynamically add controls to a content page, use
this event.

InitComplete This event is raised after all initializations of the page and its controls
have been completed.

PreLoad This event fires before view state has been loaded for the page
and its controls and before postback processing. This event is
useful when you need to write code after the page is initialized
but before the control view state has been re-established.

Load The page is stable at this time; it has been initialized and its state
has been reconstructed. Code inside the page load event usually
checks for postback and then sets control properties appropriately.
The page’s load event is called first. Then the load event for each
child control is called in turn (and then the load events for their child
controls, if any). This is important to know if you are writing your
own user or custom controls.

Control (postback)
event(s)

ASP.NET now calls any events on the page or its controls that
caused the postback to occur. This might be a button’s click
event, for example.

LoadComplete At this point all controls are loaded. If you need to do additional
processing at this time, you can do so here.

PreRender This event allows final changes to the page or its control. It takes
place after all regular postback events have taken place. This
event takes place before ViewState is saved, so any changes made
here are saved.

(continued)

 106	 ChAPTER 3	 Handling Events and Managing State

EvEnT DEsCRiPTiOn

SaveStateComplete Prior to this event, the view state for the page and its controls is
set. Any changes to the page’s controls at this point or beyond are
ignored. This event is useful if you need to write processing that
requires the view state to be set.

Render This is a method of the page object and its controls (not an event).
At this point, ASP.NET calls this method on each of the page’s
controls to get its output.
The Render method generates the client-side HTML, Dynamic
Hypertext Markup Language (DHTML), and script that are neces-
sary to properly display a control on the browser.
This method is useful if you are writing your own custom control.
You override this method to control output for the control.

Unload This event is used for cleanup code. You can use it to manually
release resources, a process that is rarely necessary.

exaM tIp

Know your page and control life cycle events for the exam (and for the real world). You’ll
need to know which events to handle to perform common tasks such as dynamically
adding controls, changing master pages, and altering HTML output after controls have
been rendered. Complete the practices at the end of this chapter to get more experience
working with different life cycle events.

Creating Custom Controls
You can add controls to a form at run time by handling the Page.PreInit event (if you are not
using master pages) or the Page.Init event (if you are using master pages and you are adding
the control to a content page). If you add controls in Init or Load, you will need to manually
call the Control.ApplyStyleSheetSkin method.

To add controls to a form, follow these high-level steps:

	 1. Add a Panel control to your ASPX page where you would like the controls to appear.
You can also use a PlaceHolder control.

	 2. In the Page.PreInit or Page.Init event handler, create an instance of the control.

	 3. Set the control’s properties. If you need to access the controls from another method,
be sure to set the ID property.

	 4. Add event handlers for the control, if necessary.

	 5. Add the control to the Panel.Controls collection.

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 107

The instances you create in Page_PreInit or Page_Init will not be available in event handlers.
Therefore, you will need to find the controls in the Panel.Controls collection and cast them to
the right type.

The following code sample demonstrates how to add a Label, TextBox, and Button control
to a form that contains a Panel control named Panel1; add an event handler for the Button.Click
event; and then access each control from the event handler.

Sample of Visual Basic Code

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.PreInit
 ' Create instances of the controls
 Dim FeedbackLabel As New Label()
 Dim InputTextBox As New TextBox()
 Dim SubmitButton As New Button()

 ' Assign the control properties
 FeedbackLabel.ID = "FeedbackLabel"
 FeedbackLabel.Text = "Please type your name: "

 SubmitButton.ID = "SubmitButton"
 SubmitButton.Text = "Submit"

 InputTextBox.ID = "InputTextBox"

 ' Create event handlers
 AddHandler SubmitButton.Click, AddressOf SubmitButton_Click

 ' Add the controls to a Panel
 Panel1.Controls.Add(FeedbackLabel)
 Panel1.Controls.Add(InputTextBox)
 Panel1.Controls.Add(SubmitButton)
End Sub

Protected Sub SubmitButton_Click(ByVal sender As Object, ByVal e As EventArgs)
 ' Create an instance of Button for the existing control
 Dim SubmitButton As Button = DirectCast(sender, Button)

 ' Update the text on the Button
 SubmitButton.Text = "Submit again!"

 ' Create the Label and TextBox controls
 Dim FeedbackLabel As Label = DirectCast(FindControl("FeedbackLabel"), Label)
 Dim InputTextBox As TextBox = DirectCast(FindControl("InputTextBox"), TextBox)

 ' Update the controls
 FeedbackLabel.Text = String.Format("Hi, {0}", InputTextBox.Text)
End Sub

 108	 ChAPTER 3	 Handling Events and Managing State

Sample of C# Code

protected void Page_PreInit(object sender, EventArgs e)
{
 // Create instances of the controls
 Label FeedbackLabel = new Label();
 TextBox InputTextBox = new TextBox();
 Button SubmitButton = new Button();

 // Assign the control properties
 FeedbackLabel.ID = "FeedbackLabel";
 FeedbackLabel.Text = "Please type your name: ";

 SubmitButton.ID = "SubmitButton";
 SubmitButton.Text = "Submit";

 InputTextBox.ID = "InputTextBox";

 // Create event handlers
 SubmitButton.Click += new System.EventHandler(SubmitButton_Click);

 // Add the controls to a Panel
 Panel1.Controls.Add(FeedbackLabel);
 Panel1.Controls.Add(InputTextBox);
 Panel1.Controls.Add(SubmitButton);
}

protected void SubmitButton_Click(object sender, EventArgs e)
{
 // Create an instance of Button for the existing control
 Button SubmitButton = (Button)sender;

 // Update the text on the Button
 SubmitButton.Text = "Submit again!";

 // Create the Label and TextBox controls
 Label FeedbackLabel = (Label)FindControl("FeedbackLabel");
 TextBox InputTextBox = (TextBox)FindControl("InputTextBox");

 // Update the controls
 FeedbackLabel.Text = string.Format("Hi, {0}", InputTextBox.Text);
}

To run that code by using a content page that has a master page assigned, change
Page_PreInit to Page_Init.

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 109

Control Life Cycle Events
Controls, such as Button and TextBox, share a common life cycle with the Page class. Each
server control, including Init, Load, Render, and Unload, goes through the same life cycle as a
page. A control’s event occurs during the same event for its parent, so when a page executes
the load event, it then does so for each child control. Each child control that contains other
child controls also executes the load event for each child control.

It is important to note that this synchronized event execution is true for all controls added
to the page at design time. Those added dynamically during code execution will not have
their events execute in a similar sequence to that of the page object. Instead, when they are
added to the page dynamically, the controls’ events are executed sequentially until the events
have caught up to the current stage of their container (typically the executing page).

Creating Event Handlers
Controls in ASP.NET have default events that are usually handled by the application developer.
For example, the Page object’s default event is Load, and the Button object’s default event is
the Click event. Inside the Visual Studio page designer, you can attach an event handler for the
default event of a control by simply double-clicking the design surface for the given control.
For example, if you double-click a page, Visual Studio creates the Page_Load event stub in the
code-behind file and then opens it for you. You can do the same for other controls you add to
a page. Simply double-click a Button or TextBox to generate a default event handler in your
code-behind file.

This double-click method works throughout Visual Studio. However, the Visual Basic .NET
and C# designers differ when it comes to defining event handlers for other, non-default events.

ADDING A VISUAL BASIC .NET EVENT HANDLER 
In Visual Basic. NET, you use two drop-down lists to define your events. This is a carryover from
previous versions of Visual Basic. In the first drop-down list, you select an object on the page.
The second drop-down list is then used to generate the event handler. The following steps walk
you through this process. Here you add the event handler Page_Init.

	 1. Inside the Visual Studio Solution Explorer, right-click a webpage and select View Code.
This opens the code-behind file without inserting any code.

	 2. In the code-behind file, select the object drop-down list from the upper-left part of
the page and click Page Events, as shown in Figure 3-2.

 110	 ChAPTER 3	 Handling Events and Managing State

FigURE 3-2  Selecting the object that contains the event you want to handle.

	 3. Select the event drop-down list from the upper-right part of the page. Notice that all
the events for the page are listed. Those events that are already handled on the page are
listed in bold. Select the Init event, as shown in Figure 3-3.

FigURE 3-3  Selecting the Init event handler for a Visual Basic. NET webpage.

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 111

	 4. Next, Visual Studio generates the following event stub for you. You can then add code
inside this event that will be executed when this event is fired.

Protected Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Init

End Sub

ADDING A C# EVENT HANDLER
The code editor for C# also has an event handler drop-down list. However, it only contains
access to events you have already provided handlers for. The C# environment provides a tool
for wiring up control events, but it does not provide such a tool for the Page events. For these,
you have to code the event handler manually. Follow these steps to add the Init event handler
to a C# webpage:

	 1. Right-click a webpage from Solution Explorer and choose View Markup to open the
design code (HTML) for a page. Verify that the page’s AutoEventWireup property is set
to true in the @ Page directive (this is the default). This simply means that the runtime
will automatically connect the event handlers it finds in your code that match the
common form of Page_EventName.

	 2.	 Next, right-click the same page and click View Code to open the code editor with the
page’s code-behind file loaded. From within the partial class brackets, add the handler
code as shown in the following code block. This code will automatically be connected
to the page’s Init event at compile time.

private void Page_Init(object sender, EventArgs e)
{

}

Handling events issued from individual controls in C# is a little easier. You are not required
to recall the signature of each event. Instead, you can use the Property window for a control to
generate an event stub in your code-behind file. The following procedure walks you through
defining a Click event for a Button control.

	 1. Open a page in Design view. From the Toolbox, add a Button control to the page.

	 2. Select the Button control and view its properties (right-click and select Properties).

	 3. In the Properties window, click the Events icon (the yellow lightning bolt). This changes
the Properties window to the events view. Figure 3-4 shows an example.

	 4. From here, you locate the event you want to handle and double-click it in the Properties
window. This will open the code-behind page and insert the event handler stub code.

 112	 ChAPTER 3	 Handling Events and Managing State

FigURE 3-4  Adding an event handler to a C# server control.

Controlling Automatic Postback
Some web server controls always cause a postback when a specific event occurs. For example,
the Button control’s Click event always causes the browser to submit the form to the web
server, initiating a postback. However, if a user selects a choice on a DropDownList, it does
not post back to the server by default.

For instance, the TextBox contains a default event called TextChanged. By default, the
TextChanged event does not cause an automatic postback, so nothing happens on the server
the moment the user changes text. The event is not lost, however. Instead, ASP.NET raises the
event during the next postback, which usually occurs when the user clicks a button.

When working with controls that have events that do not cause automatic postbacks to the
server, it is important to understand when these events are raised. Recall the webpage life cycle
defined in Table 3-1. Any postponed event (an event triggered by a user that does not cause an
automatic postback) executes before the actual event that caused the postback. For example, if
the text is changed in a TextBox and a Button is clicked, the Button click causes a postback, but
the TextChanged event of the TextBox executes and then the Click event of the Button executes.

The AutoPostBack property for a control is used to change whether that control’s default
event causes an automatic postback to the server. Set AutoPostBack to true to turn a post-
poned event to one that causes an immediate postback. You can do so in the Properties
window, by using code, or by adding the AutoPostBack=”True” attribute to the web server
control element in Source view. Figure 3-5 shows how to set AutoPostBack to true for a check
box by using the Properties window. If the user were to change the state of that check box,
the results would immediately be sent to the server.

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 113

FigURE 3-5 Setting AutoPostBack to true.

Quick Check
	 1. Which event would you handle to set the value of a Label control?

	 2. What happens in the Init event of a page?

Quick Check Answers
	 1. Usually, you would handle the Page.Load event. Because other parts of a

form probably do not rely on the value of a Label, you could also handle
the Page.PreInit, Page.Init, or Page.Render event.

	 2. Each child control of the page is initialized to its design-time value.

PrActIcE	 Exploring the Webpage Life Cycle Events

In this practice, you explore the webpage life cycle to gain an understanding of the events
and when they are triggered.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

 114	 ChAPTER 3	 Handling Events and Managing State

ExErcIsE	1	 Configuring Webpage Event Handlers

In this exercise, you configure event handlers for some of the webpage and server control events.
You then run the webpage to display the order in which these events are fired by ASP.NET.

	 1. Open Visual Studio and create a new website called LifeCycleEvents by using your
preferred programming language. This practice assumes that you are using the code-
behind model (and not the single-page model).

	 2. Open the code-behind file for the Default.aspx page.

	 3. Add a Page.Load event handler to the page (the handler is there by default in C#). Recall
that the Visual Basic process for this is different than the one for C# (see “Creating Event
Handlers,” earlier in this lesson).

	 4. In the Page.Load event handler, add code that will write to the Output window in Visual
Studio through the System.Diagnostics.Debug class. The following code provides an
example.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 System.Diagnostics.Debug.WriteLine("Page_Load")

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Page_Load");
}

	 5. Add event handlers for the PreInit, Init, PreRender, and Unload events. In each, place
a call to Debug.Write. Each call should write out the respective event name associated
with the handler. These additional handlers should look like the following.

Sample of Visual Basic Code

Protected Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit

 System.Diagnostics.Debug.WriteLine("Page_PreInit")
End Sub

Protected Sub Page_Init(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Init

 System.Diagnostics.Debug.WriteLine("Page_Init")
End Sub

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 115

Protected Sub Page_PreRender(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreRender

 System.Diagnostics.Debug.WriteLine("Page_PreRender")
End Sub

Protected Sub Page_Unload(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Unload

 System.Diagnostics.Debug.WriteLine("Page_Unload")
End Sub

Sample of C# Code

protected void Page_PreInit(object sender, EventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Page_PreInit");
}

protected void Page_Init(object sender, EventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Page_Init");
}

protected void Page_PreRender(object sender, EventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Page_PreRender");
}

protected void Page_Unload(object sender, EventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Page_Unload");
}

	 6. Run the web application in Debug mode (click the Start Debugging button on the
standard toolbar). You might receive a prompt stating that the website cannot be
debugged until you enable debugging in the Web.config file. Allow Visual Studio
to enable debugging, and click OK to continue. The Default.aspx page should be
displayed in a browser window.

	 7. In Visual Studio, locate the Output window (View Output). You should see the results of
the Debug.WriteLine calls at the bottom of the Output window, as shown in Figure 3-6.
Notice the order in which the events fired.

 116	 ChAPTER 3	 Handling Events and Managing State

FigURE 3-6  The Output window in Visual Studio showing the order in which the page events fired.

	 8. Reload the webpage in your browser. Notice that all the same events are processed again.

ExErcIsE	2	 Using Postback

In this exercise, you configure a web form that allows a user to either log on with a user name
and password or to access the site as a guest by using an email address. If the user chooses to log
on as a registered user, he or she should be prompted for both a user name and a password. If
the user chooses to log on as a guest, he or she should be prompted for an email address only.

	 1. Open Visual Studio and create a new website by using the ASP.NET Web Site template
and your preferred programming language. This practice assumes that you are using
the code-behind model (and not the single-page model).

	 2. Create a second content page named home.aspx.

	 3. Remove any existing controls from your Default.aspx page. Then add the following
controls:

■ A DropDownList named UserTypeDropDownList. Add two items to the DropDownList
with the text Registered User and guest.

■ A Label named UsernameLabel.

■ A TextBox named UsernameTextbox.

■ A Label named PasswordLabel. Set PasswordLabel.Text to Password:.

■ A TextBox named PasswordTextbox.

■ A Button named Logonbutton.

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 117

Though the layout isn’t important, your form should resemble Figure 3-7.

FigURE 3-7  The sample form in Design view.

	 4. When the user clicks the Button, the form should check the credentials and redirect
the client to Home.aspx. You will need to handle the Button.Click event to respond
to the button click, so double-click the Button in the designer to create the event
handler. Then call Response.Redirect to have the browser visit Home.aspx instead.
In practice, you would add code to log the user on in this event handler.

Sample of Visual Basic Code

Protected Sub LogonButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles LogonButton.Click

 Response.Redirect("Home.aspx")
End Sub

Sample of C# Code

protected void LogonButton_Click(object sender, EventArgs e)
{
 Response.Redirect("Home.aspx");
}

	 5. You need to change the labels and hide the password prompt if the user is visiting as
a guest. You can do this from the Page.Load event handler. Within the event handler,
determine whether Registered User or Guest is selected in UserTypeDropDownList.
Depending on the choice, configure the controls in the form:

■ If the user is a guest, set PasswordLabel.Visible and PasswordTextBox.Visible to
false. Also, set UserNameLabel.Text to E-mail address: and LogonButton.Text
to visit.

■ If the user is registered, set PasswordLabel.Visible and PasswordTextBox.Visible
to true. Also, set UserNameLabel.Text to Username: and LogonButton.Text to
Logon.

Your code will resemble the code shown on the following page.

 118	 ChAPTER 3	 Handling Events and Managing State

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 If UserTypeDropDownList.SelectedValue = "Guest" Then
 PasswordLabel.Visible = False
 PasswordTextBox.Visible = False
 UserNameLabel.Text = "E-mail address: "
 LogonButton.Text = "Visit"
 Else
 PasswordLabel.Visible = True
 PasswordTextBox.Visible = True
 UserNameLabel.Text = "Username: "
 LogonButton.Text = "Logon"
 End If
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (UserTypeDropDownList.SelectedValue == "Guest")
 {
 PasswordLabel.Visible = false;
 PasswordTextBox.Visible = false;
 UserNameLabel.Text = "E-mail address: ";
 LogonButton.Text = "Visit";
 }
 else
 {
 PasswordLabel.Visible = true;
 PasswordTextBox.Visible = true;
 UserNameLabel.Text = "Username: ";
 LogonButton.Text = "Logon";
 }
}

	 6. The Page.Load event is only processed when the browser requests a page. If you were
to run the page in its current state, nothing would happen when the user selected Guest
from the drop-down list. To force the browser to submit the form when the user changes
the selected item in the UserTypeDropDownList, set UserTypeDropDownList.AutoPostBack
to true. You can do this from Design view—select the drop-down list, view the Properties
window, and set the value of AutoPostBack to true.

	 7. Run the webpage. With Registered User selected, notice that the user name and pass-
word text boxes appear. Type a user name and password, and then click Logon. Notice
that the Button.Click event handler redirects the browser to Home.aspx.

	 8. Return to the Default.aspx page. Click the drop-down list and select Guest. Notice that
the web browser immediately submits the form to the server, which causes the Page.Load
method to run again. Because the user has now selected Guest, the Page.Load method
hides the password text box. If you select Registered User, ASP.NET makes the password
text box visible again.

 Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events ChAPTER 3 119

Lesson Summary
■ An ASP.NET page has a defined life cycle that determines how ASP.NET will process the

page, call events, and connect data to the page.

■ A server control is a control that you program by writing server-side code to respond
to events from the control.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Understanding the ASP.NET Life Cycle and Handling Events.” The questions are also available
on the companion CD in a practice test, if you prefer to review them in electronic form.

Note  AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. In which file should you write code to respond to the Application_Start event?

	 A. Any ASP.NET server page with an .aspx extension

	 B. Web.config

	 c. Global.asax

	 D. Any ASP.NET server page with an .aspx.vb or .aspx.cs extension

	 2. You need to log data to a database when a user’s session times out. Which event
should you respond to?

	 A. Application_Start

	 B. Application_End

	 c. Session_Start

	 D. Session_End

	 3. You notice that clicking a CheckBox does not cause an automatic postback. You need
the CheckBox to automatically post back so you can update the webpage based on
server-side code. How do you make the CheckBox cause an automatic postback?

	 A. Set the AutoPostBack property to true.

	 B. Add JavaScript code to call the ForcePostBack method.

	 c. Set the PostBackAll property of the webpage to true.

	 D. Add server-side code to listen for the click event from the client.

 120	 ChAPTER 3	 Handling Events and Managing State

	 4. You need to dynamically create an instance of a TextBox server control in a page. You do
not use master pages. Based on the recommended best practices, in which page event
would you create the server control to ensure that the view state is properly reconnected
to the control on postback?

	 A. PreInit

	 B. Init

	 c. Load

	 D. PreRender

Lesson 2: Using Client-side state management

If your application needs to scale to thousands of users, then you should strongly consider
using the client for storing application state. Removing this burden from the server frees
up resources, allowing the server to process more user requests. ASP.NET provides several
techniques for storing state information on the client. These include the following:

■ view state  ASP.NET uses view state to track values in controls between page requests.
You can also add your own custom values to the view state.

■ Control state  Control state allows you to persist information about a control that is
not part of the view state. This is useful to custom control developers. If view state is
disabled for a control or the page, the control state will still function.

■ hidden fields  Like view state, HTML hidden fields store data without displaying that
data to the user’s browser. This data is presented back to the server and is available
when the form is processed.

■ Cookies  A cookie stores a value in the user’s browser. The browser sends this value
with every page request to the same server. Cookies are the best way to store state
data that must be available for multiple webpages on a website.

■ Query strings  A query string is a value that is stored at the end of a URL. These
values are visible to the user through his or her browser’s address bar. Use query
strings when you want a user to be able to use email or instant messaging to store
state data within a URL.

In this lesson, you will first learn when to choose client-side over server-side state manage-
ment. Then you will learn how to implement all of the client-side state management techniques
just listed: view state, control state, hidden fields, cookies, and query strings.

 Lesson 2: Using Client-Side State Management ChAPTER 3 121

After this lesson, you will be able to:
■	 Choose between client-side and server-side state management.
■	 Use view state to store custom data values.
■	 Use control state to store values for custom controls even if view state is

disabled.
■	 Use hidden fields to store values in a web form.
■	 Use cookies to track state management data as a user browses multiple

pages in a website.
■	 Use query strings to pass values embedded within a URL to another page.

Estimated lesson time: 30 minutes

Choosing Client-Side or Server-Side State Management
State management information, such as user name, personalization options, or shopping cart
contents, can be stored either on the client or on the server. If the state management informa-
tion is stored on the client, the client submits the information to the server with each request.
If the state management information is stored on the server, the server stores the information,
but tracks the client by using a client-side state management technique. Figure 3-8 illustrates
both client-side and server-side state management techniques.

Client-side state management

I am Mary. I am shopping for books.
I have three titles in my cart totaling $56.

Client Web server

Server-side state management

Session 856 is Mary.
Mary is shopping for books.

There are three titles in Mary’s cart totaling $56.

Client Web server

I am session 856.

FigURE 3-8 Client-side state management stores data on the client, whereas server-side state management
requires the server to store the data.

 122	 ChAPTER 3	 Handling Events and Managing State

Storing information on the client has the following advantages:

■ better scalability  With server-side state management, each client that connects to the
web server consumes memory on that server. If a website has hundreds (or thousands)
of simultaneous users, the memory consumed by storing state management information
can become a limiting factor. Pushing this burden to the clients removes that potential
bottleneck and frees the server to use its resources to serve more requests.

■ support for multiple web servers  With client-side state management, you can dis-
tribute incoming requests across multiple web servers (or a web farm). In this scenario,
each client provides all the information any web server needs to process a request. With
server-side state management, if a client switches servers in the middle of the session, the
new server does not necessarily have access to the client’s state information (because it is
stored on a different server). You can use multiple servers with server-side state manage-
ment, but you need either intelligent load balancing (to always forward requests from
a client to the same server) or centralized state management (where state is stored in a
central database to which all web servers have access).

Storing information on the server has the following advantages:

■ better security  Unless you digitally sign information stored on a client, users can change
client-side state management information. Therefore, you should never use client-side
state management to store confidential information such as passwords, access levels,
or authentication status.

More INfo DigiTAL signATUREs

You can digitally sign data by adding a private key to it (such as a password), generating
a hash, and including the hash with the data you store on the client. When clients
submit the data and the hash, add the private key to the data and re-generate the hash
to verify that the data has not been modified. For more information about generating
hashes, refer to the documentation for the System.Security.Cryptography namespace
on MSDN. ASP.NET view state automatically hashes data to help reduce the chance of
data modification.

■ Reduced bandwidth  If you store large amounts of state management information,
sending that information back and forth to the client can increase bandwidth utiliza-
tion and page load times, especially when clients have low upstream bandwidth (as is
common with home and wireless networks). Instead, you should store large amounts
of state management data (say, more than 1 KB) on the server.

The choice you make for managing application state should be decided based on these
trade-offs. If you are writing an application with relatively few users and high security require-
ments, you might consider implementing server-side state. If you want to maximize for scalability
but potentially slow down requests across slower connections, you should rely on a heavy mix of
client-side and server-side state management.

 Lesson 2: Using Client-Side State Management ChAPTER 3 123

Of course, there is also persisted state, or data stored in the database. You need to factor
this into your decision, too. You can decide to store all user information in the database and
thus rely on it for state management. However, this often puts too much pressure on your
database server. In this case, it is best to store real, transactional data in the database and
rely on other techniques for managing more transient state data.

View State
View state is a mechanism used by ASP.NET to store user-specific request and response data
between page requests. View state data is not stored by the server. Instead, it is saved into the
page’s view state and sent in the page’s response back to the user. When the user makes the next
request, the view state is returned with his or her request. When the page processes, ASP.NET
pulls the view state from the page and uses it to reset the property values of the page and its
controls. This allows ASP.NET to have all the object data between requests without having to
store it on the server. The result is a more scalable web server that can handle more requests.

Unless it is disabled, view state is part of every ASP.NET page. As an example, suppose
a user requests a webpage that allows users to edit their own profile information. When
processing the user’s request on the server, your application might have to go out to a
database and get the user’s profile information. Your application then uses this information
to set the property values of the data entry fields on the page. When this page is sent to the
user, these property value settings are wrapped up and stored in the view state. When
the user then clicks a button to submit his or her changes to the server, the user also sends
back the view state as part of the postback. ASP.NET uses this view state information to
again set the property values of the server controls on the page back to what they were, as
part of the request. It then checks to see if any of these values were modified by the user
as part of the postback request. Next, suppose there is an issue with processing the page
on the server, and therefore the server must return the same page back to the user. In this
case, it again wraps the server control state (including any data changed by the user) back
into the view state and sends it back to the client. You do not have to write this code; the
ASP.NET view state client-side state management feature takes care of it.

The Page.ViewState property provides a dictionary object for retaining values between
multiple requests for the same page. This object is of the type StateBag. When an ASP.NET
page is processed, the current state of the page and its controls is hashed into a string and
saved in the page as an HTML hidden field called __ViewState. If the data is too long for a
single field (as specified in the Page.MaxPageStateFieldLength property), ASP.NET performs
view state chunking to split it across multiple hidden fields. The following code sample dem-
onstrates how view state adds data as a hidden form field within a webpage’s HTML.

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="/wEPDwULLTEzNjkxMzkwNjRkZAVvqsMGC6PVDmbCxBlPkLVKNahk" />

Notice that the view state values are hashed, compressed, and encoded for Unicode
implementations. This provides better optimization and more security than just simple
HTML hidden fields.

 124	 ChAPTER 3	 Handling Events and Managing State

The sections that follow describe how to work with ASP.NET view state. For most scenarios,
it can be taken for granted. However, you might need to secure your view state data, disable
view state data to increase performance, or add your own custom values to the view state.

View State Security Considerations
You need to be aware that view state can be tampered with, because it is simply a hidden field
in the user’s browser. Of course, you should analyze your application to better understand what
risks you might face. An Internet application that works with private, personal information has
a higher security risk than an internal application that solves simple problems without using
private (or secret) information.

For most situations, you can rely on the fact that view state is hashed and encoded before
being sent to the user’s browser. The view state also includes a message authentication code
(MAC). This MAC is used by ASP.NET to determine whether the view state has been tampered
with. This helps ensure security in most situations, without requiring a fully encrypted view state.

If you do have very sensitive information that is stored in the view state between page requests,
you can encrypt it by using the ViewStateEncryptionMode property of the Page object. This
will secure the view state but will also decrease the overall performance of the page processing,
due to the encrypting and decrypting of data. It will also increase the size of the data being sent
between the browser and server.

To enable view state encryption for your entire site, you set a value in your website configu-
ration file. The viewStateEncryptionMode attribute of the pages element can be set to Always
in the Web.config file. This tells ASP.NET to always encrypt your view state information for the
entire site. An example of this setting in the configuration file is as follows.

<configuration>
 <system.web>
 <pages viewStateEncryptionMode="Always"/>
 </system.web>
</configuration>

Alternatively, you can control view state encryption at the page level. This is useful for
scenarios in which sensitive information is confined to a single page or set of pages in your
site. To do so, you again set the ViewStateEncryptionMode attribute to Always. However,
you do so inside the individual page’s directive section. The following is an example.

<%@ Page Language="C#" AutoEventWireup="true" ViewStateEncryptionMode="Always"%>

Because view state supports encryption, it is considered the most securable method of client-
side state management. Encrypted view state is secure enough for most security requirements;
however, it is more secure to store sensitive data on the server and not send it down to the client.

Disabling View State Data
View state is enabled by default for your page and all of the controls on the page. This includes
controls, such as the Label and Literal controls, that you might never need to include as part
of view state. Because view state data is sent back and forth between browser and server, you

 Lesson 2: Using Client-Side State Management ChAPTER 3 125

should always minimize the amount of view state data to improve performance. For websites
that are only accessed from a local network, the view state size might not be a big concern.
View state size is a concern for Internet websites and even intranet websites that might be
accessed across slow connections, especially if a page includes more than 10 controls.

You can (and should) minimize the amount of data that gets stored and passed with the
view state by disabling view state for controls and entire pages whenever possible. At the
page level, you can control view state by enabling and disabling Page.EnableViewState and
Page.ViewStateMode. For controls, use Control.EnableViewState and Control.ViewStateMode.

The ViewStateMode property is new in the .NET Framework 4. The ViewStateMode property
of a page or a control has an effect only if the EnableViewState property is true. By default,
Page.EnableViewState is Enabled and Control.ViewStateMode is Inherit, which causes the
control to use the page’s view state. Therefore, if you don’t change ViewStateMode,
EnableViewState controls it entirely.

If you set EnableViewState to false, view state is disabled for the page or control, regardless
of the value of ViewStateMode. If EnableViewState is set to true, you can set ViewStateMode
to disable view state. Because ViewStateMode can inherit the page’s setting, you should always
leave EnableViewState set to true and use ViewStateMode to control view state.

To disable view state for all controls on a page, simply set Page.ViewStateMode to Disabled.
You can then selectively re-enable view state for specific controls by setting each control’s
ViewStateMode property to Enabled. Essentially, ViewStateMode allows you to opt in to view
state, whereas EnableViewState requires you to opt out.

Table 3-2 shows how to configure these properties to accomplish different goals.

TAbLE 3-2 View State Settings

PAgE.
EnAbLE
viEWsTATE

PAgE.
viEWsTATE
mODE

COnTROL.
EnAbLE
viEWsTATE

COnTROL.
viEWsTATE
mODE

Disable view state for
a page, but enable it
for a specific control

True Disabled True Enabled

Disable view state for
a page and disable it
for a specific control

True Disabled False Disabled
or Inherit

Enable view state for a
page, but disable it for
a specific control

True Enabled False Disabled

Enable view state for a
page and for a control

True Enabled True Enabled
or Inherit

 126	 ChAPTER 3	 Handling Events and Managing State

You can also disable view state in a Web.config file, by adding the following configuration
entry to the <system.web> section.

<configuration>
 <system.web>
 <pages enableViewState="false">
 </system.web>
</configuration>

For a moderately complex form with 20 controls, view state could easily be 10 KB. Across a
low-bandwidth connection, that 10 KB would result in about two additional seconds of delay
when the user submits the form. That’s enough to be very frustrating to users. With more com-
plex forms, view state can be more than 40 KB, which is enough to delay a page response from
a user with a typical cable modem by a full second. For that reason, you should do everything
you can to minimize the amount of view state data.

Note  COmPREssing viEW sTATE DATA

ASP.NET does not provide a way to automatically compress view state data. However,
if you enable dynamic HTTP compression by using GZip on your web server, the view
state data will be compressed with the rest of the page. If you’re determined to com-
press view state data without compressing the entire webpage, you can override the
Page.SavePageStateToPersistenceMedium and Page.LoadPageStateFromPersistenceMedium
methods, which serialize and deserialize view state data in each page. Within your over-
riding methods, use the System.IO.Compression.GZipStream to compress and decompress
the view state data.

Reading and Writing Custom View State Data
You can use view state to add and retrieve custom values that you need to persist between
page requests. Such a value doesn’t have to be part of a control—it can be simply something
you want to embed in the page to be returned as part of the next request. Adding a value to
the view state collection is an efficient and secure way to accomplish this task.

Reading and writing these collection values is as straightforward as working with the
Dictionary collection. The following code demonstrates simple calls to write data into
the view state and retrieve it from the collection.

Sample of Visual Basic Code

'writing to view state
Me.ViewState.Add("MyData", "some data value")

'read from view state
Dim myData As String = CType(ViewState("MyData"), String)

 Lesson 2: Using Client-Side State Management ChAPTER 3 127

Sample of C# Code

//writing to view state
this.ViewState.Add("MyData", "some data value");

//read from view state
string myData = (string)ViewState["MyData"];

Adding data to the view state is great when you need the information to be passed back to
the server as part of the page post. However, the content of the view state is for that page only.
The view state does not transfer from one webpage to another (as a cookie does). Therefore, it
is useful only for temporarily storing values between requests to a single page.

You can store a wide variety of object data inside the view state. You are not limited to just
string values as you are with cookies. Instead, any data that can be serialized can be embedded
in the view state. This includes classes in the .NET Framework that are marked serializable as well
as classes that you write and mark serializable. The following code shows an example of storing
a DateTime object instance inside the ViewState without converting it to a string.

Sample of Visual Basic Code

' Check if ViewState object exists, and display it if it does
If (Me.ViewState("lastVisit") IsNot Nothing) Then
 Dim lastVisit As DateTime = CType(Me.ViewState("lastVisit"), DateTime)
 Label1.Text = lastVisit.ToString()
Else
 Label1.Text = "lastVisit ViewState not defined!"
End If

' Define the ViewState object for the next page view
Me.ViewState("lastVisit") = DateTime.Now

Sample of C# Code

// Check if ViewState object exists, and display it if it does
if (ViewState["lastVisit"] != null)
 Label1.Text = ((DateTime)ViewState["lastVisit"]).ToString();
else
 Label1.Text = "lastVisit ViewState not defined.";

// Define the ViewState object for the next page view
ViewState["lastVisit"] = DateTime.Now;

Note  mOving viEW sTATE

ASP.NET places view state information at the top of the form. Some people are concerned
that this might impact their search engine rankings, based on the idea (which is unfounded,
in my opinion) that search engines weigh HTML at the beginning of a webpage more highly
than HTML at the bottom of the webpage. If you decide to move your view state data to the
bottom of the page, you can do so by overriding the Page.Render method. Then use string
manipulation techniques to move the hidden view state field from the top of the form to the
bottom of the form, just before the </form> markup.

 128	 ChAPTER 3	 Handling Events and Managing State

View State and Control State
Recall that you can disable view state for a given control. This can be problematic for control
developers. If you write custom controls (see Chapter 7, “Creating Custom Web Controls”),
you might need view state–like behavior that cannot be disabled by a developer. ASP.NET
provides control state for just this purpose.

Control state allows you to store property value information that is specific to a control.
Again, this state cannot be turned off and therefore should not be used in lieu of view state.

To use control state in a custom web control, your control must override the OnInit method.
Here you call the Page.RegisterRequiresControlState method, passing an instance of your
control to this method. From there, you override the SaveControlState method to write out
your control state and the LoadControlState method to retrieve your control state.

Quick Check
	 1. How do ASP.NET web forms remember the settings for controls between user

requests?

	 2. Is the view state lost if a user refreshes a webpage? What if the user uses email to
send a URL to a friend?

Quick Check Answers
	 1. View state, which is enabled by default, is used to embed control property values

to be sent to the client and back again to the server.

	 2. View state is embedded inside the HTML of a single instance of a webpage dis-
played in the user’s browser. It is lost and rewritten when a user refreshes his or
her page. If the URL is copied and sent to another user, the view state does not
go along. Instead, when new users request the page, they get their own view
state instance.

Hidden Fields
As discussed, ASP.NET view state uses HTML hidden fields to store its data. Hidden fields in HTML
are simply input fields that are embedded in a page’s HTML, not displayed to the user (unless the
user chooses to view the page’s source), and then sent back to the server on the page post.

ASP.NET provides a control that allows you to create your own custom hidden fields in a man-
ner similar to the one you would use to create and use other ASP.NET controls. The HiddenField
control allows you to store data in its Value property. You add HiddenField controls to your page
the way you would any other control, by dragging them from the Toolbox.

Like view state, hidden fields only store information for a single page. Therefore, they are not
useful for storing session data that is used between page requests. Unlike view state, hidden
fields have no built-in compression, encryption, hashing, or chunking. Therefore, users can view
or modify data stored in hidden fields.

 Lesson 2: Using Client-Side State Management ChAPTER 3 129

To use hidden fields, you must submit your pages to the server by using HTTP POST (which
happens in response to a user pressing a submit button). You cannot simply call an HTTP GET
(which happens if the user clicks a link) and retrieve the data in the hidden field on the server.

Cookies
Web applications often need to track users between page requests. These applications need
to ensure that the user making the first request is the same user making subsequent requests.
This type of common tracking is done with what are called cookies.

A cookie is a small amount of data that you write to the client to be stored and then passed
with requests to your site. You write persistent cookies to a text file on the client machine.
These cookies are meant to survive even if the user shuts down the browser and reopens it at
a later time. You can also write temporary cookies to the memory of the client’s browser. These
cookies are used only during the current web session. They are lost when the browser closes.

Again, the most common use of cookies is to identify a single user as he or she visits mul-
tiple webpages within your site. However, you can also use cookies to store state information
or other user preferences.

Figure 3-9 illustrates how a web client and a server use cookies. First (step 1), the web client
requests a page from the server. Because the client has not visited the server before, it does not
have a cookie to submit. When the web server responds to the request (step 2), the web server
includes a cookie in the response; this cookie is written to the user’s browser or file system. The
web client then submits that cookie with each subsequent request for any page on the same
site (steps 3 and 4, and any future page views).

Initial page request

Respond with cookie

Pass cookie

Pass cookieClient
Web server

1

2

3

4

FigURE 3-9 Web servers use cookies to track web clients.

Note  AsP.nET sEssiOns AnD COOkiEs

By default, ASP.NET uses cookies to track user sessions. If you have enabled session state,
ASP.NET writes a cookie to the user’s browser and uses this cookie to identify his or her
server session.

Cookies are the most flexible and reliable way of storing data on the client. However, users
can delete cookies on their computers at any time. You can set cookies to have long expira-
tion times, but that does not stop users from deleting all their cookies and thus wiping out
any settings you might have stored in them. In addition, cookies do not solve the issue of a
user moving from computer to computer (or from computer to mobile device). In these cases,

 130	 ChAPTER 3	 Handling Events and Managing State

users’ preferences do not always go along with them. Therefore, if you allow a lot of person-
alization for users of your site, you need to allow the users to log on and reset their cookies.
Doing so should then re-enable their customizations, assuming that you have them stored
elsewhere.

Reading and Writing Cookies
A web application creates a cookie by sending it to the client as a header in an HTTP response.
Of course, ASP.NET makes writing to and reading from the cookie collection a relatively
straightforward task.

To add a cookie to the cookies collection and have it written out to the browser, you call the
Response.Cookies.Add method. The Cookies property of the Page.Response property is of the
type HttpCookieCollection. You add instances of HttpCookie to this collection. The HttpCookie
object simply contains a Name property and a Value property. The following code shows how
you might add an item to the cookies collection.

Response.Cookies.Add(New HttpCookie("userId", userId))

To retrieve a cookie sent back by the web browser, you read the values in the Request.Cookies
collection. The following shows an example of this code.

Request.Cookies("userId").Value

As a larger example, the following sample code in a Page_Load event handler demonstrates
both defining and reading cookie values by setting a cookie named lastVisit to the current time.
If the user already has the cookie set, the code displays in the Label1 control the time the user
last visited the page.

Sample of Visual Basic Code

' Check if cookie exists, and display it if it does
If Not (Request.Cookies("lastVisit") Is Nothing) Then
 ' Encode the cookie in case the cookie contains client-side script
 Label1.Text = Server.HtmlEncode(Request.Cookies("lastVisit").Value)
Else
 Label1.Text = "No value defined"
End If

' Define the cookie for the next visit
Response.Cookies("lastVisit").Value = DateTime.Now.ToString
Response.Cookies("lastVisit").Expires = DateTime.Now.AddDays(1)

Sample of C# Code

// Check if cookie exists, and display it if it does
if (Request.Cookies["lastVisit"] != null)
 // Encode the cookie in case the cookie contains client-side script
 Label1.Text = Server.HtmlEncode(Request.Cookies["lastVisit"].Value);
else
 Label1.Text = "No value defined";

// Define the cookie for the next visit
Response.Cookies["lastVisit"].Value = DateTime.Now.ToString();
Response.Cookies["lastVisit"].Expires = DateTime.Now.AddDays(1);

 Lesson 2: Using Client-Side State Management ChAPTER 3 131

The first time the user visits the page in the previous example, the code displays “No value
defined” because the cookie has not yet been set. However, if you refresh the page, it displays
the time of the first visit.

Note that the code sample defines the Expires property for the cookie. You must define
the Expires property and set it for the time period you would like the client to store the cookie
if you want the cookie to persist between browser sessions. If you do not define the Expires
property, the browser stores the cookie in memory and the cookie is lost if the user closes his
or her browser.

To delete a cookie, you overwrite the cookie and set an expiration date in the past. You
cannot directly delete cookies because they are stored on the client’s computer.

Note  viEWing AnD TROUbLEshOOTing COOkiEs

You can use Trace.axd to view cookies for every page request. For more information, see
Chapter 8, “Debugging and Deploying.”

Controlling Cookie Scope
Cookies should be specific to a website’s domain or a directory within that domain. The infor-
mation in cookies is typically specific to that site and is often private. For this reason, a browser
should not send your cookie to another site. By default, browsers will not send your cookie to
a website with a different host name (although, in the past, vulnerabilities in browsers have
allowed attackers to trick a browser into submitting another website’s cookie).

You have control over a cookie’s scope. You can either limit the scope to a specific direc-
tory on your web server or expand the scope to the entire domain. The scope of your cookie
determines which pages have access to the information embedded in the cookie. If you limit
the scope to a directory, only pages in that directory will have access to the cookie. You
control cookie scope on a per-cookie basis. To limit the scope of a cookie to a directory,
you set the Path property of the HttpCookie class. The following shows sample code for
doing just that.

Sample of Visual Basic Code

Response.Cookies("lastVisit").Value = DateTime.Now.ToString
Response.Cookies("lastVisit").Expires = DateTime.Now.AddDays(1)
Response.Cookies("lastVisit").Path = "/MyApplication"

Sample of C# Code

Response.Cookies["lastVisit"].Value = DateTime.Now.ToString();
Response.Cookies["lastVisit"].Expires = DateTime.Now.AddDays(1);
Response.Cookies["lastVisit"].Path = "/MyApplication";

With the scope limited to the application’s /MyApplication path, the browser submits the
cookie to any page in the /MyApplication folder. Pages outside of this folder do not get
the cookie, even if they are on the same server.

 132	 ChAPTER 3	 Handling Events and Managing State

To expand the scope of a cookie to an entire domain, set the Domain property of the
HttpCookie class. The following code demonstrates this.

Sample of Visual Basic Code

Response.Cookies("lastVisit").Value = DateTime.Now.ToString
Response.Cookies("lastVisit").Expires = DateTime.Now.AddDays(1)
Response.Cookies("lastVisit").Domain = "contoso.com"

Sample of C# Code

Response.Cookies["lastVisit"].Value = DateTime.Now.ToString();
Response.Cookies["lastVisit"].Expires = DateTime.Now.AddDays(1);
Response.Cookies["lastVisit"].Domain = "contoso.com";

Setting the Domain property to contoso.com causes the browser to submit the cookie to
any page in the contoso.com domain. This might include those pages that belong to the sites
www.contoso.com, intranet.contoso.com, or private.contoso.com. Similarly, you can use the
Domain property to specify a full host name (such as www.contoso.com), limiting the cookie
to a specific server.

Storing Multiple Values in a Cookie
The size of your cookie is dependent on the browser. Each cookie can be up to 4 KB in length.
In addition, you can typically store up to 20 cookies per site. This should be more than sufficient
for most sites. However, if you need to work around the 20-cookie limit, you can store multiple
values in a single cookie by setting the cookie’s name and its key value. The key value is usually
not used when storing just a single value. However, if you need multiple values in a single named
cookie, you can add multiple keys. The following code shows an example.

Sample of Visual Basic Code

Response.Cookies("info")("visit") = DateTime.Now.ToString()
Response.Cookies("info")("firstName") = "Tony"
Response.Cookies("info")("border") = "blue"
Response.Cookies("info").Expires = DateTime.Now.AddDays(1)

Sample of C# Code

Response.Cookies["info"]["visit"] = DateTime.Now.ToString();
Response.Cookies["info"]["firstName"] = "Tony";
Response.Cookies["info"]["border"] = "blue";
Response.Cookies["info"].Expires = DateTime.Now.AddDays(1);

Running this code sends a single cookie to the web browser. However, that cookie is parsed to
form three values. ASP.NET then reads these three values back in when the cookie is submitted
back to the server. The following shows the value sent to the web browser.

(visit=4/5/2006 2:35:18 PM) (firstName=Tony) (border=blue)

Cookie properties, such as Expires, Domain, and Path, apply for all the values within a
single cookie. You cannot control these at the individual key value. Rather, they are con-
trolled at the cookie (or name) level. You can access the individual values of a cookie by
using Request.Cookies in the same way you define the values (using both name and key).

 Lesson 2: Using Client-Side State Management ChAPTER 3 133

Query Strings
Query strings appended to URLs are commonly used to store variable values that identify
specific context for a requested page. This context might be a search term, page number,
region indicator, or something similar.

Query strings are set off from the URL with a question mark (?) followed by the query
string term (or parameter name), an equal sign (=), and the value. You can append multiple
query string parameters by using the ampersand (&). A typical query string might look like
the following real-world example.

http://support.microsoft.com/Default.aspx?kbid=315233

In this example, the URL identifies the Default.aspx page. The query string contains a
single parameter named kbid. The value for that parameter is set to 315233. In this example,
the query string has one parameter. The following example shows a query string with mul-
tiple parameters. In this real-world URL, the language and market are set as parameters and
the search term for searching the Microsoft.com website is set as a parameter.

http://search.microsoft.com/results.aspx?mkt=en-US&setlang=en-US&q=hello+world

Values sent to your page via the query string can be retrieved on the server through the
Page.Request.QueryString property. Table 3-3 shows how you would access the three values
in the preceding query string example.

TAbLE 3-3  Sample Query String Parameter Access

PARAmETER nAmE AsP.nET ObjECT CALL vALUE

mkt Request.QueryString["mkt"] en-US

setlang Request.QueryString["setlang"] en-US

q Request.QueryString["q"] hello world

Query strings provide a simple but limited way to maintain state information between
multiple pages. For example, they provide an easy way to pass information from one page to
another, as you would want to do when passing a product number from a page that describes
a product to a page that adds the item to a user’s shopping cart. However, some browsers and
client devices impose a 2,083-character limit on the length of the URL. Another limitation is that
you must submit the page by using an HTTP GET command so that query string values will be
available during page processing. You also need to be aware that query string parameters and
values are visible to the user in his or her address bar, and users often directly modify query
string parameters.

IMportaNt  ALWAys vALiDATE UsER inPUT

You should expect users to modify data in your query strings. For that reason, you must
always validate data retrieved from a query string.

 134	 ChAPTER 3	 Handling Events and Managing State

One big advantage of query strings is that their data is included in bookmarks and in
URLs sent by email. In fact, query strings are the only way to enable a user to include state
data when copying and pasting a URL to another user. For that reason, you should use query
strings for any information that uniquely identifies a webpage, even if you are also using
another state-management technique.

IMportaNt  PRACTiCAL QUERy sTRing ChARACTER LimiTs

Many browsers have 2,083-character limits on URLs, but you’ll start to have problems with
much shorter URLs if users send them by plaintext email or instant messaging. To allow a
URL to be sent by email, limit the length to 70 characters (including the http:// or https://).
To allow a URL to be sent through instant messaging, limit the length to 400 characters.

real World

Tony Northrup

A lthough only the most sophisticated users are comfortable modifying cookies or
hidden fields, many casual users know how to change query strings. For example,

the first interactive ASP.NET application I wrote allowed a user to rate pictures on a
scale from 1 to 10, and the user’s rating was submitted as a query string value. If the
user rated a picture 7, the query string might read page.aspx?pic=342&rating=7. One
day I noticed a picture with a rating above 100—a clever user had manually changed
the query string to include a very large value, and my application had added the rating
to the database without validation. To fix the problem, I added code to reject any
request with a rating of more than 10 or less than 1.

A common mistake I see is that developers use query strings to allow users to navi-
gate search results but do not validate the query strings properly. Often, query strings
for search results have query strings for the search terms, the number of results per
page, and the current page numbers. If you don’t validate the query string, the user
can set the number of results per page to a huge number, such as 10,000. Processing
thousands of search results can take several seconds of your server’s processing time
and cause your server to transmit a very large HTML page. This makes it very easy
for an attacker to perform a denial-of-service attack on your web application by
requesting the search page repeatedly.

Don’t ever trust values from a query string; they must always be validated.

 Lesson 2: Using Client-Side State Management ChAPTER 3 135

Adding Query String Parameters to a URL
To create your own query string parameters, you modify the URL for any hyperlink a user might
click. This is a simple process, but always getting it right can be time-consuming. In fact, there
are no tools built into the .NET Framework to simplify the creation of query strings. You must
manually add query string values to every hyperlink that the user might click.

For example, if you have a HyperLink control with NavigateUrl defined as page.aspx, you
can add the string ?user=mary to the HyperLink.NavigateUrl property so that the full URL is
page.aspx?user=mary.

To add multiple query string parameters to a page, you need to separate them with
ampersands (&). For example, the URL page.aspx?user=mary&lang=en-us&page=1252
passes three query string values to page.aspx: user (with a value of mary), lang (with a
value of en-us), and page (with a value of 1252).

Reading Query String Parameters in Your Page
To read a query string value, access the Request.QueryStrings collection just as you would access
a cookie. To continue the previous example, the page.aspx page could process the “user” query
string by accessing Request.QueryStrings(“user”) in Visual Basic or Request.QueryStrings[“user”]
in C#. For example, the following code displays values for the user, lang, and page query strings
in the Label1 control.

Sample of Visual Basic Code

Label1.Text = String.Format("User: {0}, Lang: {1}, Page: {2}", _
 Server.HtmlEncode(Request.QueryString("user")), _
 Server.HtmlEncode(Request.QueryString("lang")))

Sample of C# Code

Label1.Text = string.Format("User: {0}, Lang: {1}, Page: {2}",
 Server.HtmlEncode(Request.QueryString["user"]),
 Server.HtmlEncode(Request.QueryString["lang"]));

SeCurIty alert

You should always encode cookie or query string values by using Server.HtmlEncode
before displaying the value in an HTML webpage to any user. Server.HtmlEncode replaces
HTML code with special characters that a web browser cannot process. For example,
Server.HtmlEncode replaces a < sign with <. If you display the value in a browser, the
user sees the < sign, but the browser does not process any HTML code or client-side scripts.

To provide extra protection, the runtime throws a System.Web.HttpRequestValidationException
if it detects HTML or client-side scripting in a query string. Therefore, you cannot pass HTML
code in a query string. This can be disabled by an administrator, however, so you should not
rely on it for protection.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 136	 ChAPTER 3	 Handling Events and Managing State

PrActIcE	 storing state management Data on the Client

In this practice, you use different client-side state management techniques to track the
number of pages a user opens. It helps you gain a better understanding of how each of
the techniques works.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Storing Data in View State

In this exercise, you explore how data is stored in the view state and returned to the server
during page processing.

	 1. Open Visual Studio and create a new ASP.NET website named Clientstate in either C#
or Visual Basic.

	 2. Add a second page to the project. Name this page Default2.aspx.

	 a. Add a label named Label1 to the page.

	 b. Add a hyperlink control named hyperLink1 to the page. Set the property
HyperLink1.NavigateUrl to Default.aspx. This will access the other page without
sending view state to that page.

	 c. Add a button control named button1 to the page. This control will be used to
submit the page back to the server.

	 3. Open the Default.aspx page. Add the same set of controls to this page, as follows:

	 a, Add a label named Label1 to the page.

	 b. Add a hyperlink control named hyperLink1 to the page. Set the property
HyperLink1.NavigateUrl to Default2.aspx. This will access the other page
without sending view state to that page.

	 c. Add a button control named button1 to the page. This control will be used to
submit the page back to the server.

	 4. Inside the Page_Load method for both Default.aspx and Default2.aspx, add code to store
the current number of user clicks in the view state object. Also, add code to display the
number of times a user has clicked inside the Label control. The following code sample
demonstrates what this code would look like.

 Lesson 2: Using Client-Side State Management ChAPTER 3 137

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If (ViewState("clicks") IsNot Nothing) Then
 ViewState("clicks") = CInt(ViewState("clicks")) + 1
 Else
 ViewState("clicks") = 1
 End If

 Label1.Text = "ViewState clicks: " + CInt(ViewState("clicks")).ToString
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (ViewState["clicks"] != null)
 {
 ViewState["clicks"] = (int)ViewState["clicks"] + 1;
 }
 else
 {
 ViewState["clicks"] = 1;
 }

 Label1.Text = " ViewState clicks: " + ((int)ViewState["clicks"]).ToString();
}

	 5. Build the website and visit the Default.aspx page. Click the button several times and
verify that the clicks counter increments.

	 6. Click the hyperlink to load the Default2.aspx page. Notice that the counter value is not
passed to this page. It is lost because a different page is opened.

	 7. Click the hyperlink to return to Default.aspx. Notice that the counter is again reset,
demonstrating that switching between pages loses all view state information.

ExErcIsE	2	 Storing Data in a Hidden Field

In this exercise, you add a HiddenField control and use it to store client-side state.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 2, Exercise 1 project in the samples installed from the CD.

	 2. Open the Default.aspx page in Source view. Add a HiddenField control and name it
hiddenField1.

	 3. Open the code-behind file for Default.aspx. Edit the code in the Page_Load method
to remove the existing code and instead store the current number of user clicks in the
HiddenField1 object. As before, display the clicks in the Label control. The following
code demonstrates this.

 138	 ChAPTER 3	 Handling Events and Managing State

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Dim clicks As Integer = 0
 Integer.TryParse(HiddenField1.Value, clicks)
 clicks += 1
 HiddenField1.Value = clicks.ToString

 Label1.Text = "HiddenField clicks: " + HiddenField1.Value
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 int clicks = 0;
 int.TryParse(HiddenField1.Value, out clicks);
 clicks++;
 HiddenField1.Value = clicks.ToString();

 Label1.Text = "HiddenField clicks: " + HiddenField1.Value;
}

Notice that HiddenField.Value is a String. This requires converting data to and from
the String type, which you could do with int.TryParse or Int.Parse. This makes it less
convenient and more error-prone than other methods of storing data.

	 4. Build your website and visit the Default.aspx page. Click the button several times and
verify that the clicks counter increments.

Notice that if you browse to other pages, the HiddenField value is lost.

	 5. View the source of the Default.aspx page in your browser (right-click anywhere within
the browser’s content area and then select View Source). In the source, notice that the
hidden field value is displayed in plaintext.

ExErcIsE	3	 Storing Data in a Cookie

In this exercise, you use a cookie to track user clicks.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 2, Exercise 2 project in the samples installed from the CD.

	 2. In the Page_Load method for both Default.aspx and Default2.aspx, add code to retrieve
the current number of clicks from a cookie named clicks. Also add code to increment the
number of clicks and store the new value in the same cookie. Display the clicks in the Label
control. The following code demonstrates this.

 Lesson 2: Using Client-Side State Management ChAPTER 3 139

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 ' Read the cookie clicks and increment
 Dim cookieClicks As Integer
 If Not (Request.Cookies("clicks") Is Nothing) Then
 cookieClicks = Integer.Parse(Request.Cookies("clicks").Value) + 1
 Else
 cookieClicks = 1
 End If

 ' Save the cookie to be returned on the next visit
 Response.Cookies("clicks").Value = cookieClicks.ToString

 Label1.Text = "Cookie clicks: " + cookieClicks.ToString

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 // Read the cookie clicks and increment
 int cookieClicks;
 if (Request.Cookies["clicks"] != null)
 {
 cookieClicks = int.Parse(Request.Cookies["clicks"].Value) + 1;
 }
 else
 {
 cookieClicks = 1;
 }

 // Save the cookie to be returned on the next visit
 Response.Cookies["clicks"].Value = cookieClicks.ToString();

 Label1.Text = "Cookie clicks: " + cookieClicks.ToString();
}

	 3. Build the website and visit the Default.aspx page. Click the button several times and
verify that the clicks counter increments.

	 4. Click the hyperlink to load Default2.aspx. Notice that the counter is not reset; you can
browse to any page on the same site and read or update the cookie.

 140	 ChAPTER 3	 Handling Events and Managing State

ExErcIsE	4	 Storing Data in a Query String

In this exercise, you use a query string to track user clicks.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 2, Exercise 3 project in the samples installed from the CD.

	 2. In the Page_Load method for both Default.aspx and Default2.aspx, add code to retrieve
the current number of clicks from a query string parameter named clicks. Also add code
to increment the value of clicks and store the new value back in the query string via the
Hyperlink1.NavigateUrl. Display the value of clicks in the Label control. The following
code demonstrates how to do this.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Not IsPostBack Then
 ' Read the query string
 Dim queryClicks As Integer
 If Not (Request.QueryString("clicks") Is Nothing) Then
 queryClicks = Integer.Parse(Request.QueryString("clicks")) + 1
 Else
 queryClicks = 1
 End If

 ' Define the query string in the hyperlink
 HyperLink1.NavigateUrl += "?clicks=" + queryClicks.ToString

 Label1.Text = "Query clicks: " + queryClicks.ToString
 End If
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // Read the query string
 int queryClicks;
 if (Request.QueryString["clicks"] != null)
 {
 queryClicks = int.Parse(Request.QueryString["clicks"]) + 1;
 }
 else
 {
 queryClicks = 1;
 }

 // Define the query string in the hyperlink
 HyperLink1.NavigateUrl += "?clicks=" + queryClicks.ToString();

 Label1.Text = "Query clicks: " + queryClicks.ToString();
 }
}

 Lesson 2: Using Client-Side State Management ChAPTER 3 141

IMportaNt  Why DOEs This EXAmPLE nOT UsE sERvER.hTmLEnCODE?

Earlier, this lesson warned you to always use Server.HtmlEncode to encode cookies or
query strings before displaying them in an HTML page. These exercises don’t seem to
practice what they preach, however. Instead, the exercises use strong typing to ensure
that there is no malicious code contained in the values before they are displayed. By con-
verting the values from strings to integers and back to strings, there is no possibility that
HTML code or client-side scripts can be displayed. If the user inserts malicious code in a
cookie or query string, the runtime throws an exception when it attempts to parse the
value, preventing the malicious code from being displayed. However, you must always use
Server.HtmlEncode before directly displaying the string value of a cookie or query string.

	 3. Build the website. Visit the Default.aspx page and click the hyperlink to load Default2.aspx.
Notice that the counter is incremented as values are passed back and forth between the
pages by using the query string.

	 4. Click the hyperlink several times to switch between pages. Notice that the URL includes
the number of clicks, and it is visible to the user.

	 5. In your browser address bar, change the number of clicks to 100, and then press Enter.
Notice that ASP.NET increments the number of clicks to 101.

	 6. In your browser address bar, change the number of clicks to hello, and then press
Enter. Notice that ASP.NET throws an unhandled exception, demonstrating that non-
numeric values will never be successfully processed.

If the user bookmarks the link and returns to the page later, or even uses the same URL
on a different computer, the current clicks counter is retained. The user can also modify the
URL to cause the change to display an incorrect number of clicks. With query strings, you
can bookmark or send webpages by email and have the state information stored in the URL.
However, you must include the query string in any link the user might click on the page, or
the information will be lost.

Lesson Summary
■ Use client-side state management when scalability is the top priority. Use server-side

state management when data must be better protected or when bandwidth is a sig-
nificant issue.

■ ASP.NET uses view state by default to store information about controls in a web form.
You can add custom values to view state by accessing the ViewState collection.

■ Use control state when a custom control cannot function with view state disabled.

■ Use hidden fields to store data in forms when view state is disabled. Hidden field
values are available to users as plaintext in the HTML.

 142	 ChAPTER 3	 Handling Events and Managing State

■ On the client, cookies store data that the web browser submits with every webpage
request. Use cookies to track users across multiple webpages.

■ Query strings store small pieces of information in a hyperlink’s URL. Use query strings
when you want state management data to be bookmarked, such as when displaying
multiple pages of search results.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Using Client-Side State Management.” The questions are also available on the companion CD
in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You need to store a user’s user name and password as he or she navigates to different
pages on your site, so that you can pass those credentials to the server. Which type of
state management should you use?

	 A. Client-side state management

	 B. Server-side state management

	 2. You need to track nonconfidential user preferences when a user visits your site, to
minimize additional load on your servers. You distribute requests among multiple web
servers, each running a copy of your application. Which type of state management
should you use?

	 A. Client-side state management

	 B. Server-side state management

	 3. You are creating an ASP.NET webpage that allows a user to browse information in a
database. While the user accesses the page, you need to track search and sorting values.
You do not need to store the information between visits to the webpage. Which type
of client-side state management would meet your requirements and be the simplest
to implement?

	 A. View state

	 B. Control state

	 c. Hidden fields

	 D. Cookies

	 E. Query strings

 Lesson 3: Using Server-Side State Management ChAPTER 3 143

	 4. You are creating an ASP.NET website with dozens of pages. You want to allow the
user to set user preferences and have each page process the preference information.
You want the preferences to be remembered between visits, even if the user closes
the browser. Which type of client-side state management meets your requirements
and is the simplest to implement?

	 A. View state

	 B. Control state

	 c. Hidden fields

	 D. Cookies

	 E. Query strings

	 5. You are creating an ASP.NET web form that searches product inventory and displays items
that match the user’s criteria. You want users to be able to bookmark or send search
results in email. Which type of client-side state management meets your requirements
and is the simplest to implement?

	 A. View state

	 B. Control state

	 c. Hidden fields

	 D. Cookies

	 E. Query strings

Lesson 3: Using server-side state management

Often, it is just not practical to store your state on the client. Your state might be more involved
and thus too large to be transmitted back and forth. Perhaps you have state that needs to be
secured and even encrypted and should not be passed around a network. Additionally, you
might have state that is not client specific but global to all the users of your application. In all
of these scenarios, you still need to store state. If the client is not the right choice, you must
look to the server for a state management solution.

ASP.NET provides two ways to store state on the server and thus share information between
webpages without sending the data to the client. These two methods are referred to as application
state and session state. Application state information is global to the application and is avail-
able to all pages, regardless of the identity of the user requesting the page. Session state
is a user-specific state that is stored by the server. It is available only to pages accessed
by a single user during a visit to your site. This lesson explores these two server-side state
management techniques.

 144	 ChAPTER 3	 Handling Events and Managing State

IMportaNt  ChOOsing sERvER-siDE sTATE mAnAgEmEnT

It is important to note that you do not need to use server-side state management for
your application. Your application can rely on a mix of client-side and database state
management. This frees up valuable server resources for processing more page requests
and increases your server’s scalability. In particular, storing too much data in session
state can reduce performance and scalability.

After this lesson, you will be able to:
■	 Use application state to store and share information that is accessible to all

webpages in a website.
■	 Use session state to store user-specific information on the server and share

that information across pages within your site.

Estimated lesson time: 30 minutes

Application State
Application state in ASP.NET is a global storage mechanism for state data that needs to be
accessible to all pages in a web application. You can use application state to store information
that must be maintained between requests for pages. Again, application state is optional; it is
often not required. You should consider it a form of application-level caching of data that is
too time consuming to obtain on each request.

You store application state in an instance of the HttpApplicationState class that is provided
through the Page.Application property. This class represents a key–value dictionary, where each
value is stored and accessed by its key (or name). You can add to and read from the application
state from any page on the server. However, keep in mind that the state is global and accessible
by all pages executing on your server.

After you have added application-specific information to the application state, the server
manages it. This state stays on the server and is not sent to the client. Application state is a
great place to store information that is not user specific but that is global in nature. Because it
is stored in the application state, all pages can access data from a single location in memory,
rather than keeping separate copies of the data or reading it every time a page is requested.

IMportaNt ChOOsing APPLiCATiOn OR sEssiOn sTATE

You should not store user-specific information in application state. Instead, you should
use session state to store user-specific information (as described later in this lesson).

 Lesson 3: Using Server-Side State Management ChAPTER 3 145

Data stored in the Application object is not permanent; it will be lost any time the
application is restarted. In particular, IIS might restart your ASP.NET application at any point.
In addition, the application is also restarted if the server is restarted. To work within this con-
straint, you should understand how to read, write, and sometimes persist application state by
using the application events described later in this lesson.

Session State
Most web applications need to store user-specific data between individual requests. For
example, if a user is going through a multistep process to register for your site, you might
want to temporarily store this data between pages until the user has completed the process.
Of course, Windows applications do this all the time. These applications run in a process that
remains running on the client during a user session. Therefore, they can simply store this data in
memory on the client. ASP.NET applications have a disadvantage: they share a server process
and do not own a process on the client. Lesson 2 already explored how you can rely on the
client machine to store this type of data between requests. However, this is often not practi-
cal. Often, the data is too large or requires additional security. In these cases, you can use
the shared ASP.NET process to store this data in memory, on the server. This is referred to as
session state in ASP.NET.

Session state can be considered similar to application state. The big difference is that session
state is scoped to the current browser (or user) session and only available to that session (and
not the entire application). Each user on your site then has his or her own isolated session state
running in your application’s process on the server. This state is available to different pages as
the user makes subsequent requests to the server. Session state is, however, lost if the user ends
his or her session (or times out). In most cases, however, session state is not needed between
sessions. Data that is needed from one session to another should be persisted in a data store.

By default, ASP.NET applications store session state in memory on the server. However, they
can be configured to store this information in client-side cookies, on another state server, or
inside a Microsoft SQL Server database. These other options support centralized session man-
agement for web farm scenarios in which multiple web servers run a single website.

Reading and Writing Session State Data
You store user-specific session state in the Session object. This is an instance of the
HttpSessionState class and represents a key–value dictionary collection. Items are added,
updated, and read in a similar manner as working with any .NET dictionary collection.

The following code demonstrates how to write to and read from the Session object. In
this example, each time a user requests a page the time is written into his or her Session
instance. The last time the user requested the page for the session is also displayed in a
label control. Although this code performs a similar function to the ViewState in Lesson 2,
the Session object is available to any page the user visits.

 146	 ChAPTER 3	 Handling Events and Managing State

Sample of Visual Basic Code

' Check if Session object exists, and display it if it does
If (Session("lastVisit") IsNot Nothing) Then
 Label1.Text = Session("lastVisit").ToString()
Else
 Label1.Text = "Session does not have last visit information."
End If

' Define the Session object for the next page view
Session("lastVisit") = DateTime.Now

Sample of C# Code

// Check if Session object exists, and display it if it does
if (Session["lastVisit"] != null)
{
 Label1.Text = ((DateTime)Session["lastVisit"]).ToString();
}
else
{
 Label1.Text = "Session does not have last visit information.";
}
// Define the Session object for the next page view
Session["lastVisit"] = DateTime.Now;

Note  sEssiOn sTATE AnD COOkiEs

If the user’s browser allows cookies, ASP.NET writes a cookie to the client’s computer to
track the session. This cookie is called ASP.NET_SessionId and contains a random 24-byte
value. Requests submit this cookie from the browser, and ASP.NET maps the cookie’s value
to the session on the server. Situations in which cookies are disallowed are addressed in the
upcoming “Configuring Cookieless Session State” section.

Disabling Session State
If you don’t use session state, you can improve performance by disabling it for the entire
application. You do so by setting the sessionState mode property to Off in the Web.config
file. The following shows an example.

<configuration>
 <system.web>
 <sessionState mode="off"/>
 </system.web>
</configuration>

You can also disable session state for a single page of an application by setting the
EnableSessionState page directive to false. You can also set the EnableSessionState page
directive to ReadOnly to provide read-only access to session variables for the page. The
following code sample shows how to set a page directive to disable session state for a
single page.

 Lesson 3: Using Server-Side State Management ChAPTER 3 147

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
 Inherits="_Default" EnableSessionState = "False"%>

Note  sTORing vALUEs in sEssiOn sTATE

Values stored in Session must be serializable.

Configuring Cookieless Session State
By default, session state uses cookies to track user sessions. This is the best choice for the vast
majority of applications. All modern web browsers support cookies. However, users can turn
them off. Therefore, ASP.NET allows you to enable cookieless session state.

Without cookies, ASP.NET tracks sessions by using the URL, embedding the session ID in the
URL after the application name and before any remaining file or virtual directory identifier. For
example, the following URL has been modified by ASP.NET to include the unique session ID
lit3py55t21z5v55vlm25s55.

http://www.example.com/s(lit3py55t21z5v55vlm25s55)/orderform.aspx

You enable cookieless sessions through the Web.config file. Set the cookieless attribute of
the sessionState element to true. The following example shows a Web.config file that configures
an ASP.NET application to use cookieless sessions.

<configuration>
 <system.web>
 <sessionState cookieless="true"
 regenerateExpiredSessionId="true" />
 </system.web>
</configuration>

Responding to Session Events
Often you will want code to run when a user initiates a session or when a session is terminated.
For example, you might want to initialize key variables when a session starts, or you might
want to do some user-specific logging.

You can trap session events by using the Global.asax file (as discussed in the previous section).
There are two special events that ASP.NET provides for responding to session activities:

■ session_start Raised when a new user requests a page on your site and thus begins a
new session. This is a good place to initialize session variables.

■ session_End Raised when a session is abandoned or expires. This event can be used
to log information or free per-session resources.

Again, to implement these events, you use the Global.asax file as discussed in Lesson 1, in
“Responding to Application Events.”

 148	 ChAPTER 3	 Handling Events and Managing State

Note ThE sEssiOn_EnD EvEnT

The Session_End event is not always raised. When your state mode is set to InProc, ASP.NET
will raise the Session_End event when a session is abandoned or times out. However, it does
not raise this event for other state modes.

Choosing a Session State Mode
Memory on the server is not always the best or most scalable place to store session state. For
example, you might have a load-balanced server farm that routes requests between web servers
based on server load. In this case, you cannot guarantee that a user will always be routed to the
same server, and thus you might lose his or her session information. One solution to this issue
is a smarter load balancer that allows for “sticky” sessions that assign users to servers and keep
them there throughout a session. However, this can also be problematic if a server fails or if you
need to take one down.

Fortunately, ASP.NET provides a few different session management modes for your appli-
cation. These modes are configurable. You can, for example, start out by using an in-memory
(InProc) mode and, as your site grows, switch session state to a database or a state server.
ASP.NET provides the following session storage options:

■ inProc  Stores session state in memory on the web server. This is the default mode. It
offers much better performance than using the ASP.NET State Service or storing state
information in a database server. However, it is limited in load-balanced scenarios where
you might make a performance trade-off to increase scalability. The InProc mode is a
good choice for simple applications. However, applications that use multiple web servers
or that persist session data between application restarts should consider using the
StateServer or SQLServer modes.

■ stateserver  Stores session state in a service called the ASP.NET State Service. This
ensures that session state is preserved if the web application is restarted and also
makes session state available to multiple web servers in a web farm. ASP.NET State
Service is included with any computer set up to run ASP.NET web applications; how-
ever, the service is set up to start manually by default. Therefore, when configuring
the ASP.NET State Service, you must set the startup type to Automatic.

■ sQLserver  Stores session state in a SQL Server database. This ensures that session state
is preserved if the web application is restarted and also makes session state available to
multiple servers in a web farm. On identical hardware, the ASP.NET State Service outper-
forms SQLServer. However, a SQL Server database offers more robust data integrity and
reporting capabilities. In addition, many sites run their SQL Server databases on powerful
hardware. You will want to performance-test for your scenario.

 Lesson 3: Using Server-Side State Management ChAPTER 3 149

■ Custom  Enables you to specify a custom session state storage provider. You also need
to implement (code) the custom storage provider.

■ Off  Disables session state. You should disable session state if you are not using it, to
improve performance.

real World

Tony Northrup

For the exam, you must understand every different form of state management,
including session state.

In the real world, developers use two technologies for state in large-scale applica-
tions: cookies and databases. When a user visits a site, the site gives that user a
permanent cookie that uniquely identifies the user. Cookies are also used to store
preference choices (such as the number of search results per page) that the user
makes without logging in. Everything else is stored in a database. With each page
request, the web server uses the cookie to look up the user’s information in the
database, including shopping cart and account information. If users are willing,
have them create logons so that you can re-assign them the same cookies if they
log on from a different computer.

Why aren’t Application and Session state as useful as they sound? The problem is
that either can disappear at any point. You could write code that responds to the
Application.End and Session.End events to save important data to a database, and
then handle Application.Start and Session.Start to read it back in. However, ASP.NET
can’t call Application.End and Session.End if an application or server shuts down
unexpectedly (and in the real world, they shut down regularly). Additionally, users
often walk away from the computer for longer than your Session time-out. They
expect their shopping carts to still be there when they return in an hour, a day, or
a week—but Session state just isn’t designed for long-term data storage.

Configuring Session State Modes
You can specify which mode you want ASP.NET session state to use by assigning SessionStateMode
enumeration values to the mode attribute of the sessionState element in your application’s
Web.config file. Modes other than InProc and Off require additional parameters, such as
connection-string values. You can examine the currently set session state by accessing the
value of the System.Web.SessionState.HttpSessionState.Mode property in code.

 150	 ChAPTER 3	 Handling Events and Managing State

The following example shows settings in a Web.config file that cause the session state to
be stored in a SQL Server database identified by the specified connection string.

<configuration>
 <system.web>
 <sessionState
 mode="SQLServer"
 cookieless="true"
 regenerateExpiredSessionId="true"
 timeout="30"
 sqlConnectionString="Data Source=MySqlServer;Integrated Security=SSPI;"
 compressionEnabled="true"
 stateNetworkTimeout="30"/>
 </system.web>
</configuration>

Configuring session state for an application is typically the responsibility of the systems
administrators who are responsible for hosting and supporting your application. For example,
a systems administrator might initially configure a web application on a single server by using
the InProc mode. Later, if the server gets too busy or requires redundancy, the systems admin-
istrator might add a second web server and configure an ASP.NET state service on a separate
server. The administrator would then modify the Web.config file to use the StateServer mode.
Fortunately, the session state mode is transparent to your application, so you won’t need to
change your code.

ASP.NET 4 introduces the compressionEnabled attribute, as demonstrated in the previous
code sample. When you enable compression, ASP.NET uses the GZip algorithm to reduce the
size of session state data before storing it. It will only be useful if session state is large, and it
should only be used on web servers that can handle a small amount of additional processor
utilization, because compression will consume a few additional processor cycles.

Quick Check
	 1. Which typically consumes more server memory: application state or session state?

	 2. Which might not work if a user has disabled cookies in his or her web browser:
application state or session state?

Quick Check Answers
	 1. Session state tends to use much more memory than application state because

application state is shared among users, whereas session state exists on a per-
user basis.

	 2. Session state, by default, won’t work if a web browser that supports cookies has
cookies disabled. Application state is not user-specific, though, and does not
need to be tracked in cookies. Therefore, application state works regardless of
the cookies setting.

 Lesson 3: Using Server-Side State Management ChAPTER 3 151

PrActIcE	 storing state management Data on the server

In this practice, you use different server-side state management techniques to track the number
of pages a user has opened.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Storing Data in the Application Object

In this exercise, you create two pages that link to one another. Each time a user accesses the site,
the application variable will be incremented and displayed on the page. This demonstrates how
to add custom values to the Application object and how to use the Global.asax file.

	 1. Open Visual Studio and create a new ASP.NET website. Name the site serverstate.
Select either C# or Visual Basic as your programming language for the site.

	 2. Add a new page to the site and name this page Default2.aspx.

	 3. Open the Default.aspx page in Source view.

	 a. Add the text Default Page 1 to the page.

	 b. Add a label to the page and name it Label1.

	 c. Also add a HyperLink control to the page and name it hyperLink1.

	 d. Set the HyperLink1.NavigateUrl property to Default2.aspx.

	 4. Open Default2.aspx in Source view.

	 a. Add the text Default Page 2 to the page.

	 b. Add a label to the page and name it Label1.

	 c. Also add a HyperLink control to the page and name it hyperLink1.

	 d. Set the HyperLink1.NavigateUrl property to Default.aspx.

	 5. Open then Global.asax file. Add code to the Application_Start method to initialize an
Application variable named clicks as follows.

Sample of Visual Basic Code

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 Application("clicks") = 0
End Sub

Sample of C# Code

void Application_Start(object sender, EventArgs e)
{
 Application["clicks"] = 0;
}

 152	 ChAPTER 3	 Handling Events and Managing State

	 6. In the Page_Load method for both Default.aspx and Default2.aspx, add code to increment
the number of clicks in the Application object. Don’t forget to lock the application object
before updating the value. Then add code to display the value in LabelApplicationClicks.
The following code demonstrates this.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Application.Lock()
 Application("clicks") = CInt(Application("clicks")) + 1
 Application.UnLock()

 Label1.Text = String.Format("Application clicks: {0}",
Application("clicks").ToString())
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 Application.Lock();
 Application["clicks"] = ((int)Application["clicks"]) + 1;
 Application.UnLock();

 Label1.Text = string.Format("Application clicks: {0}",
Application["clicks"].ToString());
}

	 7. Build your website and visit the Default.aspx page. Click the hyperlink several times to
switch between pages and verify that the click counter increments.

	 8. As an optional step, open the same page from a different browser window. If you do,
you will notice that the click count includes the clicks you made from the first browser,
because the Application object is shared among all user sessions.

	 9. Restart the web application and visit the same page again. Notice that the click count
is reset; the Application object is not persisted between application restarts.

ExErcIsE	2	 Storing Data in the Session Object

In this exercise, you explore the use of the Session object.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 3, Exercise 1 project in the samples installed from the CD.

	 2. Open the Global.asax file. Add code to the Session_Start method to initialize a session
variable named session_clicks. This variable should be set to zero when the session is
first initiated. The following shows an example.

Sample of Visual Basic Code

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
 Session("session_clicks") = 0
End Sub

 Lesson 3: Using Server-Side State Management ChAPTER 3 153

Sample of C# Code

void Session_Start(object sender, EventArgs e)
{
 Session["session_clicks"] = 0;
}

	 3. Open Default.aspx in Source view. Add a new Label control under the existing one. Name
this control Label2. Do the same for Default2.aspx.

	 4. In the Page_Load method for both Default.aspx and Default2.aspx, add code to increment
the number of clicks for the user’s session. Also, add code to display the value in Label2.
The following code shows how your Page_Load event should now look (the new code is
shown in bold).

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Application.Lock()
 Application("clicks") = CInt(Application("clicks")) + 1
 Application.UnLock()

 Label1.Text = String.Format("Application clicks: {0}", _
Application("clicks").ToString())

 Session("session_clicks") = CInt(Session("session_clicks")) + 1
 Label2.Text = String.Format("Session clicks: {0}", _Session("session_
clicks").ToString())

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 Application.Lock();
 Application["clicks"] = ((int)Application["clicks"]) + 1;
 Application.UnLock();

 Label1.Text = string.Format("Application clicks: {0}",
Application["clicks"].ToString());

 Session["session_clicks"] = (int)Session["session_clicks"] + 1;

 Label2.Text = string.Format("Session clicks: {0}", Session["session_
clicks"].ToString());
}

	 5. Build your website and visit the Default.aspx page. Click the hyperlink several times to
switch between pages and verify that both the Application and Session click counters
increment.

 154	 ChAPTER 3	 Handling Events and Managing State

	 6. From a different browser, open the same page. Notice that the Application click count
includes the clicks you made from the first browser, because the Application object is
shared among all user sessions. However, the Session click counter includes only clicks
made from one browser.

	 7. Restart your web server. If you are running locally, you can right-click the server instance
in the system tray and choose Stop. If you are running in IIS, open the IIS Manager and
start and stop the server. Now visit the same page again. Notice that both click counts
are reset; the Application and Session objects are not persisted between application
restarts.

Lesson Summary
■ You can use the Application collection to store information that is accessible from all

webpages but is not user specific. To initialize Application variables, respond to the
Application_Start event in your Global.asax file.

■ You can use the Session collection to store user-specific information that is accessible
from all webpages. To initialize Session variables, respond to the Session_Start event in
your Global.asax file. You can store session information in the server’s memory by using
the InProc session state mode, store it in an ASP.NET State Service server by using the
StateServer mode, store it in a database by using the SQLServer mode, implement your
own custom session state storage by using the Custom mode, or turn session state off
completely.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 3,
“Using Server-Side State Management.” The questions are also available on the companion
CD in a practice test, if you prefer to review them in electronic form.

Note  AnsWERs

Answers to these questions and explanations of why each answer is correct or incorrect are
located in the “Answers” section at the end of the book.

	 1. You need to store state data that is accessible to any user who connects to your web
application and ensure that it stays in memory. Which collection object should you use?

	 A. Session

	 B. Application

	 c. Cookies

	 D. ViewState

 Case Scenarios ChAPTER 3 155

	 2. You need to store a value indicating whether a user has been authenticated for your
site. This value needs to be available and checked on every user request. Which object
should you use?

	 A. Session

	 B. Application

	 c. Cookies

	 D. ViewState

	 3. Your application is being deployed in a load-balanced web farm. The load balancer is
not set up for user server affinity. Rather, it routes requests to servers based on their
load. Your application uses session state. How should you configure the SessionState
mode attribute? (Choose all that apply.)

	 A. StateServer

	 B. InProc

	 c. Off

	 D. SqlServer

Case scenarios

In the following case scenarios, you apply what you’ve learned about how to implement
and apply ASP.NET state management. If you have difficulty completing this work, review
the material in this chapter before beginning the next chapter. You can find answers to
these questions in the “Answers” section at the end of this book.

Case Scenario 1: Selecting the Proper Events to Use
You are an application developer for Fabrikam, Inc. You are creating an application that
allows managers within your company to create custom forms that their employees can
use for data entry.

When a user requests a custom form, your application needs to query a database to determine
the types and locations of different controls. Your application then needs to create the controls for
your page dynamically, based on that information.

Answer the following questions for your manager:

	 1. In what event handler should you place code to dynamically create the controls? Why?

	 2. Where should you place code to set properties of the controls? Why?

 156	 ChAPTER 3	 Handling Events and Managing State

Case Scenario 2: Remembering User Credentials
You are an application developer for Contoso, Ltd., a business-to-business retailer. You are
writing an e-commerce web application that retrieves inventory and customer data from
a back-end database server. Recently, your marketing department has received requests
from customers to provide enhanced account-management capabilities. Your manager
asks you to interview key people and then come to his office to answer his questions
about your design choices.

Interviews
Following is a list of company personnel you interviewed and their statements:

■ marketing manager  “We recently had a session with our most important customers to
identify potential areas of improvement. One of the comments that we heard frequently
was that they want a way to log on to our website and view past order information. I
know I hate having to log on to websites every time I visit the webpage, so if we could
remember their logon information, I think the customers would be happier.”

■ Development manager  “This seems like a fair request; however, we need to keep
security in mind. Don’t do anything that would allow an attacker to steal a user’s
session and view his or her orders.”

Questions
Answer the following questions for your manager.

	 1. What state management mechanism would you use to remember a user’s logon
credentials?

	 2. How can you reduce the risk of a user’s credentials being stolen?

	 3. How should you store information about previous orders?

Case Scenario 3: Analyzing Information for Individual Users
and for All Users
You are an application developer working for Fabrikam, Inc., a consumer web-based magazine.
Recently, your marketing department personnel requested the ability to see a snapshot of what
users are doing on the website in near–real time. Additionally, they would like to display adver-
tisements to those users based on the content viewed in the current session. Finally, they would
like the ability to analyze multiple different articles that users viewed during a given visit.

You discuss the needs with the marketing manager, who says, “We have great tools for
analyzing website logs, but we often want to know what’s happening on the site in real time
so that we can make instant decisions. For example, if we post a new article, we’d like to see
how many users are currently viewing that page. Also, I think we can better cater our adver-
tisements to customer needs by analyzing a user’s path through our website. Is there any way
to track what a user does during a visit to our site?”

 Suggested Practices ChAPTER 3 157

Answer the following questions for your manager:

	 1. How can you present data for all users, to be analyzed by the marketing department?

	 2. How can you analyze and track an individual user through the site?

suggested Practices

To help you master the ASP.NET state management exam objectives presented in this chapter,
complete the following tasks.

Respond to Application and Session Events
For this task, you should complete Practices 1 and 2 to understand how to respond to applica-
tion and session events. If you are interested in the real-world behavior of these events, complete
Practice 3 as well.

■ Practice 1 Using a web application that you previously developed, add code to
initialize variables in the Application.Start event. Add code to release resources in the
Application.End event.

■ Practice 2  Using a web application that you previously developed, add code to
initialize variables in the Session.Start event. Add code to release resources in the
Session.End event.

■ Practice 3  Using a publically available ASP.NET website, add code to the Application.Start,
Application.End, Session.Start, and Session.End events that logs the occurrence of each.
Leave the application running for several days, and then examine the logs to determine
how frequently Application.End and Session.End failed to run for the corresponding
Application.Start and Session.Start.

Create Event Handlers for Pages and Controls
For this task, you should complete Practices 1 and 2 to get a better understanding of how to
handle page and control events.

■ Practice 1 Explore the non-default events that are available in each control. Experiment
by enabling AutoPostBack on controls that have it disabled by default.

■ Practice 2 With a master page assigned, attempt to dynamically add a TextBox and a
Button control to a content page in the Page.PreInit event handler. Note the exception
that occurs. Move the code to the Page.Render event handler, and notice that the appli-
cation runs, but input in the TextBox control is not available when you click the button,
because view state does not work. Move the code to the Page.Init event handler, and
verify that the controls work properly. Finally, move the code to the Page.Load event
handler.

 158	 ChAPTER 3	 Handling Events and Managing State

Manage State by Using Client-Based State Management
Options
For this task, you should complete Practice 1 to get a better understanding of how to implement
control state. Complete Practices 2 and 3 to explore how real-world websites use cookies.

■ Practice 1 Create a custom control and implement control state management.

■ Practice 2 View your Temporary Internet Files folder (typically located in C:\Users
\<username>\AppData\Local\Microsoft\Windows\Temporary Internet Files). Examine
cookies that websites have stored on your computer and open the files in a text editor
to view the information they contain.

■ Practice 3  Disable cookies in your web browser. Visit several of your favorite websites
to determine whether the website behavior has changed.

Manage State by Using Server-Based State Management
Options
For this task, you should complete all of Practice 1 to get experience using the Application
objects. Complete Practices 2 and 3 to gain experience working with user sessions.

■ Practice 1  Using a web application that you previously developed, add real-time
application activity analysis functionality described in Case Scenario 2 so that you can
open a webpage and view which pages users are currently viewing.

■ Practice 2  Using a web application that you previously developed, enable website
personalization by using the Session object. Allow a user to set a preference, such as
background color, and apply that preference to any page the user might view.

■ Practice 3  Disable cookies in your web browser and visit the web application you
created in Practice 2. Attempt to set a preference and study how the application
responds. Think about how an application might determine whether a browser
supports sessions and what to do if the browser does not support sessions.

Maintain State by Using Database Technology
For this task, you should complete Practices 1 and 2 to understand how to configure state
management to function in environments with multiple web servers hosting a single site.

■ Practice 1 Configure a web application to use a SQL state server.

■ Practice 2  Configure a web application to use the ASP.NET State Service.

 Take a Practice Test ChAPTER 3 159

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you
can look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 4 161

C h A P T E R 4

Using Server Controls
Server controls, such as Label, TextBox, and Button, are a fundamental concept of

Microsoft ASP.NET development. In previous chapters, you created server controls
(both by using the designer and at run time), modified their properties, and responded
to events such as Button.Click.

In this chapter, you will more thoroughly explore server controls that you have already
worked with, and you will work with server controls that have not previously been introduced,
including the Table, Image, Calendar, and Wizard controls.

Note COnTROL COvERAgE

There are many controls in ASP.NET. This chapter covers a large sample of the standard
controls. If you are looking for information on a specific control and cannot find it here,
please look in this book’s index, because controls such as Validation, Data, Asynchronous
JavaScript and XML (AJAX), and others are covered in their respective chapters. Addition-
ally, third-party developers have created hundreds of specialized controls, which you can
find by searching the Internet.

Exam objectives in this chapter:
■	 Developing and Using Web Forms Controls

■ Implement server controls.
■ Manipulate user interface controls from code-behind.

Lessons in this chapter:
■	 Lesson 1: Exploring Common Server Controls 163
■	 Lesson 2: Exploring Specialized Server Controls 186

 Contents

 ChAPTER 4 161

 Using server Controls 161
Before You Begin . 162

Lesson 1: Exploring Common Server Controls . 163

Web Server Controls 163

The Label Control 167

The Literal Control 169

The TextBox Control 171

The CheckBox Control 172

The RadioButton Control 172

The DropDownList Control 173

The ListBox Control 175

The Button Control 175

HTML Server Controls 177

Lesson Summary 184

Lesson Review 185

Lesson 2: Exploring Specialized Server Controls . 186

The Table, TableRow, and TableCell Controls 187

The Image Control 189

The ImageButton Control 191

The ImageMap Control 192

The Calendar Control 197

The FileUpload Control 202

The Panel Control 205

The MultiView and View Controls 207

The Wizard Control 210

The Xml Control 214

Lesson Summary 223

Lesson Review 223

Case Scenarios . 224

Case Scenario 1: Determining the Type of Controls to Use 225

Case Scenario 2: Determining How to Prompt for Data 225

Case Scenario 3: Implementing a Calendar Solution 225

Suggested Practices . 226

Implement Server Controls 226

Take a Practice Test . 226

 162	 ChAPTER 4	 Using Server Controls

before you begin

To complete the lessons in the chapter, you should be familiar with developing applications with
Microsoft Visual Studio by using Microsoft Visual Basic or Microsoft Visual C#. In addition, you
should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Hypertext Markup Language (HTML) and client-side scripting

■ Creating a new website

■ Adding web server controls to a webpage

real World

Tony Northrup

Looking back through my web developer career, I realize that I should have used
web server controls more often. See, I’m an old-school developer, back from the

days when you had to produce raw HTML as if you were writing to a console. I never
really broke out of that habit, and I still regularly author my pages by using raw HTML
instead of using an appropriate web server control.

This decision, made out of stubbornness, has caused me to waste many hours of
development time maintaining my own code. If I had used a Label control instead
of a Literal control with raw HTML, I could take advantage of the improvements to
ASP.NET simply by upgrading the Microsoft .NET Framework. Now, when I update
my existing web applications to take advantage of the newest HTML standards and
guidelines, I’ll have to dig through raw HTML. Debugging those changes will be
difficult, too, because I won’t have the .NET Framework making sure I close all my
tags properly.

Learn from my mistake. Master the web server controls built into ASP.NET 4. If
you need something more specific (such as a control that allows you to display a
JavaScript advertisement), find one that another developer has created, or create
one yourself, as described in Chapter 7, “Creating Custom Web Controls.”

 Lesson 1: Exploring Common Server Controls ChAPTER 4 163

Lesson 1: Exploring Common server Controls

ASP.NET includes many web server controls. In fact, with each new release, the number,
power, and flexibility of these controls all increase. The broad range of controls available
gives developers the tools they need to create applications that provide great user experi-
ences. Not all of the controls will be covered in this book. However, the .NET Framework
object model ensures that controls share a similar programming model. Thus, the experi-
ence this chapter gives you with a small sampling of the total will give you the knowledge
you need to work with all of them.

This lesson covers many of the basic, standard web server controls you will use for your
applications. Lesson 2 covers some of the more advanced or specialized controls in ASP.NET.
Later chapters cover even more specialized controls on topics such as data-bound controls,
validation, navigation, AJAX, site membership, and more.

After this lesson, you will be able to:
■	 Use the following web server controls:

■ Label

■ Literal

■ TextBox

■ CheckBox

■ RadioButton

■ DropDownList

■ ListBox

■ Button
■	 Use HTML controls when you do not need the advanced features of web server

controls.

Estimated lesson time: 45 minutes

Web Server Controls
ASP.NET provides programmers with a set of web server controls for creating webpages.
These controls provide more functionality and a more consistent programming model than
HTML server controls. Web server controls are based on .NET Framework classes, typically
inherited from the WebControl class. Unlike HTML controls, web server controls are not
part of the HTML standard. However, ASP.NET renders web server controls as standardized
HTML. In other words, if you use the Button web server control, ASP.NET renders it using
the <button> HTML markup tag.

 164	 ChAPTER 4	 Using Server Controls

A web server control is able to provide more functionality than an HTML control because it is
not tied to a single HTML tag element. Instead, web server controls typically render many HTML
tags and might also include client-side JavaScript code. They also have the ability to detect the
web browser’s capabilities and render the appropriate HTML based on those capabilities. This
allows ASP.NET web server controls to use a specific browser to its fullest potential. The pro-
grammer is also relieved from dealing with the actual HTML and instead works with the web
server control to define the appropriate functionality for the page. This allows developers to
use controls that would otherwise require very complex HTML, such as the Calendar, Wizard,
Login, and GridView controls.

Adding Web Server Controls by Using Source View
In previous chapters, you added web server controls by dragging them from the Toolbox in
the Visual Studio designer. You can also add them to a webpage by using Source view:

	 1. Open the webpage in Visual Studio.

	 2. Click the Source tab at the bottom of the webpage.

	 3. In the Source view of the webpage, type the web server control element and its attributes
(see Figure 4-1). Alternatively, you can drag a control from the Toolbox directly into the
page source.

FigURE 4-1 Adding a web server control to a page in Source view.

Note that web server controls must be located within an HTML form element that has the
runat=”server” attribute defined.

 Lesson 1: Exploring Common Server Controls ChAPTER 4 165

Setting Web Server Control Properties
Most web server controls inherit from the WebControl class. All web server controls must
contain a unique (at the page level) ID attribute value to provide a way to programmatically
reference the control. The other attributes and properties of a web server control are used to
control the look and behavior of the control. Table 4-1 lists the frequently used attributes and
properties that all web server controls have in common.

TAbLE 4-1  Common Web Server Control Properties

PROPERTy DEsCRiPTiOn

AccessKey The keyboard shortcut key. AccessKey can specify a single letter or
number that the user can press while holding down Alt. For example,
specify Q if you want the user to press Alt+Q to access the control.

BackColor The background color of the control, which can be set by using
standard HTML color identifiers, such as red or blue, or RGB values
expressed in hexadecimal format (#ffffff).

BorderColor The border color of the control, which can be set by using standard
HTML color identifiers, such as black or red, or RGB values expressed
in hexadecimal format (#ffffff).

BorderWidth The width of the control’s border in pixels. BorderWidth is not fully
supported for all controls in browsers earlier than Windows Internet
Explorer 4.0.

BorderStyle The border style, if there is any. Possible values are NotSet, None,
Dotted, Dashed, Solid, Double, Groove, Ridge, Inset, and Outset.

CssClass The cascading style sheets class to assign to the control.

Style A list of all cascading style sheet properties that are applied to the
specified HTML server control.

Enabled An attribute that disables the control when set to false. This dims the
control and makes it inactive. It does not hide the control.

EnableTheming The default is true, which enables themes for this control.

EnableViewState The default is true, which enables view state persistence for the control.

Font An attribute that contains subproperties that you can declare by using
the property-subproperty syntax in the opening tag of the web server
control element. For example, you can make a web server control’s
text italic by including the Font-Italic attribute in its opening tag.

ForeColor The foreground color of the control. ForeColor is not fully supported
for all controls in browsers earlier than Internet Explorer 4.0.

Height The control’s height. The Height property is not fully supported for
all controls in browsers earlier than Internet Explorer 4.0.

(continued)

 166	 ChAPTER 4	 Using Server Controls

PROPERTy DEsCRiPTiOn

SkinID The skin to apply to the control.

TabIndex The control’s position in the tab order. If this property is not set, the
control’s position index is 0. Controls with the same tab index can
be tabbed according to the order in which they are declared in the
webpage. This feature was introduced in Internet Explorer 4.0.

ToolTip The text that appears when the user points to a control. The ToolTip
property does not work in all browsers.

Width The width of the control. The possible units are Pixel, Point, Pica,
Inch, Mm, Cm, Percentage, Em, and Ex. The default unit is pixels.

In practice, you should define appearance attributes—such as the background color, border
width, and font—in a style sheet, rather than on individual controls. For example, if you set the
font individually for every control and later decide to use Times New Roman instead of Arial,
you would need to update the properties of every control in your application. If you instead use
a style sheet, you can update the appearance of all controls from within a single file. For more
information about style sheets, refer to Chapter 2, “Using Master Pages, Themes, and Caching.”

You can set the values of the of web server control properties by setting their attributes
in Source view, by setting their properties in Design view, or by setting their properties
programmatically in code. This section examines all three methods.

Upgrading from Earlier Versions of ASP.NET
ASP.NET 4 includes many improvements to the HTML rendering engine for web server con-
trols to comply with the latest HTML standards. If you have an existing application written
for ASP.NET 3.5 or earlier, and you upgrade it to ASP.NET 4, you will probably never notice a
difference in your web browser.

If you do experience a problem with how controls render in ASP.NET 4, you can revert
to the ASP.NET 3.5 rendering engine by defining the controlRenderingCompatibilityVersion
property of the <pages> element in your Web.config file to 3.5. The following code sample
demonstrates this.

<system.web>
 <pages controlRenderingCompatibilityVersion="3.5"/>
</system.web>

Visual Studio automatically adds this element to the Web.config file of any ASP.NET applica-
tion it upgrades to ASP.NET 4. To make sure you take advantage of the rendering improvements
in ASP.NET 4, you should set the value to 4.0 (or simply remove it) and test the application
thoroughly.

If you need to programmatically determine whether a specific control is rendered with the
ASP.NET 3.5 or ASP.NET 4 engine, check the Control.RenderingCompatibility property. Most
web server controls derive from Control, so they make this read-only property available.

 Lesson 1: Exploring Common Server Controls ChAPTER 4 167

Some controls require you to turn on more advanced, cascading style sheet–friendly render-
ing: FormView, Login, PasswordRecovery, and ChangePassword. By default, ASP.NET renders
these controls inside a <table> HTML tag to provide formatting. Typically, this works well, but
using tables for formatting is considered an outdated technique. If you would prefer to use
cascading style sheets to format the output from these controls, set the RenderOuterTable
property to false.

The Label Control
The Label control displays text at a specific location on a webpage by using the properties
that the control has been assigned. Use the Label control when you need to use server-side
code to change the label’s text or another one of its properties. If you simply need to display
static text, do not use the Label control, because it requires processing on the server and in-
creases the amount of data sent back and forth between the server and client. Instead, define
your static text by using standard HTML.

In forms, labels are used as captions for user input controls. For example, you might
create a Label control and set Label.Text to “Username: “. You could then place a TextBox
control to the right of the Label control so that the user would know to enter his or her
user name in the text box.

Because Label controls are often associated with user input controls, you can link keyboard
shortcuts assigned to label controls to user input controls. In this way, if a user presses a
keyboard shortcut (such as Alt+T), the web browser will set the focus to the user input control
associated with the Label control. Keyboard shortcuts are useful for speeding user input when
users are competent with a keyboard. More importantly, they’re required for accessibility
reasons; not all users are able to use a mouse to select controls.

To associate a Label control with a user input control and allow the user to access the user
input control with a keyboard shortcut, follow these steps:

	 1. Add a Label control and a user input control, such as a TextBox, CheckBox, or ListBox
control.

	 2. Set the Label.AccessKey property to the keyboard shortcut.

	 3. Set the Label.Text property, and underline the key used as the keyboard shortcut. For
example, if the label should have Username on it and the keyboard shortcut is Alt+U,
you would set Label.Text to “<u>U</u>sername”. The HTML markup for underlining
text is <u>. The browser will render the Label as “Username”, and users familiar with
keyboard shortcuts will recognize the underline convention that indicates the associ-
ated keyboard shortcut.

	 4. Set the Label.AssociatedControlID property to the ID of the label control to set focus
to it when the user presses the keyboard shortcut.

Figure 4-2 shows how to associate user name and password Label controls with TextBox con-
trols. Notice that Visual Studio automatically converts the <u> HTML markup tag to <u>.
This process is known as HTML character entity reference replacement and is performed so that
the angle brackets are not confused with actual HTML tags.

 168	 ChAPTER 4	 Using Server Controls

FigURE 4-2 Associating a Label control with a TextBox control.

SeCurIty alert

Populating the Label control with data from an untrusted source can create cross-site
scripting (XSS) vulnerabilities. This is true for many of the controls that contain a Text
property. The data applied to the Text property of the control can contain HTML code and
script that will be executed by the page. To prevent this, use the HttpUtility.HtmlEncode
method or the Server.HtmlEncode method to encode the untrusted data prior to placing
it in the Text property.

You can set the value of the label’s Text property in two ways. As shown above, you can
define the Text property. Alternatively, you can nest text between the opening and closing
elements as follows.

<asp:Label ID="UsernameLabel" runat="server" >Username: </asp:Label>

You can also set the value of the Text property from code. If you change the Text property
in code, the new value will override what is set on the page inside the designer. The following
shows an example of this code.

Sample of Visual Basic Code

Label1.Text = "Some Text"

Sample of C# Code

Label1.Text = "Some Text";

 Lesson 1: Exploring Common Server Controls ChAPTER 4 169

The Literal Control
Use the Literal control when you want to add raw HTML to a page, without requiring ASP.NET
to provide any additional processing. At first glance, the Literal control seems very similar to
the Label control. However, Literal does not inherit from WebControl, as Label does. Addition-
ally, the Literal control does not add any HTML elements to the webpage, whereas the Label is
rendered as a tag. This means that the Literal control does not have a style property,
and you therefore cannot apply styles to its content.

The Literal control is useful when you need to add text to the output of the page dynami-
cally (from the server) but do not want to use a Label. If your text is static, you can simply add
it to the markup of the page (you do not need a Label or a Literal control). The Literal control
contains the Mode property, which is used to specify any particular handling of the content of
the Text property. The modes available and their descriptions are shown in Table 4-2.

TAbLE 4-2  The Literal Control’s Mode Properties

mODE DEsCRiPTiOn

PassThrough The Text content is rendered as is. This includes HTML markup and
script. These items are output to the page and processed by the
browser as HTML and script, respectively.

Encode The Text content is HTML encoded; that is, any HTML markup or
script is actually treated like text and not HTML or script. Select this
mode if you might display user input.

Transform The Text content is converted to match the markup language of the
requesting browser, such as HTML, Extensible Hypertext Markup
Language (XHTML), Wireless Markup Language (WML), or Compact
Hypertext Markup Language (cHTML). If the markup language is
HTML or XHTML, the content is passed through to the browser. For
other markup languages, invalid tags are removed.

As an example, consider a webpage with three Literal controls, one for each Mode prop-
erty setting. Suppose the following code is added to the code-behind page to demonstrate
the use of the Literal control and the effect of the Mode property.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Literal1.Text = "This is an example &_
 <script>alert(""Hi from Literal1"");</script>"
 Literal2.Text = "This is an example &_
 <script>alert(""Hi from Literal2"");</script>"
 Literal3.Text = "This is an example &_
 <script>alert(""Hi from Literal3"");</script>"
 Literal1.Mode = LiteralMode.Encode

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 170	 ChAPTER 4	 Using Server Controls

 Literal2.Mode = LiteralMode.PassThrough
 Literal3.Mode = LiteralMode.Transform
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 Literal1.Text =@"This is an example"+
 "<script>alert(""Hi from Literal1"");</script>";
 Literal2.Text =@"This is an example"+
 "<script>alert(""Hi from Literal2"");</script>";
 Literal3.Text =@"This is an example"+
 "<script>alert(""Hi from Literal3"");</script>";
 Literal1.Mode = LiteralMode.Encode;
 Literal2.Mode = LiteralMode.PassThrough;
 Literal3.Mode = LiteralMode.Transform;
}

Figure 4-3 shows the rendered output of the Literal control when the webpage is displayed.
The alert message was displayed twice: once for Literal2, which uses the PassThrough mode, and
once for Literal3, which uses the Transform mode. Note that this is a security risk if you are set-
ting the Text property of the Literal control dynamically from user input. However, the encoded
version of the Literal control encodes the HTML and script and displays it to the browser window.

FigURE 4-3 Literal controls rendered by using different Mode settings.

 Lesson 1: Exploring Common Server Controls ChAPTER 4 171

The TextBox Control
The TextBox control is used to collect information from a user. The control’s Text property
gets or sets the contents of the TextBox control. As with the Label control, you can set the
Text property as an attribute, in between the opening and closing of the tag, or from code.

The TextBox control contains a TextMode property that you can set to SingleLine (the
default), MultiLine, or Password. The SingleLine value allows the user to enter a single line of
text. The Password value creates a single-line text box that masks the values entered by the
user as they are entered. The MultiLine value allows the user to enter multiple lines of text.
You use this value in conjunction with the Columns and Rows properties to provide a large
TextBox for the user to enter a large amount of data. The Columns property sets the width
of the TextBox in terms of the number of characters on a line. The Rows property sets the
maximum height of a multiline TextBox in terms of the number of lines a user should be able
to see at one time. Figure 4-4 shows an example of defining a multiline TextBox control by
using the Properties window in Visual Studio.

FigURE 4-4 A multiline TextBox control in the Visual Studio designer.

The TextBox control also has a MaxLength property that limits the number of characters that
can be entered by a user. This helps constrain the user’s entry to what you can store in a database
field. The Wrap property (whose default value is true) automatically continues the text on the
next line when the end of the TextBox width is reached, instead of scrolling the text to the left.

The TextBox control contains the TextChanged event. This can be trapped by the server
to respond when the user has changed the text of a TextBox. This event does not automati-
cally trigger a postback, and it would probably annoy users to wait for a response after
entering input into a TextBox. Instead, include a Button in the form to initiate the postback,
and handle the TextBox.TextChanged event when you need to run code after users have
updated specific fields.

 172	 ChAPTER 4	 Using Server Controls

The CheckBox Control
The CheckBox control allows users to easily make yes-or-no choices. The CheckBox control’s
Text property specifies its caption. Use the TextAlign property to specify on which side of the
check box the caption appears. The Checked property is used in your code to both set and
get the status of the CheckBox control.

The CheckedChanged event is raised when the state of the CheckBox control changes. By
default, the AutoPostBack property of the CheckBox control is set to false. This means that
changing the checked state does not cause a postback. However, the CheckChanged event
will still be raised when another control causes a postback. You might set AutoPostBack to
true if you need to respond immediately to the user’s selection, however.

exaM tIp

If you need to create groups of CheckBox controls, consider using the CheckBoxList con-
trol. The CheckBox control provides more granular layout control, but the CheckBoxList
control is easier to use when binding with data.

The RadioButton Control
If you think of the CheckBox control as a yes-or-no question, you can think of the RadioButton
control as multiple choice. The RadioButton control (named after the series of buttons on a car
radio that allows you to select only one station at a time) prompts the user to select one from a
list of mutually exclusive RadioButton controls in a group. This is useful when you are asking a
user to select a single item from a group of items.

To group multiple RadioButton controls together, specify the same GroupName for each
RadioButton control in the group. ASP.NET ensures that the selected radio button is exclusive
within the group. Typically, you should set RadioButton.Checked to true for one of the
RadioButton controls, to set the default.

Instead of adding multiple RadioButton controls, you can add a single RadioButtonList
control, and then add list items for the desired choices. Figure 4-5 shows an ASPX page in Visual
Studio with two sets of RadioButton controls; Payment Type is implemented by using individual
RadioButton controls, and Shipping Type is implemented by using a RadioButtonList.

The RadioButton control’s Text property specifies its caption. The TextAlign property is
used to specify the side on which the caption appears. You determine which button is selected
in your code by reading the Checked property of each control. The RadioButton control also
exposes the CheckedChanged event so that your application can respond when a user clicks a
radio button. This event does not automatically cause a postback to the server.

 Lesson 1: Exploring Common Server Controls ChAPTER 4 173

FigURE 4-5 Using RadioButton and RadioButtonList with the Visual Studio designer.

The DropDownList Control
Like the RadioButton control, a DropDownList requires the user to select one of multiple choices.
Whereas the RadioButton control displays all the options on the screen at all times, the user
needs to click the DropDownList to view different options. Hiding non-default options makes
the DropDownList better suited for longer lists of options, such as a user’s country.

When you use the Visual Studio designer to add a DropDownList control, it prompts you to
manually add the items to the list. Choose the default option by setting the item’s Selected prop-
erty to true. If you do not select an option, most browsers will automatically select the first item.

You can populate the list of choices in a DropDownList by calling the DropDownList.Items.Add
method and passing it either a string or an instance of ListItem. The following code sample
demonstrates using a for loop to add a list of years to a DropDownList, and then selecting
the 85th item in the list if the form is not in postback.

 174	 ChAPTER 4	 Using Server Controls

Sample of Visual Basic Code

For i As Integer = 1900 To DateTime.Now.Year – 1
 BirthYearDropDownList.Items.Add(i.ToString())
Next

If Not IsPostBack Then
 BirthYearDropDownList.SelectedIndex = 85
End If

Sample of C# Code

for (int i = 1900; i < DateTime.Now.Year; i++)
{
 BirthYearDropDownList.Items.Add(i.ToString());
}

if (!IsPostBack)
{
 BirthYearDropDownList.SelectedIndex = 85;
}

Figure 4-6 shows the DropDownList generated by this code sample.

FigURE 4-6 Using the DropDownList control to select from a large number of choices.

 Lesson 1: Exploring Common Server Controls ChAPTER 4 175

Handle the DropDownList.SelectedIndexChanged event to run code when the user selects
a different option, or simply examine the DropDownList.SelectedValue property during post-
back to access the option the user selected as a String.

The ListBox Control
Like multiple CheckBox controls or a single CheckBoxList control, a ListBox control allows the
user to select zero or more from multiple choices. Whereas the CheckBox control displays all
the options on the screen at all times, the ListBox control provides a scrollbar for displaying
more options than would otherwise fit in the space.

By default, a ListBox allows the user to select only one option at a time. Typically, if a user
can only select one option, you should use a DropDownList instead. To allow users to select
multiple options, set ListBox.SelectionMode to Multiple.

Figure 4-7 shows a ListBox control in use, with the SelectionMode set to Multiple. Note that
selecting multiple options requires the user to hold down the Ctrl key when clicking—a trick
most users are not aware of. Because of this, graphical user interface design best practices
recommend using a CheckBoxList instead when a user must be able to select multiple
choices, or a DropDownList when a user must select only a single choice.

FigURE 4-7 Using the ListBox control to select multiple options from a large number of choices.

The Button Control
The Button control displays a button on the webpage that a user can click to trigger a postback
to the web server. A Button control can be rendered as a submit button (default) or a command
button. A submit button simply performs a postback to the server. As you have done in earlier
chapters, you can run code when a user submits a form by handling the button’s Click event. In
Visual Studio, simply double-click a Button in the designer to create the event handler.

 176	 ChAPTER 4	 Using Server Controls

Most of the time, you will create a Button.Click event handler to run code when a user
clicks a button. If your form has multiple buttons that perform similar functions, such as
navigation buttons that move back, up, or forward, you might find it more efficient to
handle the Button.Command event instead. The Command event makes it easy to write a
single method that handles the clicks of multiple buttons.

You define a button as a command button by assigning a value to its CommandName prop-
erty and handling the Button.Command event. For example, Figure 4-8 shows three buttons
that have unique CommandName properties but use the same Button.Command event handler.

FigURE 4-8 A set of command buttons on a webpage.

When a user clicks one of the command buttons, its Command event is called on the server.
Because all three buttons in this example call the same event handler, the event handler must
determine which button the user clicked by examining the e.CommandName parameter, which
contains the value of the Button.CommandName property. The following code updates a Label
based on which button the user clicked.

Sample of Visual Basic Code

Protected Sub Button_Command(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.CommandEventArgs) _
 Handles Forward.Command, Up.Command, Back.Command
 Select Case e.CommandName
 Case "Back"
 FeedbackLabel.Text = "Back"
 Exit Select
 Case "Up"
 FeedbackLabel.Text = "Up"
 Exit Select

 Lesson 1: Exploring Common Server Controls ChAPTER 4 177

 Case "Forward"
 FeedbackLabel.Text = "Forward"
 Exit Select
 End Select
End Sub

Sample of C# Code

protected void Button_Command(object sender, CommandEventArgs e)
{
 switch (e.CommandName)
 {
 case "Back":
 FeedbackLabel.Text = "Back";
 break;
 case "Up":
 FeedbackLabel.Text = "Up";
 break;
 case "Forward":
 FeedbackLabel.Text = "Forward";
 break;
 }
}

You can also use the CommandArgument property of the Button control to provide
additional information about the command to perform. This property is also available
from the CommandEventArgs object.

The Button control also contains a CausesValidation property. This property, set to true
by default, causes page validation to be performed when a Button control is clicked. Set the
CausesValidation property to false when you want the Button control to bypass page valida-
tion. Reset and help buttons are examples of buttons that typically bypass validation. See
Chapter 5, “Input Validation and Site Navigation,” for more details on page validation.

Browsers render the Button control as an ordinary button. If you need the power of
the Button control but prefer the browser to render it as a hyperlink or an image, use the
LinkButton or ImageButton control. Those controls behave like buttons, but additionally
expose properties for defining the link or image.

HTML Server Controls
An HTML server control allows you to define actual HTML inside your ASP.NET page but work
with the control on the server through an object model provided by the .NET Framework. Each
HTML control is defined inside your page by using standard HTML tag syntax. This means they
use the <input />, <select />, <textarea />, and similar tags. By default, these HTML tags are
not connected to any server control. Therefore, it can be difficult to use them from the server
in that there are no instances of related controls with properties and methods. Instead, you
can simply access the tag values through the Page.Request.Form collection. This model is
fine for very simple pages and was the only model for classic Active Server Pages (ASP), the
precursor to ASP.NET.

 178	 ChAPTER 4	 Using Server Controls

Alternatively, you can apply the attribute runat="server" to these control tags, in which
case ASP.NET will parse the HTML tag into a related, server-side object that provides proper-
ties and methods designed to work with that particular tag. This can make your programming
experience much easier. In addition, ASP.NET uses view state to automatically maintain state
for these items between calls.

In most cases, you should use the more powerful web server controls. Consider using
HTML server controls in only these cases:

■ When you are migrating existing, classic ASP pages over to ASP.NET.

■ When the control needs to have custom client-side JavaScript attached to the its events.

■ When the web page has a lot of client-side JavaScript that is referencing the control.

More INfo hTmL AnD WEb sERvER COnTROLs

For more information about the differences between HTML server controls and web server
controls, go to http://msdn.microsoft.com/en-us/zsyt68f1.aspx.

Creating HTML Server Controls in Source View
One of the best uses for HTML server controls is for converting classic ASP pages over to a
.NET Framework model. The classic ASP page typically contains <input /> tags nested inside
a <form /> tag. Consider the following classic ASP webpage.

Classic ASP Webpage

<html>
 <head><title>Customer Page</title></head>
 <body>
 <form name="Form1" method="post" action="update.asp" id="Form1" >
 <input type="text" name="CustomerName"
 id="CustomerName" >
 <input type="submit" name="SubmitButton"
 value="Submit" id="SubmitButton" >
 </form>
 </body>
</html>

This page contains a form with a text box and a submit button. The user can type a customer
name and click the submit button to send the entered data back to the update.asp page on
the web server by using an HTTP POST command. This page can be converted to use ASP.NET
HTML server controls and thus simplify the programming model on the server. Consider the
following code. It represents the same page converted to ASP.NET.

 Lesson 1: Exploring Common Server Controls ChAPTER 4 179

Converted ASP.NET Webpage

<html>
 <head><title>Customer Page</title></head>
 <body>
 <form name="Form1" method="post" id="Form1" runat=”server”>
 <input type="text" name="CustomerName"
 id="CustomerName" runat=”server” >
 <input type="submit" name="SubmitButton"
 value="Submit" id="SubmitButton" runat=”server”>
 </form>
 </body>
</html>

Notice that the only changes were to add the runat="server" attribute to each control and the
form tag. This attribute tells ASP.NET to create server control instances for each of these items.
ASP.NET removes the runat attribute when rendering the page for the browser. In addition, the
action attribute was removed from the form tag, because with ASP.NET you typically send the
data back to the same page.

You must define the ID attribute value for every tag that you add the runat="server" attribute
to. The value of this ID attribute becomes the name of the control instance in your code. Visual
Studio automatically adds a default ID attribute when you add an HTML control.

If you decide that you no longer need to program an HTML server control in server code,
you should convert it back to a plain HTML element. Each HTML server control in a page uses
resources, so it is good practice to minimize the number of controls that the ASP.NET page
needs to work with on the server. To do so, open the page in Source view, and then remove
the runat="server" attribute from the control’s tag. If the HTML element is referenced by
client-side script, you should not remove its ID attribute.

Creating HTML Server Controls in the Designer
The HTML server controls are grouped together in the Toolbox of the Visual Studio designer.
You can simply drag these controls onto your form. To create an HTML server control by using
the Visual Studio designer, follow these steps:

	 1. Open an ASP.NET page inside the designer.

	 2. In the Toolbox, click the HTML tab to expose the HTML controls (see Figure 4-9).

	 3. Drag an HTML element to either the Design or the Source view of the webpage.

	 4. Convert the HTML element to a server control by setting the runat attribute. In Source
view, add the runat="server" attribute (see Figure 4-9). Note that Figure 4-9 shows an
HTML button followed by the Button web server control.

 180	 ChAPTER 4	 Using Server Controls

FigURE 4-9 Setting the runat attribute of an HTML server control.

Note LOCATiOn OF hTmL sERvER COnTROLs

An HTML server control must be located inside a form element that has the runat="server"
attribute to operate properly.

real World

Tony Northrup

For rapid development and easy manageability, always choose server controls
over HTML controls. In the real world, however, you often don’t need the power,

or the performance overhead, of server controls. If you’re creating an AJAX form,
for example, the client does all the work, and controls might never be processed by
the server. In those circumstances, you can still use server controls. You’ll get better
real-world performance out of HTML controls, however.

 Lesson 1: Exploring Common Server Controls ChAPTER 4 181

Quick Check
	 1. What are the two types of web server Button controls that can be created?

	 2. How do you create a TextBox for retrieving a password from a user?

	 3. How do you make a CheckBox cause immediate postback to the server?

	 4. If you are migrating classic ASP pages to ASP.NET, what type of server controls
might you use?

Quick Check Answers
	 1. The two types of web server Button controls are submit and command buttons.

	 2. You can mask the user’s entered password by setting the TextMode property of
the TextBox control to Password.

	 3. You can force an immediate postback for a CheckBox control by setting its
AutoPostBack property to true.

	 4. Use HTML server controls for easily converting classic ASP pages to ASP.NET.

PrActIcE	 Working with Web server Controls

In this practice, you work with the web server controls that are defined in this chapter.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Adding Controls to the Webpage

In this exercise, you create a webpage that allows the user to generate a list of names, select a
shipping type, and select multiple destinations.

	 1. Open Visual Studio and create a new website called WebserverControls.

	 2. Create a new page without a master page and edit it in Design view.

	 3. Drag a Label to the page, and set the Text property to name:. To its right, drag a TextBox
control, and set the ID property to nameTextbox. To its right, drag a Button control, set
the Text property to Add, and set the ID property to Addbutton.

 182	 ChAPTER 4	 Using Server Controls

	 4. On the next line, drag a Literal control to the page, and set the Text value to shipping
Type:. Below that, drag a RadioButtonList control to the page. Add three items, with
the Text properties set to standard, Priority, and Urgent. (To create a new line in the
Visual Studio designer, simply place the cursor after the last control and press the Enter
key.) Set the ID value to shippingTypeRadiobuttonList.

	 5. On the next line, drag a Literal control to the page, set the Text value to Destinations,
and set the ID value to DestinationsLiteral. Below that, drag a CheckBoxList control to
the page, and set the ID value to DestinationsCheckboxList.

	 6. On the next line, drag a Button control to the page, set the ID to shipbutton, and
set the Text to ship. Below that, drag a Label control to the page, set the ID value to
shippingConfirmationLabel, and clear the default Text value.

Your form should now resemble Figure 4-10.

FigURE 4-10 The web server controls on the page.

	 7. Now you will write code to add any text typed in the Name box to the Destinations-
CheckBoxList. Double-click the Add button to create an event handler for Button.Click,
and then write the necessary code.

 Lesson 1: Exploring Common Server Controls ChAPTER 4 183

Sample of Visual Basic Code

Protected Sub AddButton_Click_
 (ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles AddButton.Click

 If Not (NameTextBox.Text = [String].Empty) Then
 DestinationsCheckBoxList.Items.Add(Server.HtmlEncode(NameTextBox.Text))
 NameTextBox.Text = Nothing
 End If
End Sub

Sample of C# Code

protected void AddButton_Click(object sender, EventArgs e)
{
 if (!(NameTextBox.Text == String.Empty))
 {
 DestinationsCheckBoxList.Items.Add(Server.HtmlEncode(NameTextBox.Text));
 NameTextBox.Text = null;
 }
}

	 8. Now you will write code to display the shipping type and destinations in Shipping-
ConfirmationLabel when the user clicks the Ship button. Return to Design view,
double-click the Ship button, and then write the necessary code.

Sample of Visual Basic Code

Protected Sub ShipButton_Click_
 (ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles ShipButton.Click

 If (ShippingTypeRadioButtonList.SelectedValue = [String].Empty) OrElse _
 (DestinationsCheckBoxList.SelectedValue = [String].Empty) Then
 ShippingConfirmationLabel.Text = "You must select a shipping type and at
least one destination."
 Else
 ShippingConfirmationLabel.Text = _
 String.Format("Using {0} shipping to:
", _
 ShippingTypeRadioButtonList.SelectedValue)
 For Each li As ListItem In DestinationsCheckBoxList.Items
 If li.Selected Then
 ShippingConfirmationLabel.Text += li.Value + "
"
 End If
 Next
 End If
End Sub

 184	 ChAPTER 4	 Using Server Controls

Sample of C# Code

protected void ShipButton_Click(object sender, EventArgs e)
{
 if ((ShippingTypeRadioButtonList.SelectedValue == String.Empty)
 || (DestinationsCheckBoxList.SelectedValue == String.Empty))
 {
 ShippingConfirmationLabel.Text = "You must select a shipping type and at
least one destination.";
 }
 else
 {
 ShippingConfirmationLabel.Text =
 string.Format("Using {0} shipping to:
", _
 ShippingTypeRadioButtonList.SelectedValue);
 foreach(ListItem li in DestinationsCheckBoxList.Items)
 {
 if (li.Selected)
 {
 ShippingConfirmationLabel.Text += li.Value + "
";
 }
 }
 }
}

	 9. Run the web application. Add several names, and note that the AddButton.Click event
handler successfully adds an item to the CheckBoxList. Select different shipping options,
and note that you can only select one radio button at a time. Select one or more of the
check boxes, and then click the Ship button. Notice that the ShipButton.Click event
handler successfully reads the selected values.

	 10. Open the page in Design view. Select the TextBox control and set its MaxLength
property to 12 to restrict user input.

	 11. Run the page and type in the TextBox control. Notice that you cannot type more than
12 characters into the control.

	 12. In your web browser, view the page source. Notice that the Label control, which you
used to display the Name prompt, is surrounded by a element. Notice that
the Literal controls do not have this element.

Lesson Summary
■ A server control is a control that you can program by writing server-side code to respond

to events from the control. Server controls contain the runat="server" attribute and must
exist within a form that has the same runat attribute.

■ The Label control displays text at a specific location on the webpage by using the
properties that have been assigned to the Label control.

■ The Literal control returns text without any additional processing and is useful when
you need to return raw HTML.

■ The TextBox control collects text from the user.

 Lesson 1: Exploring Common Server Controls ChAPTER 4 185

■ The CheckBox control prompts the user to select or clear a check box to choose true
or false.

■ The RadioButton control prompts the user to select between mutually exclusive
RadioButton controls in a group.

■ The DropDownList control prompts the user to select one of many different options.
The non-default options are hidden until the user clicks the list.

■ The ListBox control prompts the user to select zero or more of many different options.
Options are shown in a scrolling list.

■ The Button control displays a button on the webpage that can be clicked to trigger a
postback to the web server. For similar functionality with a different presentation, you
can use the LinkButton or ImageButton controls.

■ HTML server controls are useful when you need to migrate a classic ASP webpage to
ASP.NET, or when you are working with a server control and you need to write a lot of
associated client-side JavaScript.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Exploring Common Server Controls.” The questions are also available on the companion CD
in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. To add an HTML server control to a webpage, you must drag an HTML element from
the Toolbox to the webpage and then perform which of the following tasks?

	 A. Add the attribute run="server" to the control element in Source view.

	 B. Double-click the HTML element to convert it to an HTML server control.

	 c. Add the attribute runat="server" to the control element in Source view.

	 D. Select the HTML element in Design view and set the RunAt property to true in the
Properties window.

	 2. You are creating a web form that displays a stock chart. Users can choose from three
different sizes for the chart: small, medium, and large. How could you implement the
user interface? (Choose all that apply. Each answer forms a complete solution.)

	 A. Add a RadioButtonList control.

	 B. Add three RadioButton controls. Set the GroupName property of all controls to
ChartSize.

	 c. Add a CheckBoxList control.

	 D. Add three CheckBox controls. Set the GroupName property of all controls to ChartSize.

 186	 ChAPTER 4	 Using Server Controls

	 3. You are creating a webpage that has several related buttons, such as Fast Forward,
Reverse, Play, Stop, and Pause. You want to create a single event handler that processes
the postback from these Button controls. Which of the following should you do to
handle the event while writing the least amount of code? (Choose all that apply. Each
answer forms part of the complete solution.)

	 A. Handle the Button.Command event.

	 B. Handle the Button.Load event.

	 c. Define the Button.CommandName property of all controls to PlaybackControl.

	 D. Define the Button.CommandName property so that each control has a unique value.

Lesson 2: Exploring specialized server Controls

It was not long ago that creating something as basic as a calendar on a webpage was a time-
consuming task involving the creation of HTML tables with a hyperlink on each date. You might
have also created JavaScript to process the selection of a date. With ASP.NET, common tasks
such as creating a calendar involve simply dragging a feature-rich control on your webpage.

The previous lesson covered some of the more basic controls used to build webpages. There
are, of course, many more controls available. This lesson covers some of the more specialized
web server controls: Table, Image, ImageButton, ImageMap, Calendar, FileUpload, Panel,
MultiView, Wizard, and Xml.

After this lesson, you will be able to:
■	 Use the following web server controls:

■ Table, TableRow, and TableCell

■ Image

■ ImageButton

■ ImageMap

■ Calendar

■ FileUpload

■ Panel

■ MultiView

■ View

■ Wizard

■ Xml

Estimated lesson time: 60 minutes

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 187

The Table, TableRow, and TableCell Controls
Tables arrange data in a grid format. In the early years of the web, developers used tables
to lay out web pages. Today, however, the HTML <div> and markups have replaced
the table as the preferred method for HTML layout. Now, you only need to rely on tables for
displaying data in a grid, such as a spreadsheet.

HTML provides the <table> tag for defining a table, the <tr> tag for creating a row, and the
<td> tag for defining a column in the row. ASP.NET provides the Table control for creating and
managing tables. Like its HTML counterpart, the Table control can be used to display static
information on a page. However, the Table control’s real power comes from the ability to
programmatically add TableRow and TableCell controls from your code at run time. If you
only need to display static information, consider using the HTML tags instead.

exaM tIp

There is also an HtmlTable control. It can be created from the HTML <table> tag by adding
the runat="server" attribute to the tag and assigning an ID to the tag. However, the Table
control is easier to use because it provides a programming model that is consistent with
the TableRow and TableCell controls.

Again, the Table control is the right choice when you need to programmatically add rows
and cells to a table at run time. The rows are added by using the TableRow control and the cells
are added by using the TableCell control. You add these rows and cells in a manner similar to
the way you would dynamically create other controls on a page. Like other dynamically created
controls, rows and cells must be re-created when the page posts back to the server. If you need
the table to survive postback, consider using the Repeater, DataList, or GridView control.

The Table control contains a Rows collection property, which is a collection of TableRow con-
trols. It is used to add and access the rows of your table. The TableRow control, in turn, contains
a Cells collection property (also known as a collection association). This property represents a
collection of TableCell controls. These are the actual cells (or columns) within a single row.

The Table, TableRow, and TableCell controls all inherit from the WebControl class. This class
provides base properties such as Font, BackColor, and ForeColor. If you set these properties at
the Table level, you can override them in TableRow instances, and in turn, the TableRow set-
tings can be overridden in the TableCell instances.

Adding Rows and Cells Dynamically to a Table Control
Visual Studio provides a designer for adding rows and cells to Table controls on your page.
You access this design tool from the Table control’s Rows property in the Properties window.
Similarly, you can use the designer to add cells to individual rows, as shown in Figure 4-11.

 188	 ChAPTER 4	 Using Server Controls

FigURE 4-11 The TableCell collection editor in Visual Studio.

If you simply needed to add static rows and cells, it would be more efficient to simply use
an HTML table. The real power of the Table control, however, is being able to work with it from
your code. The following steps show how to dynamically add TableCell and TableRow objects to
an existing Table control.

	 1. From the Toolbox, drag a Table control onto your page.

	 2. Open the code-behind file for the page, and add a PreInit event to the page.

	 3. Inside the PreInit event, write a for loop to create five new rows in the table.

	 4. Inside this loop, add another for loop to create three columns for each row.

	 5. Inside this loop, modify the TableCell.Text property to identify the row and column.
The following code provides an example.

Sample of Visual Basic Code

Protected Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit

 Table1.BorderWidth = 1
 For row As Integer = 0 To 4
 Dim tr As New TableRow()
 For column As Integer = 0 To 2
 Dim tc As New TableCell()
 tc.Text = String.Format("Row:{0} Cell:{1}", row, column)
 tc.BorderWidth = 1
 tr.Cells.Add(tc)
 Next column
 Table1.Rows.Add(tr)
 Next row
End Sub

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 189

Sample of C# Code

protected void Page_PreInit(object sender, EventArgs e)
{
 Table1.BorderWidth = 1;
 for (int row = 0; row < 5; row++)
 {
 TableRow tr = new TableRow();
 for (int column = 0; column < 3; column++)
 {
 TableCell tc = new TableCell();
 tc.Text = string.Format("Row:{0} Cell:{1}", row, column);
 tc.BorderWidth = 1;
 tr.Cells.Add(tc);
 }
 Table1.Rows.Add(tr);
 }
}

In the code example, notice that the code starts by setting the BorderWidth property of the
Table control to 1, which causes the Table to have a line around its outside edges. The TableCell
objects also have their BorderWidth set to 1, which causes each TableCell to be outlined as well.
Although this demonstrates how to programmatically change table properties, in practice you
should use cascading style sheets to format your tables. When the webpage is displayed, it will
look like the page shown in Figure 4-12.

FigURE 4-12 A webpage demonstrating how to dynamically create TableRow and TableCell controls.

The Image Control
The Image control can be used to display an image on a webpage. Again, this control should
be used when you need to manipulate the properties of the control in server-side code. If you
simply need to embed a static image on your page, you can use the HTML tag. In fact,
when the Image control is rendered to a page, it generates an element.

The Image control inherits directly from the WebControl class. The ImageMap and ImageButton
controls inherit directly from the Image control.

The Image control is represented as the <asp:Image> element in the source and has no
content embedded between its opening and closing tags. Therefore, you can write this element
as a singleton (closing the tag with /> instead of using a separate closing tag). It is important to
understand that the image itself is not embedded in the webpage; instead, when the browser
encounters the element with the href attribute, the browser initiates a separate request
for the image from the server.

 190	 ChAPTER 4	 Using Server Controls

The Image control’s primary property, ImageUrl, indicates the path to the image that is down-
loaded from the browser and displayed on the page. This property maps directly to the href
attribute of the element in HTML. Some additional properties to consider when working
with the Image control are as follows:

■ AlternateText The Image control also contains a property called AlternateText. You
can set this property to display a text message in the user’s browser when the image
is not available or the browser is set to not render the image. Most browsers display
the AlternateText as a tooltip when a user points to the image, and AlternateText is
important for helping users with special accessibility requirements navigate your page.
For link images, assign AlternateText a value that describes the link. For content images,
assign AlternateText a value that describes the image itself to help image search engines
properly index your site.

■ imageAlign The ImageAlign property of the Image control can be set to NotSet, Left,
Right, Baseline, Top, Middle, Bottom, AbsBottom, AbsMiddle, or TextTop. These settings
specify the alignment of the image in relation to the other objects on the webpage.

■ DescriptionUrl The DescriptionUrl property is an accessibility feature that is used to
provide further explanation of the content and meaning of the image when nonvisual
page readers are being used. This property sets the longdesc attribute of the
element that is generated. This property should be set to the Uniform Resource Locator
(URL) of a page that contains details of the image in text or audio format.

■ generateEmptyAlternateText Setting the GenerateEmptyAlternateText property to
true will add the attribute alt="" to the element that the Image control generates.
From an accessibility perspective, any image that does not contribute to the meaning
of the page, such as a blank image or a page-divider image, should always carry this
attribute; it causes the nonvisual page readers to simply ignore the image.

The following code provides an example of a web page with an Image control. An
image file called Whale.jpg is inside a folder called Images. An HTML page called
WhaleImageDescription.htm, which contains a description that can be used by non-
visual page readers, was also created. The following code demonstrates setting the
Image control’s properties programmatically inside the page’s code-behind file.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Image1.ImageUrl = "~/images/whale.jpg"
 Image1.DescriptionUrl = "~/WhaleImageDescription.htm"
 Image1.AlternateText = "This is a picture of a whale"
End Sub

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 191

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 Image1.ImageUrl = "~/images/whale.jpg";
 Image1.DescriptionUrl = "~/WhaleImageDescription.htm";
 Image1.AlternateText = "This is a picture of a whale";
}

The ImageButton Control
The Image control does not have a Click event. In situations in which a Click event is necessary,
you can use ImageButton or ImageMap instead. These controls allow you to treat an image
like a clickable button. In addition, you can retrieve the x-coordinate and y-coordinate of the
user’s click. This is useful for determining where on the image the user has clicked. You can use
this information on the server to perform different actions, depending on the area clicked by
the user.

The ImageButton control is used to display a clickable image on a webpage that can be used
to perform a postback to the web server when the image is clicked. This control generates an
<input type="image"> element when rendering to HTML.

The ImageButton control is represented as an <asp:ImageButton> element in Source
view and has no content, so you can write this element as a singleton element. As with the
Image control, the ImageButton control’s primary property, ImageUrl, indicates the path
to an image that can be downloaded from the browser and displayed. This property maps
directly to the src attribute of the <input> element in HTML. Because the ImageButton inherits
from the Image control, it also contains the AlternateText, DescriptionUrl, ImageAlign, and
GenerateEmptyAlternateText properties.

The ImageButton control has a Click event and a Command event that function like
these same events do for the Button control. The second argument of the Click event
has a data type of ImageClickEventArgs, which lets you retrieve the x-coordinate and
y-coordinate of the user’s click.

In the following example, a webpage was created and an ImageButton control was added
to the page. This control uses an image that is both red and blue (redblue.jpg). The following
code was added to the code-behind page to show how the ImageButton control’s properties
can be set programmatically and the Click event can be implemented.

 192	 ChAPTER 4	 Using Server Controls

Sample of Visual Basic Code

Partial Class ImageControl
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 ImageButton1.ImageUrl = "~/images/redblue.jpg"
 ImageButton1.AlternateText = _
 "This is a button. The left side is red. The right is blue."
 End Sub

 Protected Sub ImageButton1_Click(ByVal sender As Object, _
 ByVal e As System.Web.UI.ImageClickEventArgs) Handles ImageButton1.Click

 ImageButton1.AlternateText = _
 String.Format("Button Clicked at {0},{1}", e.X, e.Y)
 End Sub
End Class

Sample of C# Code

public partial class ImageButton_Control : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 ImageButton1.ImageUrl = "~/images/redblue.jpg";
 ImageButton1.AlternateText =
 "This is a button. The left side is red. The right is blue.";
 }
 protected void ImageButton1_Click(object sender, ImageClickEventArgs e)
 {
 ImageButton1.AlternateText =
 string.Format("Button Clicked at {0},{1}", e.X, e.Y);
 }
}

This code sets the ImageButton control properties in the Page_Load event handler. In the
ImageButton1_Click event handler, the x-coordinate and y-coordinate are retrieved and placed
into the AlternateText property. In this example, you can use this information to determine the
area (or color) on which the user clicked and make a decision accordingly.

The ImageMap Control
The ImageMap control is used to display a clickable image that can be used to post form
information back to the web server when the image is clicked. This control differs from the
ImageButton control in that the ImageMap control allows you to define regions or “hot spots”
that cause a postback, whereas clicking anywhere on an ImageButton causes a postback.

The ImageMap control generates an element in HTML. In
addition, a <map name="myMap"> element with nested <area> elements is also created
when the HTML is rendered.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 193

The ImageMap control inherits directly from the Image control class. As with the Image
control, the ImageMap control’s primary property, ImageUrl, indicates the path to the
image that can be downloaded from the browser and displayed. This property maps directly
to the src attribute of the element in HTML. Because the ImageMap inherits from
the Image control, it also contains the AlternateText, DescriptionUrl, ImageAlign, and
GenerateEmptyAlternateText properties.

In Source view, the ImageMap control is represented as an <asp:ImageMap> element
and has nested hot spot elements that can be CircleHotSpot, RectangleHotSpot, and
PolygonHotSpot elements.

The ImageMap control has a Click event that functions like the Click event for the ImageButton
control. The second argument of the Click event has a data type of ImageMapEventArgs, which
lets you retrieve the PostBackValue of the associated hot spot that the user clicked.

Working with HotSpot Classes
A hot spot is a predefined area on an image that can be clicked to perform an action. Hot
spots can be created to define areas on the image that are displayed by the ImageMap control.
You can define many overlapping areas, with each layer based on the HotSpot definition
order. The first HotSpot defined takes precedence over the last HotSpot defined. The
classes that inherit from the HotSpot base class are the CircleHotSpot, RectangleHotSpot,
and PolygonHotSpot. Table 4-3 contains a list of HotSpot properties.

TAbLE 4-3 HotSpot Properties

PROPERTy DEsCRiPTiOn

AccessKey The keyboard shortcut for a HotSpot. You can place only a single charac-
ter into this property. If this property contains C, for example, a web user
can press Alt+C to navigate to the HotSpot.

AlternateText The text that is displayed for a HotSpot when the image is unavailable or
renders to a browser that does not support images. This also becomes
the tooltip.

HotSpotMode The behavior of the HotSpot when it is clicked. This can be NotSet,
Inactive, Navigate, or PostBack.

NavigateUrl The URL to navigate to when a HotSpot object is clicked.

PostBackValue The string that is passed back to the web server and is available in the
event argument data when the HotSpot is clicked.

TabIndex The tab index number of the HotSpot.

Target The target window or frame that displays the webpage and that is
linked to the HotSpot.

 194	 ChAPTER 4	 Using Server Controls

Understanding the HotSpotMode Property
The HotSpotMode property is used to specify how the HotSpot behaves when it is clicked.
You can specify the HotSpotMode on either the HotSpot or the ImageMap control. If you set
the HotSpotMode on both the HotSpot and the ImageMap, the HotSpot takes precedence.
This means that you can specify the HotSpotMode on the ImageMap control to set a default
HotSpot behavior, but the HotSpotMode of the HotSpot must be set to NotSet to inherit the
behavior from the ImageMap.

Specifying Navigate for the HotSpotMode causes the HotSpot to navigate to a URL when
clicked. The NavigateUrl property specifies the URL to which to navigate.

Note hOTsPOTmODE DEFAULT

If ImageMap and HotSpot have their HotSpotMode properties set to NotSet, the HotSpot
defaults to Navigate.

Specifying PostBack for the HotSpotMode causes the HotSpot to generate a postback to
the server when the HotSpot is clicked. The PostBackValue property specifies a string that is
passed back to the web server in the ImageMapEventArgs event data when the HotSpot is
clicked and the Click event is raised.

Specifying Inactive for the HotSpotMode property indicates that the HotSpot does
not have any behavior when it is clicked. This is used to create an inactive HotSpot region
within a larger active HotSpot, thus allowing you to create complex HotSpot zones within
an ImageMap control. You must specify the inactive HotSpot before you designate the
active HotSpot in the ImageMap control.

The following code presents an example of a webpage that contains a Label and ImageMap
control. The ImageMap control is set to use a stoplight image (red, yellow, and green). The
following code was added to the code-behind page to show how the ImageMap control’s
properties can be set programmatically and how the Click event can be implemented to dis-
play the HotSpot that is clicked.

Sample of Visual Basic Code

Partial Class HotSpotVb
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 ImageMapStopLight.ImageUrl = "~/images/stoplight.jpg"
 ImageMapStopLight.AlternateText = "Stoplight picture"
 ImageMapStopLight.HotSpotMode = HotSpotMode.PostBack

 Dim redHotSpot As New RectangleHotSpot()
 redHotSpot.Top = 0
 redHotSpot.Bottom = 40
 redHotSpot.Left = 0
 redHotSpot.Right = 40

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 195

 redHotSpot.PostBackValue = "RED"
 ImageMapStopLight.HotSpots.Add(redHotSpot)

 Dim yellowHotSpot As New RectangleHotSpot()
 yellowHotSpot.Top = 41
 yellowHotSpot.Bottom = 80
 yellowHotSpot.Left = 0
 yellowHotSpot.Right = 40
 yellowHotSpot.PostBackValue = "YELLOW"
 ImageMapStopLight.HotSpots.Add(yellowHotSpot)

 Dim greenHotSpot As New RectangleHotSpot()
 greenHotSpot.Top = 81
 greenHotSpot.Bottom = 120
 greenHotSpot.Left = 0
 greenHotSpot.Right = 40
 greenHotSpot.PostBackValue = "GREEN"
 ImageMapStopLight.HotSpots.Add(greenHotSpot)
 End Sub

 Protected Sub ImageMapStopLight_Click(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.ImageMapEventArgs) _
 Handles ImageMapStopLight.Click

 Label1.Text = String.Format("You clicked the {0} rectable.", e.PostBackValue)
 End Sub
End Class

Sample of C# Code

public partial class HotSpotControl : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 ImageMapStopLight.ImageUrl = "~/images/stoplight.jpg";
 ImageMapStopLight.AlternateText = "Stoplight picture";
 ImageMapStopLight.HotSpotMode = HotSpotMode.PostBack;

 RectangleHotSpot redHotSpot = new RectangleHotSpot();
 redHotSpot.Top = 0;
 redHotSpot.Bottom = 40;
 redHotSpot.Left = 0;
 redHotSpot.Right = 40;
 redHotSpot.PostBackValue = "RED";
 ImageMapStopLight.HotSpots.Add(redHotSpot);

 RectangleHotSpot yellowHotSpot = new RectangleHotSpot();
 yellowHotSpot.Top = 41;
 yellowHotSpot.Bottom = 80;
 yellowHotSpot.Left = 0;
 yellowHotSpot.Right = 40;
 yellowHotSpot.PostBackValue = "YELLOW";
 ImageMapStopLight.HotSpots.Add(yellowHotSpot);

 RectangleHotSpot greenHotSpot = new RectangleHotSpot();
 greenHotSpot.Top = 81;

 196	 ChAPTER 4	 Using Server Controls

 greenHotSpot.Bottom = 120;
 greenHotSpot.Left = 0;
 greenHotSpot.Right = 40;
 greenHotSpot.PostBackValue = "GREEN";
 ImageMapStopLight.HotSpots.Add(greenHotSpot);

 }
 protected void ImageMapStopLight_Click(object sender, ImageMapEventArgs e)
 {
 Label1.Text = string.Format("You clicked the {0} rectangle.", e.PostBackValue);
 }
}

In the sample code, clicking a HotSpot on the ImageMap causes a postback of the
PostBackValue to the server. ImageMapEventArgs contains the PostBackValue. Inside
the Click event, the PostBackValue is placed into the Text property of the Label control.
Figure 4-13 shows the page after the image has been clicked.

FigURE 4-13 The rendered ImageMap displaying the PostBackValue message in the Label after the image
hot spot was clicked.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 197

The Calendar Control
The Calendar control allows you to display a calendar on a webpage. The calendar can be used
when asking a user to select a date or series of dates. Users can navigate between years, months,
and days. The Calendar control is a complex, powerful web server control that you can use to
add calendar features to your page.

The Calendar control is represented as an <asp:Calendar> element in Source view. It can
contain style elements to change the look of the control. When rendered to a user’s browser,
the control generates an HTML <table> element and uses a set of associated JavaScript scripts
provided by ASP.NET.

The Calendar control can be used to select a single date or multiple dates. The SelectionMode
property controls this. It can be set to one of the following settings:

■ Day Allows selection of a single date

■ Week Allows the selection of either a single date or a complete week

■ Weekmonth Allows selection of single date, a complete week, or the whole month

■ one Does not allow you to select any date

The Calendar control contains many additional properties that can be used to adjust the
format and behavior of this control. Table 4-4 contains a list of the Calendar properties and
their associated descriptions.

TAbLE 4-4  Calendar Properties

PROPERTy DEsCRiPTiOn

Caption The text that is rendered in the Calendar.

CaptionAlign The alignment of the caption: Top, Bottom, Left, Right, or NotSet.

CellPadding The space between each cell and the cell border.

CellSpacing The spacing between each cell.

DayHeaderStyle The style to be applied to days of the week.

DayNameFormat The format for the names of the days of the week: FirstLetter,
FirstTwoLetters, Full, Short, Shortest.

DayStyle The default style for a calendar day.

FirstDayOfWeek The day of the week to display in the first column of the Calendar
control.

NextMonthText The text to be displayed in the next month navigation control;
> is the default. This navigational control is only displayed if
ShowNextPrevMonth property is true.

(continued)

 198	 ChAPTER 4	 Using Server Controls

PROPERTy DEsCRiPTiOn

NextPrevFormat The tool that sets the format of the next and previous navigation
controls. This can be set to CustomText (the default), FullMonth
(for example, January), or ShortMonth (for example, Jan).

NextPrevStyle The style to be applied to the next and previous navigation
controls.

OtherMonthDayStyle The tool that specifies the style for days on the calendar that are
displayed and are not in the current month.

PrevMonthText The text to be displayed in the previous month navigation
control, which by default is <. This navigational control is only
displayed if the ShowNextPrevMonth property is true.

SelectedDate The date selected by the user.

SelectedDates A collection of DateTime values that represents all of the
dates that were selected by the user. This property contains
only a single date if the SelectionMode property is set to
CalendarSelectionMode.Day, which allows only single date
selection.

SelectedDayStyle The style of the selected day.

SelectionMode A value that indicates how many dates can be selected. This
value can be Day, DayWeek, DayWeekMonth, or None.

SelectMonthText The text displayed for the month selection column. The default
value is >>.

SelectorStyle The style for the week and month selectors.

SelectWeekText The text of the week selection in the week selector.

ShowDayHeader An indicator that determines whether the day header should be
displayed.

ShowGridLines An indicator that determines whether grid lines should be
displayed.

ShowNextPrevMonth An indicator that determines whether the next and previous
month selectors should be displayed.

ShowTitle An indicator that determines whether the title should be
displayed.

TitleFormat A tool that sets the format for displaying the month (Month),
or the month and year (MonthYear).

TitleStyle The style for the title.

TodayDayStyle The style of today’s date.

TodaysDate Today’s date.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 199

PROPERTy DEsCRiPTiOn

UseAccessibleHeader A control that, when set to true, generates <th> for day headers
(the default), or, when set to false, generates <td> for day head-
ers, to be compatible with version 1.0 of the .NET Framework.

VisibleDate Specifies the date that identifies which month to display in the
Calendar control’s header area.

WeekendDayStyle The style of weekend days.

The Calendar control also exposes a few events with which to work. The primary event,
SelectionChanged, is triggered after a user selects a date on the control. The SelectionChanged
event causes a postback when the user selects a new date. Inside the event handler, you access
the selected dates via the SelectedDates property. The SelectedDate property simply points
to the selected date in the SelectedDates collection.

The VisibleMonthChanged event also causes a postback when the user selects a different
month to be viewed. You can handle this event if you need to respond when the user
changes months in the control.

The Calendar control is typically used as a date picker control. However, it can also be used
to display a schedule. The trick to using the Calendar control to display scheduled items and
special days such as holidays is to make the control large enough to display text in each day.
You can then add Label controls (or other controls) to the Cell object’s Controls collection in
the DayRender event handler. The Calendar control’s DayRender event triggers when each
day is being readied for output. This is not a postback but an event that fires on the server
as the control renders its HTML. This allows you to add text or controls to the day being
rendered.

The following code example shows how a Calendar control can be used to display a
schedule. In this example, a webpage was created and a Calendar control was added to the
page. The following code was added to the code-behind page (within the page’s partial
class) to show how the Calendar control’s properties can be set programmatically and the
Calendar control events can be used to render individual days.

Sample of Visual Basic Code

Private scheduleData As New Dictionary(Of DateTime, String)(5)

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
 ' Load the schedule (which would be read from a database)
 scheduleData.Add(New DateTime(2011, 1, 9), "Vacation Day")
 scheduleData.Add(New DateTime(2011, 1, 18), "Budget planning meeting")
 scheduleData.Add(New DateTime(2011, 2, 5), "Conference call")
 scheduleData.Add(New DateTime(2011, 2, 10), "Meet with art director")
 scheduleData.Add(New DateTime(2011, 2, 15), "Vacation day")

 Calendar1.Caption = "Personal Schedule"
 Calendar1.FirstDayOfWeek = System.Web.UI.WebControls.FirstDayOfWeek.Sunday
 Calendar1.NextPrevFormat = NextPrevFormat.ShortMonth

 200	 ChAPTER 4	 Using Server Controls

 Calendar1.TitleFormat = TitleFormat.MonthYear
 Calendar1.ShowGridLines = True
 Calendar1.DayStyle.HorizontalAlign = HorizontalAlign.Left
 Calendar1.DayStyle.VerticalAlign = VerticalAlign.Top
 Calendar1.DayStyle.Height = New Unit(75)
 Calendar1.DayStyle.Width = New Unit(100)
 Calendar1.OtherMonthDayStyle.BackColor = System.Drawing.Color.Cornsilk
 Calendar1.TodaysDate = New DateTime(2011, 1, 1)
 Calendar1.VisibleDate = Calendar1.TodaysDate
End Sub

Protected Sub Calendar1_SelectionChanged(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Calendar1.SelectionChanged

 ActionLabel.Text = String.Format("Selection changed to: {0}", _
 Calendar1.SelectedDate.ToShortDateString())
End Sub

Protected Sub Calendar1_VisibleMonthChanged_
 (ByVal sender As Object, ByVal e As MonthChangedEventArgs) _
 Handles Calendar1.VisibleMonthChanged

 ActionLabel.Text = String.Format_
 ("Month changed to: {0}", e.NewDate.ToShortDateString())
End Sub

Protected Sub Calendar1_DayRender(ByVal sender As Object, ByVal e As DayRenderEventArgs)
_
 Handles Calendar1.DayRender

 If scheduleData.ContainsKey(e.Day.[Date]) Then
 Dim lit As New Literal()
 lit.Text = "
"
 e.Cell.Controls.Add(lit)

 Dim lbl As New Label()
 lbl.Text = DirectCast(scheduleData(e.Day.[Date]), String)
 lbl.Font.Size = New FontUnit(FontSize.Small)
 e.Cell.Controls.Add(lbl)
 End If
End Sub

Sample of C# Code

private Dictionary<DateTime, string> scheduleData = new Dictionary<DateTime,string>(5);

protected void Page_Load(object sender, EventArgs e)
{
 // Load the schedule (which would be read from a database)
 scheduleData.Add(new DateTime(2011, 1, 9), "Vacation Day");
 scheduleData.Add(new DateTime(2011, 1, 18), "Budget planning meeting");
 scheduleData.Add(new DateTime(2011, 2, 5), "Conference call");
 scheduleData.Add(new DateTime(2011, 2, 10), "Meet with art director");
 scheduleData.Add(new DateTime(2011, 2, 15), "Vacation day");

 Calendar1.Caption = "Personal Schedule";

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 201

 Calendar1.FirstDayOfWeek = FirstDayOfWeek.Sunday;
 Calendar1.NextPrevFormat = NextPrevFormat.ShortMonth;
 Calendar1.TitleFormat = TitleFormat.MonthYear;
 Calendar1.ShowGridLines = true;
 Calendar1.DayStyle.HorizontalAlign = HorizontalAlign.Left;
 Calendar1.DayStyle.VerticalAlign = VerticalAlign.Top;
 Calendar1.DayStyle.Height = new Unit(75);
 Calendar1.DayStyle.Width = new Unit(100);
 Calendar1.OtherMonthDayStyle.BackColor = System.Drawing.Color.Cornsilk;
 Calendar1.TodaysDate = new DateTime(2011, 1, 1);
 Calendar1.VisibleDate = Calendar1.TodaysDate;
}

protected void Calendar1_SelectionChanged(object sender, EventArgs e)
{
 ActionLabel.Text = string.Format("Selection changed to: {0}",
 Calendar1.SelectedDate.ToShortDateString());
}

protected void Calendar1_VisibleMonthChanged(object sender,
 MonthChangedEventArgs e)
{
 ActionLabel.Text = string.Format("Month changed to: {0}",
 e.NewDate.ToShortDateString());
}

protected void Calendar1_DayRender(object sender, DayRenderEventArgs e)
{
 if (scheduleData.ContainsKey(e.Day.Date))
 {
 Literal lit = new Literal();
 lit.Text = "
";
 e.Cell.Controls.Add(lit);

 Label lbl = new Label();
 lbl.Text = (string)scheduleData[e.Day.Date];
 lbl.Font.Size = new FontUnit(FontSize.Small);
 e.Cell.Controls.Add(lbl);
 }
}

This code sets the Calendar control properties, such as style and size, in the Page_Load
event handler. A method called GetSchedule is added to populate a collection of special
dates. In the Calendar1_DayRender event handler, the Date and Cell of the day that is being
rendered are available. If a special date is found, a Label is created that contains the special
date, and it is added to the Cell object’s Controls collection. When the webpage is displayed,
the special dates are rendered on the Calendar control, as shown in Figure 4-14.

 202	 ChAPTER 4	 Using Server Controls

FigURE 4-14 The rendered Calendar control displaying a schedule.

The FileUpload Control
The FileUpload control is used to allow a user to select and upload a single file to the server. The
control displays as a text box and Browse button. The user can either type a file name and path
into the text box or click the Browse button and select a file.

The FileUpload control is represented as an <asp:FileUpload> element in Source view. It
has no content nested within its opening and closing tags, so you can write this element as
a singleton element. This control generates an <input type="file"> element when rendered
as HTML to a browser.

The FileUpload control does not cause a postback to the web server. After selecting a file,
the user needs to cause a postback by using a different control, such as a Button. The postback
causes the file to be uploaded to the server as posted data. At the server, the page code does
not run until the file is uploaded to server memory.

The following properties give you flexible ways to access the uploaded file:

■ Filebytes The file is exposed as a byte array.

■ FileContent The file is exposed as a stream.

■ PostedFile The file is exposed as an object of type HttpPostedFile. This object has
properties, such as ContentType and ContentLength.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 203

You need to examine any file that is uploaded to determine whether it should be saved;
you can examine characteristics such as the file name, size, and Multipurpose Internet Mail
Extensions (MIME) type, which specifies the type of file that is being uploaded. When you
are ready to save the file, you can use the SaveAs method on the FileUpload control or the
HttpPostedFile object.

You can save the file in any location for which you have permission to create files. By
default, the requireRootedSaveAsPath attribute of the httpRuntime configuration element
in the Web.config file is set to true, which means that you need to provide an absolute
path to save the file. You can get an absolute path by using the MapPath method of the
HttpServerUtility class and passing to the method the tilde (~) operator, which represents
the application root folder.

The maximum size of the file that can be uploaded depends on the value of the
MaxRequestLength attribute of the httpRuntime configuration element in the Web.config
file. If a user attempts to upload a file that is larger than the MaxRequestLength, the
upload fails.

SeCurIty alert

The FileUpload control allows users to upload files but makes no attempt to validate the
safety of the uploaded files. The control does not provide a means to filter the file types
that can be uploaded by a user, but you can examine the file characteristics, such as the file
name and extension, as well as the ContentType, after the file has been uploaded.

Although you can provide client-side script to examine the file that is being submitted,
remember that client-side validation is a convenience for the honest user. A hacker can
easily strip the webpage of client-side code to bypass this validation.

In this example, a webpage was created and a FileUpload control was added to the page.
In addition, a Button was added to the webpage so that the user can submit the file to the
web server via postback. A folder called Uploads was added to the website . The following
code was added to the code-behind page to show how the FileUpload control’s properties
can be set programmatically and a file can be uploaded and saved.

Sample of Visual Basic Code

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 If (FileUpload1.HasFile) Then
 Label1.Text = _
 String.Format("File Length: {0}
File Name: {1}
MIME Type: {2}", _
 FileUpload1.FileBytes.Length,
 FileUpload1.FileName,
 FileUpload1.PostedFile.ContentType)
 FileUpload1.SaveAs(_
 MapPath("~/Uploads/" + FileUpload1.FileName))
 Else
 Label1.Text = "No file received."
 End If
End Sub

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 204	 ChAPTER 4	 Using Server Controls

Sample of C# Code

protected void Button1_Click(object sender, EventArgs e)
{
 if (FileUpload1.HasFile)
 {
 Label1.Text =
 string.Format("File Length: {0}
File Name: {1}
MIME Type: {2}",
 FileUpload1.FileBytes.Length,
 FileUpload1.FileName,
 FileUpload1.PostedFile.ContentType);
 FileUpload1.SaveAs(
 MapPath("~/Uploads/" + FileUpload1.FileName));
 }
 else
 {
 Label1.Text = "No file received.";
 }
}

The webpage is shown in Figure 4-15. When a file is selected and the Submit button
is clicked, the code checks to see if a file has been uploaded. If a file has been uploaded,
information about the file is placed into the Label control for display. The file is then saved
to the Uploads folder. The website requires an absolute path, and MapPath performs the
conversion from the relative path supplied to an absolute path. Finally, the file is saved.

FigURE 4-15 The FileUpload control after a file has been uploaded.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 205

The Panel Control
The Panel control is used as a control container. It can be useful when you need to group controls
and work with them as a single unit. A common example is the need to display and hide a group
of controls. Panel controls are also useful for control developers who are creating features such as
tabs or show/hide toggles.

In Source view, the Panel control is represented as an <asp:Panel> element. This element
can contain many controls nested within it. These controls are considered to be contained by
the Panel. In HTML output, the Panel control generates a <div> element inside the browser.

There are a few properties that you need to be aware of when working with the Panel control:

■ backimageUrl Used to display a background image in the Panel control

■ horizontalAlignment Sets the horizontal alignment of the controls that are in the Panel

■ Wrap Specifies whether items in the Panel automatically continue on the next line when
a line is longer than the width of the Panel control

■ Defaultbutton Specifies the button that is clicked when the Panel control has focus
and the user presses Enter on his or her keyboard

■ Defaultbutton Can be set to the ID of any control on your form that implements the
IButtonControl interface.

As an example, consider a page with a Login form. You might want to provide a button that
allows a user to turn off the visibility of (hide) this form. The following shows the markup of the
ASPX source.

<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="ButtonShowHide" runat="server" Text="Login: hide form"
 width="200" onclick="ButtonShowHide_Click"/>
 <asp:Panel ID="Panel1" runat="server" BackColor="Beige" Width="200">
 <asp:Label ID="Label1" runat="server" Text="User name: "></asp:Label>

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 <asp:Label ID="Label2" runat="server" Text="Password: "></asp:Label>

 <asp:TextBox ID="TextBox2" runat="server"></asp:TextBox>

 <asp:Button ID="ButtonLogin" runat="server" Text="Login" />
 </asp:Panel>
 </div>
 </form>
</body>

 206	 ChAPTER 4	 Using Server Controls

The code to show and hide this form is straightforward. You need to handle the toggle
button’s Click event and set the Visible property of the Panel control appropriately. The
following code demonstrates this.

Sample of Visual Basic Code

Protected Sub ButtonShowHide_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonShowHide.Click

 Panel1.Visible = Not Panel1.Visible
 If Panel1.Visible Then
 ButtonShowHide.Text = "Login: hide form"
 Else
 ButtonShowHide.Text = "Login: show form"
 End If

End Sub

Sample of C# Code

protected void ButtonShowHide_Click(object sender, EventArgs e)
{
 Panel1.Visible = !Panel1.Visible;
 if (Panel1.Visible)
 {
 ButtonShowHide.Text = "Login: hide form";
 }
 else
 {
 ButtonShowHide.Text = "Login: show form";
 }
}

The example webpage is shown in Figure 4-16. Clicking the Logon: Hide Form button hides
the Panel and all of its controls, and clicking again displays the Panel and its controls.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 207

FigURE 4-16 A Panel control with a button to toggle visibility.

The MultiView and View Controls
Like the Panel control, the MultiView and View controls are also container controls; that is, they
are used to group other controls. Again, this is useful when you want to treat and manage a
group of controls as a single unit. A MultiView exists to contain other View controls. A View
control must be contained inside a MultiView. The two controls are meant to work together.
The MultiView is meant to contain many child View controls. It allows you to hide one and then
show another View to the user. The MultiView control is also used to create wizards, where each
View control in the MultiView control represents a different step or page in the wizard.

MultiView and View do not generate any direct HTML elements when they are rendered,
because these controls are essentially server-side controls that manage the visibility of their child
controls. In Source view, the MultiView control is represented as an <asp:MultiView> element,
and the View control is represented as an <asp:View> element nested inside a MultiView.

 208	 ChAPTER 4	 Using Server Controls

You can use the ActiveViewIndex property or the SetActiveView method to change the
View programmatically. If the ActiveViewIndex is set to -1, no View controls are displayed.
If you pass an invalid View or a null (Nothing) value into the SetActiveView method, an
HttpException is thrown. Note that only one View control can be active at a time.

As an example, consider a user registration webpage in which you need to walk a user
through the process of registering with your site. You could use a single MultiView control
and three View controls to manage this process. Each View control represents a step in the
process. An example of the page’s layout is shown in Figure 4-17.

FigURE 4-17 The MultiView and View control example webpage.

To manage the page in this example, the buttons on the page are set as command buttons.
When a user clicks a button, the CommandName property of CommandEventArgs is checked
to determine which button was pressed. Based on this information, the MultiView shows (and
thereby hides) another View control. The following is an example of the code-behind page.

Sample of Visual Basic Code

Partial Class ViewControlVb
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 209

 MultiView1.ActiveViewIndex = 0
 End Sub

 Protected Sub Button_Command(ByVal sender As Object, _
 ByVal e As CommandEventArgs)

 Select e.CommandName
 Case "Step1Next"
 MultiView1.ActiveViewIndex = 1
 Case "Step2Back"
 MultiView1.ActiveViewIndex = 0
 Case "Step2Next"
 MultiView1.ActiveViewIndex = 2
 Case "Step3Back"
 MultiView1.ActiveViewIndex = 1
 Case "Finish"
 'hide control from user to simulate save
 MultiView1.ActiveViewIndex = -1
 End Select
 End Sub
End Class

Sample of C# Code

public partial class ViewControl : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 MultiView1.ActiveViewIndex = 0;
 }

 protected void Button_Command(object sender, CommandEventArgs e)
 {
 switch (e.CommandName)
 {
 case "Step1Next":
 MultiView1.ActiveViewIndex = 1;
 break;
 case "Step2Back":
 MultiView1.ActiveViewIndex = 0;
 break;
 case "Step2Next":
 MultiView1.ActiveViewIndex = 2;
 break;
 case "Step3Back":
 MultiView1.ActiveViewIndex = 1;
 break;
 case "Finish":
 //hide control from user to simulate save
 MultiView1.ActiveViewIndex = -1;
 break;
 }
 }
}

 210	 ChAPTER 4	 Using Server Controls

When the webpage is displayed, the first step is displayed to the user. When he or she clicks
Next, the processing returns to the server and the Button_Command event is fired. The page
changes to another View control based on the results of this event. Figure 4-18 shows the
MultiView example in action.

FigURE 4-18 The MultiView control is used to switch between the View controls on the server.

The Wizard Control
The Wizard control is a complex control that is used to display a series of WizardStep controls
to a user, one after the other, as part of a user input process. The Wizard control builds on the
MultiView and View controls presented previously. It provides functionality to ensure that only
one WizardStep control is visible at a time and provides the ability to customize most aspects
of the Wizard and WizardStep controls. The most significant use of the Wizard control is to
prompt the user for a large amount of data by breaking the data into logical chunks, or steps.
The Wizard control presents the user with steps that can be validated, either at the end of the
process or in between each step. You certainly can accomplish the same result by using sepa-
rate webpages for each logical chunk of data, but the wizard consolidates the data collection
process into a single webpage.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 211

The Wizard control contains a header area that can be customized to display information
specific to the step with which the user is currently engaged. The Wizard control also contains
a sidebar area that can be used to quickly navigate to steps in the control. You can also
programmatically control which step is displayed; you are not constrained to navigating
through the steps in a linear fashion.

The built-in navigation capabilities determine which buttons are displayed based on the
StepType value. The BaseWizardStep class contains the StepType property, which can be set
to one of the following WizardStepType enumeration values:

■ WizardstepType.Auto This renders navigation buttons based on the location of the
step within the WizardSteps collection property of the Wizard control. This is the default.

■ WizardstepType.Complete This is the last step to appear. No navigation buttons
are rendered.

■ WizardstepType.Finish This is the final data collection step; the Finish and Previous
buttons are rendered for navigation.

■ WizardstepType.start This is the first step to appear; only the Next button is rendered.

■ WizardstepType.step This is a step between the Start and the Finish steps. The
Previous and Next buttons are rendered.

In the following example, a wizard gives users the ability to select options on a vehicle.
In a real vehicle selection scenario, many more options would, of course, be available. This,
in turn, would dictate simplifying the option selection for the user (and thus justifying the
use of the Wizard control).

To create the form for this example, you add a Wizard control to a webpage. Inside the
Wizard control are WizardStep controls, one for each selection step, as follows: Exterior,
Interior, Options, and Summary. The Exterior selection step contains three RadioButton
controls for selection of a red, blue, or black exterior. The Interior selection step contains
two RadioButton controls for selection of leather or cloth seats. The Options selection step
contains CheckBox controls for selection of AM/FM radio, heated seats, and an air fresh-
ener. The Summary step contains a Label control that is populated with the selections that
were made in the previous steps. In Figure 4-19, the populated WizardStep controls were
cut out of Visual Studio and put in a single graphic for you to view.

 212	 ChAPTER 4	 Using Server Controls

FigURE 4-19 The WizardStep controls populated with the controls to be displayed to the user.

After the WizardStep controls were created and each step was populated, code was added
to the code-behind page to populate the Label control in the Summary step. Also, code was
added to the Form_Load event handler to assure that the Wizard control starts at the first
step, and finally, code was added to the Wizard1_FinishButtonClick event handler to display
the results. The code-behind page is as follows.

Sample of Visual Basic Code

Protected Sub Page_Load(sender As Object, e As EventArgs)
 If Not IsPostBack Then
 Wizard1.ActiveStepIndex = 0
 End If
End Sub

Protected Sub Wizard1_FinishButtonClick(sender As Object, e As
WizardNavigationEventArgs)
 Wizard1.Visible = False
 Response.Write(String.Format("Finished
{0}", Label1.Text))

End Sub

Protected Sub Wizard1_NextButtonClick(sender As Object, e As WizardNavigationEventArgs)
 If Wizard1.WizardSteps(e.NextStepIndex).Title = "Summary" Then
 Dim sb As New StringBuilder()

 For Each ws As WizardStep In Wizard1.WizardSteps
 For Each c As Control In ws.Controls
 If TypeOf c Is CheckBox Then
 Dim cb As CheckBox = DirectCast(c, CheckBox)
 If cb.Checked Then
 sb.AppendFormat("{0}
", cb.Text)

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 213

 End If
 End If
 Next
 Next
 Label1.Text = sb.ToString()
 End If
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 Wizard1.ActiveStepIndex = 0;
 }
}

protected void Wizard1_FinishButtonClick(object sender,
 WizardNavigationEventArgs e)
{
 Wizard1.Visible = false;
 Response.Write(string.Format("Finished
{0}", Label1.Text));
}

protected void Wizard1_NextButtonClick(object sender,
 WizardNavigationEventArgs e)
{
 if (Wizard1.WizardSteps[e.NextStepIndex].Title == "Summary")
 {
 StringBuilder sb = new StringBuilder();

 foreach (WizardStep ws in Wizard1.WizardSteps)
 {
 foreach (Control c in ws.Controls)
 {
 if (c is CheckBox)
 {
 CheckBox cb = (CheckBox)c;
 if (cb.Checked)
 {
 sb.AppendFormat("{0}
", cb.Text);
 }
 }
 }
 }
 Label1.Text = sb.ToString();
 }
}

When the webpage is displayed, the user sees the first step (Exterior). The user can go
from step to step, and on the final step, click Finish. In the Summary step, the Label control
displays the current selections. After the user clicks Finish, the Wizard control is hidden and
the summary information is displayed.

 214	 ChAPTER 4	 Using Server Controls

The Xml Control
The Xml control is used to display the contents of an XML document. This control is useful if
your data is stored in XML and you need to execute an Extensible Stylesheet Language (XSL)
transformation. The data can then be rendered for display to a user by using the Xml control.

The XML document to be displayed is specified by setting either the DocumentSource
property or the DocumentContent property. The DocumentSource property accepts a string
that specifies the location of an XML file to be loaded into the control. The DocumentContent
property accepts a string that contains actual XML content.

The TransformSource property accepts an optional string that contains the location of
an XSL transformation file to apply to the XML document. The Transform property accepts
a Transform object that can be used to perform the transformation as well. The Xml control
also contains the TransformArgumentList property, which is used to pass arguments to the
XSL transformation.

In the following example, an Xml control is used to display the contents of an XML file
after an XSL transformation is applied. This XML file and the XSL transformation file are as
follows.

XML File: ProductList.xml

<?xml version="1.0" encoding="utf-8" ?>
<ProductList>
 <Product Id="1A59B" Department="Sporting Goods" Name="Baseball" Price="3.00" />
 <Product Id="9B25T" Department="Sporting Goods" Name="Tennis Racket" Price="40.00" />
 <Product Id="3H13R" Department="Sporting Goods" Name="Golf Clubs" Price="179.00" />
 <Product Id="7D67A" Department="Clothing" Name="Shirt" Price="12.00" />
 <Product Id="4T21N" Department="Clothing" Name="Jacket" Price="45.00" />
</ProductList>

XSL Transformation File: ProductList.xsl

<?xml version="1.0" encoding="utf-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt"
xmlns:labs="http://labs.com/mynamespace">
 <xsl:template match="/">
 <html>
 <head>
 <title>Product List</title>
 </head>
 <body>
 <center>
 <h1>Product List</h1>
 <xsl:call-template name="CreateHeading"/>
 </center>

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 215

 </body>
 </html>
 </xsl:template>
 <xsl:template name="CreateHeading">
 <table border="1" cellpadding="5">
 <tr >
 <th bgcolor="yellow">

 Id

 </th>
 <th bgcolor="yellow">

 Department

 </th>
 <th bgcolor="yellow">

 Name

 </th>
 <th bgcolor="yellow">

 Price

 </th>
 </tr>
 <xsl:call-template name="CreateTable"/>
 </table>
 </xsl:template>
 <xsl:template name="CreateTable">
 <xsl:for-each select="/ProductList/Product">
 <tr>
 <td align="center">
 <xsl:value-of select="@Id"/>
 </td>
 <td align="center">
 <xsl:value-of select="@Department"/>
 </td>
 <td>
 <xsl:value-of select="@Name"/>
 </td>
 <td align="right">
 <xsl:value-of select="format-number(@Price,'$#,##0.00')"/>
 </td>
 </tr>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

 216	 ChAPTER 4	 Using Server Controls

For the webpage related to this example, an Xml control is added to the page. The following
code was added to the code-behind file to display the XML file after the XSL transformation is
applied.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Xml1.DocumentSource = "~/App_Data/ProductList.xml"
 Xml1.TransformSource = "~/App_Data/ProductList.xsl"
End Sub

Sample of C# Code

public partial class XmlControlVb : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Xml1.DocumentSource = "~/App_Data/ProductList.xml";
 Xml1.TransformSource = "~/App_Data/ProductList.xsl";
 }
}

When the webpage is displayed, the XML and XSL files are loaded. The resulting transfor-
mation is shown in Figure 4-20.

FigURE 4-20 The result of applying the XSL transformation to the XML file.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 217

Quick Check
	 1. What control provides the best implementation of a schedule of specific dates?

	 2. You want to create a webpage that prompts the user to input lots of data, and you
want the data input to be spread across multiple screens. What is the best control
to use to implement this solution on a single webpage?

	 3. Your customer wants her company’s home page to contain an image of the world
and require users to click their specific countries. This redirects the users to the
websites for their respective countries. What control will you use?

Quick Check Answers
	 1. The Calendar control provides the best implementation of a schedule of specific

dates.

	 2. The Wizard control is the best control to use.

	 3. The ImageMap control should be used.

PrActIcE	 Working with specialized Web Controls

In this practice, you use the specialized web controls that have been defined in this lesson to
create a webpage that allows users to select an office by using a map and select a date for the
office to be serviced.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Creating the Website and Adding Controls

In this exercise, you create a website and add controls to the site. You then add code to the
code-behind page to initialize the Wizard control and the ImageMap hot spots. You also
write code to display a summary after the wizard has completed its actions.

	 1. Open Visual Studio and create a new website by using your preferred programming
language. Create a new webpage without a master page.

	 2. Add a Wizard control to the webpage. From the Wizard Tasks menu, select Add/Remove
WizardSteps.

 218	 ChAPTER 4	 Using Server Controls

	 3. Use the collection editor to define three wizard steps. Set their Title properties to the
following (in order): select Office, service Date, and summary. Figure 4-21 shows an
example. When complete, close the WizardStep Collection Editor.

FigURE 4-21 The WizardStep Collection Editor.

	 4. Add a new folder to your project. Right-click the project node in Solution Explorer and
select New Folder. Rename the folder images.

	 5. Add the Floorplan.png file to the Images folder by dragging it to Solution Explorer
from Windows Explorer. This file is available in the sample code installed from this
book’s CD.

	 6. In Design view, select the Wizard control. Use the Properties window to set the Width
property to 475px and the Height property to 350px.

	 7. In Design view, click the Select Office link in the Wizard control to ensure that this is
the current, selected step in the designer.

	 8. Add an ImageMap control to this step (drag from the Toolbox). Set its ID to
Officeimagemap. Set its ImageUrl property to point to the Floorplan.jpg file.

	 9. Under the ImageMap control, type Office selected:. After this text, add a Label con-
trol with the OfficeselectedLabel ID, and clear its Text property. Your ASPX source for
this WizardStep control should look like the following, example.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 219

ASPX Source: Select Office

<asp:Wizard ID="Wizard1" runat="server" Height="350px" Width="475px">
 <WizardSteps>
 <asp:WizardStep runat="server" title="Select Office">
 <asp:ImageMap ID="OfficeImageMap" runat="server"
 ImageUrl="~/Images/Floorplan.png">
 </asp:ImageMap>

 Office Selected:
 <asp:Label ID="OfficeSelectedLabel" runat="server"></asp:Label>
 </asp:WizardStep>
 <asp:WizardStep runat="server" title="Service Date">
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Summary">
 </asp:WizardStep>
 </WizardSteps>
</asp:Wizard>

	 10. In Design view, click the Wizard control’s Service Date link to make this the active step.
Inside this step, add the text select service Date:. Under this text, add a Calendar
control, and set the ID to serviceDateCalendar. Your ASPX source for this step should
look like the following.

ASPX Source: Service Date

<asp:WizardStep runat="server" title="Service Date">
 Select Service Date:

 <asp:Calendar ID="ServiceDateCalendar" runat="server"></asp:Calendar>
</asp:WizardStep>

	 11. Next, in Design view, click the Summary link in the Wizard control to make this the
active step. In this step, add a Label control and set its ID to summaryLabel, its
Height to 200, and its Width to 250. Clear its Text value. Your ASPX source for this
step should look like the following.

ASPX Source: Summary

<asp:WizardStep runat="server" Title="Summary">
 <asp:Label ID="SummaryLabel" runat="server" Height="200px" Width="250px">
 </asp:Label>
</asp:WizardStep>

	 12. From the Wizard Tasks menu, choose AutoFormat. Click Professional, and then click OK.

	 13. Open the webpage’s code-behind file. If you are using Visual Basic .NET, add a Page_Load
event handler.

 220	 ChAPTER 4	 Using Server Controls

	 14. In the Page_Load event handler, add an if statement that tests whether the webpage is
being posted back to the server.

	 a. Inside the false portion of the if statement (when the request is not a postback), add
code to set the ActiveStepIndex of the Wizard control to the first WizardStep (0).

	 b. In the same block, add code to set the HotSpot mode of the ImageMap to perform
a postback (OfficeImageMap.HotSpotMode = HotSpotMode.PostBack).

	 c. Finally, create a function that returns a RectangleHotSpot instance and takes
the appropriate parameters. Add code to call this function and add the resulting
RectangleHotSpot instance to the ImageMap control. Table 4-5 shows the dimen-
sions of the various office hot spots.

TAbLE 4-5 RectangularHotSpot Values

POsTbACkvALUE LEFT TOP RighT bOTTOm

Cubicle A 0 0 123 105

Cubicle B 124 0 262 105

Cubicle C 263 0 382 105

Cubicle D 258 164 382 286

Cubicle E 135 164 257 286

Cubicle F 0 164 134 286

	 15. Create an OfficeImageMap_Click event handler in the code-behind page. Add code
to this event to place the PostBackValue from the ImageMap event arguments into
the Label1 control.

	 16. Create an event handler for the Wizard1_FinishButtonClick event in the code-behind
page. In this event, add code to hide the Wizard control, and write a thank-you message
to the user.

	 17. Create an event handler for the Wizard control’s ActiveStepChanged event. Add code
to this method to find out whether the active step is the summary step. If the summary
step is the current step, populate the SummaryLabel control with a message that shows
the current selection summary. Your final code-behind page should resemble the fol-
lowing example.

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 221

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)_
 Handles Me.Load
 If Not IsPostBack Then
 Wizard1.ActiveStepIndex = 0
 OfficeImageMap.HotSpotMode = HotSpotMode.PostBack
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle A", 0, 0, 123, 105))
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle B", 124, 0, 262, 105))
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle C", 263, 0, 382, 105))
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle D", 258, 164, 382, 286))
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle E", 135, 164, 257, 286))
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle F", 0, 164, 134, 286))
 End If
End Sub

Private Function GetHotSpot _
 (ByVal name As String, ByVal left As Integer, ByVal top As Integer, _
 ByVal right As Integer, ByVal bottom As Integer) As RectangleHotSpot

 Dim rhs As New RectangleHotSpot()

 rhs.PostBackValue = name
 rhs.Left = left
 rhs.Top = top
 rhs.Right = right
 rhs.Bottom = bottom

 Return rhs
End Function

Protected Sub OfficeImageMap_Click(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.ImageMapEventArgs) _
 Handles OfficeImageMap.Click

 OfficeSelectedLabel.Text = e.PostBackValue
End Sub

Protected Sub Wizard1_FinishButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles Wizard1.FinishButtonClick

 Wizard1.Visible = False
 Response.Write("Thank you! Your request is being processed.")
End Sub

Protected Sub Wizard1_ActiveStepChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Wizard1.ActiveStepChanged
 If Wizard1.ActiveStep.Title = "Summary" Then
 SummaryLabel.Text = String.Format_
 ("Summary Info:
Room: {0}
Delivery Date: {1}", _
 OfficeSelectedLabel.Text, _
 ServiceDateCalendar.SelectedDate.ToShortDateString())
 End If
End Sub

 222	 ChAPTER 4	 Using Server Controls

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 Wizard1.ActiveStepIndex = 0;
 OfficeImageMap.HotSpotMode = HotSpotMode.PostBack;

 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle A", 0, 0, 123, 105));
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle B", 124, 0, 262, 105));
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle C", 263, 0, 382, 105));
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle D", 258, 164, 382,
286));
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle E", 135, 164, 257,
286));
 OfficeImageMap.HotSpots.Add(GetHotSpot("Cubicle F", 0, 164, 134, 286));
 }
}

private RectangleHotSpot GetHotSpot(string name, int left,
 int top, int right, int bottom)
{
 RectangleHotSpot rhs = new RectangleHotSpot();

 rhs.PostBackValue = name;

 rhs.Left = left;
 rhs.Top = top;
 rhs.Right = right;
 rhs.Bottom = bottom;

 return rhs;
}

protected void OfficeImageMap_Click(object sender, ImageMapEventArgs e)
{
 OfficeSelectedLabel.Text = e.PostBackValue;
}

protected void Wizard1_FinishButtonClick(
 object sender, WizardNavigationEventArgs e)
{
 Wizard1.Visible = false;
 Response.Write("Thank you! Your request is being processed.");
}

protected void Wizard1_ActiveStepChanged(object sender, EventArgs e)
{
 if (Wizard1.ActiveStep.Title == "Summary")
 {
 SummaryLabel.Text = string.Format
("Summary Info:
Room: {0}
Delivery Date: {1}",
 OfficeSelectedLabelText,
ServiceDateCalendar.SelectedDate.ToShortDateString());
 }
}

 Lesson 2: Exploring Specialized Server Controls ChAPTER 4 223

	 18. Run the webpage and test it.

■ Try clicking each room on the floor plan and observe the results.

■ Click the Service Date link or click Next to display the Calendar control. Select a date.

■ Click the Summary link or click Next to display a summary of your selections.

■ Click Finish to see the thank-you message.

Lesson Summary
■ The Table, TableRow, and TableCell controls provide ways to format tabular and

graphical information that is displayed on a webpage.

■ The Image control is used to display an image on a webpage.

■ The ImageButton control is used to display a clickable image that can be used to cause
a postback to the web server when the image is clicked.

■ The ImageMap control is used to display a clickable image that can be used to cause a
postback to the web server with different results, depending on where the user clicks
the image.

■ The Calendar control displays a calendar for a month the user chooses, and allows the
user to select dates and move to the next or previous month.

■ The FileUpload control is used to display a TextBox and Browse button that allows a
user to either type a file name and path or click Browse and select a file and path.

■ The Panel control is a control container and is useful for controls that you want to
display and hide as a group.

■ The View control is a control container designed to work with the MultiView control
that is useful for controls that you want to display and hide as a group.

■	 The MultiView control contains a collection of View controls; the MultiView control
provides behavior that allows you to switch between View controls.

■ The Wizard control is a complex control that is used to display a series of WizardStep
controls to a user, one after the other.

■ The Xml control is used to display XML data to a user.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Exploring Specialized Server Controls.” The questions are also available on the companion
CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

 224	 ChAPTER 4	 Using Server Controls

	 1. Which of the following represents the best use of the Table, TableRow, and TableCell
controls?

	 A. Creating and populating a table in Design view

	 B. Displaying data from a collection in a grid format

	 c. Creating a table of static images stored in a folder on your site

	 D. Providing layout for dynamically generated controls

	 2. Your graphics department just completed an elaborate image that shows the product
lines that your company sells. Some of the product line graphics are circular, others are
rectangular, and others are complex shapes. You want to use this image as a menu on
your website. What is the best way to incorporate the image into your website?

	 A. Use ImageButton and use the x-coordinate and y-coordinate that are returned
when the user clicks to figure out what product line the user clicked.

	 B. Use the Table, TableRow, and TableCell controls, break the image into pieces that
are displayed in the cells, and use the TableCell control’s Click event to identify the
product line that was clicked.

	 c. Use the MultiView control and break up the image into pieces that can be displayed
in each View control for each product line. Use the Click event of the View to identify
the product line that was clicked.

	 D. Use an ImageMap control and define hot spot areas for each of the product lines.
Use the PostBackValue to identify the product line that was clicked.

	 3. You are creating a website that collects a lot of data from your users. The data collec-
tion spreads over multiple webpages. When the user reaches the last page, you need
to gather all of the data, validate it, and save it to the database. You notice that it can
be rather difficult to gather the data that is spread over multiple pages, and you want
to simplify the development of this application. What control should you use to solve
this problem?

	 A. The View control

	 B. The TextBox control

	 c. The Wizard control

	 D. The Panel control

Case scenarios

In the following case scenarios, you apply what you’ve learned about server controls in this
chapter. If you have difficulty completing this work, review the material in this chapter before
beginning the next chapter. You can find answers to these questions in the “Answers” section
at the end of this book.

 Case Scenarios ChAPTER 4 225

Case Scenario 1: Determining the Type of Controls to Use
You are creating a new webpage that collects customer data. This webpage needs to capture
customer names and addresses, along with an indicator of which customers are active. You
also need to display several vertical market categories and give the data entry personnel the
ability to place each customer into all matching categories. You also prompt the data entry
personnel for the quantity of computers that the customer has, based on several ranges, such
as 0–5, 6–50, 51–250, 251–1,000, and 1,001 or more.

■	 Define the type of controls that you will use and indicate why.

Case Scenario 2: Determining How to Prompt for Data
You are creating a new webpage that will be used to price a car insurance policy. There are
many factors that go into pricing the policy, but the customer information can be placed
into the following categories:

■ Location

■ Vehicles

■ Other drivers

■ Accident history

■ Motor vehicle violations

You are concerned that a prospective customer might leave the site before all of the
information is entered.

■ List some of the ways that you can prompt the user for this information in an organized
fashion, keeping the displayed prompts to a minimum so that the customer does not
feel inundated with too many prompts.

Case Scenario 3: Implementing a Calendar Solution
You are a training provider who is creating a website that will be used to schedule training
contractors to work at different locations. The application will prompt the user for the con-
tractor information and the training class dates. The user can view a schedule that shows all of
the training classes and which contractors are scheduled for specific times. Also, a contractor
can log in and see the training classes that have been assigned to him or her.

	 1. Where can you use the Calendar control in this solution?

	 2. Would you need to use a Table control?

 226	 ChAPTER 4	 Using Server Controls

suggested Practices

To help you master the Implement Server Controls exam objective presented in this chapter,
complete the following tasks.

Implement Server Controls
Reading about different server controls is not enough to give you the experience you need to
work with them in the real world. To gain this experience, complete all three practices.

■ Practice 1 Visit your favorite e-commerce website. Recreate the checkout page by
using web server controls.

■ Practice 2 Create a webpage that displays a picture that the user uploads from his
or her computer. Use the Image and FileUpload controls.

■ Practice 3 Create a checkout form that prompts the user for both a billing address
and a shipping address. For the shipping address, provide a radio button that prompts
the user to use his or her billing address or enter a different shipping address. If the user
chooses to enter a different shipping address, use a MultiView control to display text
boxes that prompt for the required information. If the user chooses to use the billing
address, display the billing address in a Label contained within a different View.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you
can look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 5 227

C h A P T E R 5

Input Validation and Site
Navigation
When you need users to enter data, such as a user name or address, it’s important to

give them quick and precise feedback about any mistakes they make. For example,
if a user forgets to type his or her city, you shouldn’t simply reject the input with a generic
message. Instead, you should provide a descriptive message and highlight the field the user
needs to edit. You can speed the process by validating the input before the user clicks a button
to submit it to the server; Microsoft ASP.NET automatically generates client-side JavaScript to
perform client-side validation. For security reasons, you also need to validate the input at the
server. ASP.NET can handle many types of server-side validation automatically, too.

Another hallmark of a usable and robust web application is solid navigation. You need
to know how to move the user from page to page based on a request, based on postback
information, and based on the overall context of the user’s actions. In addition, users expect
to be able to navigate through a website as they see fit. You need to be able to manage the
application as users move through it.

Web Parts are components of a webpage that can be personalized and rearranged.
You can use Web Parts to improve a site’s consistency while still allowing users to customize
content to their specific needs. You can exchange information between Web Parts, allowing
preferences that are set in one Web Part to propagate to others.

Exam objectives in this chapter:
■	 Developing and Using Web Forms Controls

■ Validate user input.
■ Create page layout.

Lessons in this chapter:
■	 Lesson 1: Performing Input Validation 228
■	 Lesson 2: Performing Site Navigation 245
■	 Lesson 3: Using Web Parts 260

 Contents

 ChAPTER 5 227

 input validation and site navigation 227
Before You Begin . 228

Lesson 1: Performing Input Validation . 228

Understanding the Validation Framework 229

Understanding the RequiredFieldValidator Control 232

Using the CompareValidator Control 232

Using the RangeValidator Control 234

Using the RegularExpressionValidator Control 234

The CustomValidator Control 235

Lesson Summary 244

Lesson Review 244

Lesson 2: Performing Site Navigation . 245

Is Page Navigation Necessary? 246

Choosing a Method to Navigate Pages 246

Client-Side Navigation 247

Cross-Page Posting 248

Client-Side Browser Redirect 250

Server-Side Transfer 251

Using the Site Map Web Server Control 252

Lesson Summary 259

Lesson Review 259

Lesson 3: Using Web Parts . 260

What Are Web Parts? 261

The WebParts Namespace 263

Defining Web Part Zones 264

Creating Web Parts 265

Enabling Users to Arrange and Edit Web Parts 266

Connecting Web Parts 269

Personalizing Web Parts 274

Lesson Summary 286

Lesson Review 286

Case Scenarios . 287

Case Scenario 1: Determining the Proper Validation Controls to
Implement on a User Name 288

Case Scenario 2: Implementing a Site Map 288

Case Scenario 3: Meeting Customization Requirements for an Internal
Insurance Application 288

Suggested Practices . 289

Validate User Input 289

Create Page Layout 290

Take a Practice Test . 290

 228	 ChAPTER 5	 Input Validation and Site Navigation

before you begin

To complete the lessons in the chapter, you should be familiar with developing applications
with Microsoft Visual Studio by using Microsoft Visual Basic or Microsoft Visual C#. In addition,
you should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ A basic understanding of Hypertext Markup Language (HTML) and client-side scripting

■ Creating a new website

■ Adding web server controls to a webpage

real World

Tony Northrup

In the real world, it’s the end user who judges you. You might write the most
manageable code with unbelievably thorough comments, but if the users hate

using your website, you can’t consider it a success.

This chapter covers three technologies that can greatly improve the usability and
likeability of your websites. Input validation might sound like a security feature,
and it is, but because it provides useful and immediate feedback to users, it’s also a
usability feature.

Naturally, proper navigation can make your site easier to use, but try to see the site
through the user’s eyes and not through your developer’s eyes. Users don’t care about
the technical structure of the site; instead, your navigation should reflect how users
access the site.

Finally, Web Parts allow you to create highly customizable websites. Internet users
rarely care to customize a website, however, so Web Parts are best used on intranet
applications. In particular, you should only use Web Parts when users will spend all
day within an application and are willing to learn how to customize it.

Lesson 1: Performing input validation

In this lesson, you will learn how the validation framework operates and how you can use the
validation controls that are included in ASP.NET to perform input validation.

 Lesson 1: Performing Input Validation ChAPTER 5 229

After this lesson, you will be able to:
■	 Understand the validation framework.
■	 Add validation controls to a webpage.
■	 Configure validation controls.
■	 Implement the CustomValidator control.
■	 Test for valid user input.

Estimated lesson time: 60 minutes

Understanding the Validation Framework
A common problem for developers is ensuring that data entered by users is valid. That problem
is made more difficult when the application exists in a web browser. When the data is sent from
the browser to the server, you need to make sure that the data is valid. In addition, users expect
some feedback and assistance entering valid data before they spend the time sending it to the
server for a response. Fortunately, ASP.NET has a built-in data validation framework for handling
this scenario. It provides a straightforward way to accomplish both client-side and server-side
validation with minimal coding.

Client-side validation is a convenience to users, but it is not a security feature. It improves
performance by checking the data at the browser before sending the data to the server. This
avoids unnecessary communication with the server. Client-side validation isn’t a security feature
because a malicious user could easily bypass the client-side validation. Only server-side vali-
dation can improve security. Fortunately, ASP.NET makes it easy to build both client-side and
server-side validation into webpages.

Adding Validation Controls to Your Page
Validation controls are found in the Visual Studio Toolbox. You add them to a webpage the same
way you add other controls. The following are the basic steps for using a validation control on a
webpage:

	 1. Open a webpage in Design view, and open the Visual Studio Toolbox. Add the input
controls that require validation, such as TextBox and RadioButtonList controls.

	 2. Navigate to the Validation tab of the Toolbox. Drag the desired validation control
next to (or near) the control you intend to validate. For example, you might drag a
RequiredFieldValidator control next to a TextBox control to ensure that a user enters
data in the text box.

	 3. Next, you set the ID property of the validation control (from Source view or in the
Properties window). To enhance your code’s readability, use a name for the control
that is similar to the field it validates. For example, if you are validating a TextBox
control named NameTextBox, you might name the validator NameTextBoxValidator.

 230	 ChAPTER 5	 Input Validation and Site Navigation

	 4. The next step is to set the validation control’s ControlToValidate property to the control
being validated.

	 5. Set the ErrorMessage property to something that will be meaningful to the user. The
value set as the ErrorMessage will be displayed to users as assistance when they try to
submit the form with invalid data. This message is typically put into a ValidationSummary
control on the page.

	 6. Set the Text property of the validation control to display a message to the user at the
validation control location if validation fails. If you plan to display validation error mes-
sages in a ValidationSummary control, set the Text property to a short string such as
an asterisk (*). Keeping this short minimizes the space that is required by the validation
control but still offers a visual cue to the user that something is wrong with the item.

	 7. If you do not display the full error message in the Text property, set the validation con-
trol’s tooltip property to be the same as or similar to the ErrorMessage property. This
value will display when the user points to the validation control’s text after validation fails.

	 8. Set the Display property to None to prevent the display of the Text property if valida-
tion fails. If you want to display the Text property, set Display to Static to leave a blank
space where the error message will appear prior to validation. Otherwise, set Display to
Dynamic to reformat the ASP.NET output around the Text if validation fails.

	 9. Optionally, add a ValidationSummary control to display all the validation error messages
in one location after the user has triggered page-level validation by clicking a submit
button. This is especially useful in scenarios in which the webpage is crowded with
other controls, and displaying the validation error message next to the invalid control
presents a difficult layout situation. Typically, you should place the ValidationSummary
either near the submit button or at the top of the page. When the ShowMessageBox
property is set to true, the ValidationSummary control will display a pop-up message
with the validation errors in lieu of, or in addition to, displaying the validation errors
on the webpage.

Note sETTing vALiDATiOn COnTROL COLOR

Use themes to configure validation control text to appear in red. Themes were discussed in
Chapter 2, “Using Master Pages, Themes, and Caching.”

Server-Side Validation
The validation controls work in concert with the Page object, the base class for your webpage.
ASP.NET uses the Page class and the validation controls together to ensure that data coming
from the client is still valid when it gets to the server.

The Page class has a Validators property that contains a collection of all the validation
controls defined on the page. The Page class also has a Validate method. You call this method
to ask the page to check each of the validation controls and determine if anything on the
page is not valid.

 Lesson 1: Performing Input Validation ChAPTER 5 231

ASP.NET calls the Validate method automatically after the page’s Load event handler method
executes. Therefore, after the page has loaded, you can find out if the page is indeed valid on
the server. To do so, check the Page.IsValid property (set by the Validate method). This Boolean
property is only true if all validation controls have completed their processing correctly. Although
the IsValid property is set automatically, you need to check the IsValid property in every event
handler to determine whether the code should run; that is, your code will still execute when
IsValid is set to false unless you tell it not to.

Client-Side Validation
ASP.NET writes client-side validation code for you when you simply use the validation controls
on your page. ASP.NET renders the controls, along with their JavaScript, to the page. This
JavaScript executes as users enter and leave the focus of the controls on your page. Client-
side validation is turned on by default. You can turn it off for specific validation controls by
setting the EnableClientScript property to false.

Again, when the user leaves the focus of a control (uses the Tab key or otherwise navigates
away from a control), the client-side validation for that particular control fires. If validation fails,
the validation control’s Text property is displayed to the user.

You can also use the Focus method of a control to set the focus to a specific control when
your page is loaded. The Focus method adds client-side JavaScript code that executes at the
browser to set focus to the appropriate control. In addition to the new Focus method, a vali-
dation control has a similar property called SetFocusOnError. You can set this property to true
to cause the invalid control to automatically receive focus. In this way, a user does not leave
the control until the control has valid data. This property is set to false by default.

Determining When to Cause Validation
Client-side validation is considered a convenience for users. Its primary benefit is that it prevents
a page from being posted back to the server until all client-side validation has successfully
occurred. Sometimes this can be a problem.

For example, suppose a user wants to click a cancel or help button, and the page is not
in a valid state. The default behavior of these buttons is to attempt a postback to the server.
However, if the page is not valid, clicking the button will trigger client-side validation and
will not cause a postback to the server.

To avoid this, set the CausesValidation property to false for controls that should bypass
validation. For example, if you have a button called ButtonReset that triggers a reset on
the page, you can set it to cause a postback even when the page is not valid by setting
ButtonReset.CausesValidation to false.

 232	 ChAPTER 5	 Input Validation and Site Navigation

Using Validation Groups
Often you do not want to treat your entire page as a single entity that is validated as a whole.
Instead, you might want to break up sections of the page and have them validated indepen-
dently. This is especially true for long data entry forms with multiple sections. You might not
want the entire page’s validation to fire when only submitting a single section of the page.
Fortunately, ASP.NET allows for this scenario.

The validation controls in ASP.NET provide the ValidationGroup property. This property can
be assigned a string value to specify a section of your page (or a group of controls to validate
as a single unit). This property exists on the validation controls and on the controls that cause
a postback. When a control performs a postback, the validation controls that have a matching
ValidationGroup property value are validated. This allows for these controls to validate as a unit.

When you process the postback on the server, the IsValid property on the Page object only
reflects the validity of the validation controls that have been validated. By default, these are the
validation controls that are in the same ValidationGroup, but you can call a validation control’s
Validate method to add that control to the set of controls on which the IsValid property reports.

There is also an overload method to the Page object’s Validate method. This overload accepts
a string that is used to specify the ValidationGroup to validate. This overload is executed when a
postback that causes validation occurs. The Page object also has a GetValidators method that
accepts a string containing the name of the ValidationGroup. This method returns the list of
validation controls in the specified ValidationGroup.

Understanding the RequiredFieldValidator Control
The RequiredFieldValidator control is used to ensure that the user has entered a value into
a control (excluding white space). The other validation controls do not require a value to be
entered. Therefore, you will frequently need to use RequiredFieldValidator with one of the
other controls to achieve the desired validation.

The RequiredFieldValidator control provides the property called InitialValue. It is used
when the control that you are validating defaults to an initial value and you want to ensure
that the user changes this value. For example, if you set some default text in your control, you
can set the InitialValue property to this text to ensure that it is not a valid user input. As an
example, consider a drop-down list for selecting a state on an address entry form. The drop-
down list might contain a value that is an instruction to the user, such as “Select a state”
In this case, you want to ensure that the user selects a state and not this value. You can use
the InitialValue of the RequiredFieldValidator control to manage this scenario.

Using the CompareValidator Control
The CompareValidator control performs validation by using comparison operators such as
greater than and less than to compare the data entered by a user with a constant you set
or a value in a different control.

 Lesson 1: Performing Input Validation ChAPTER 5 233

The CompareValidator control can also be used to verify that the data entered into a par-
ticular control is of a certain data type, such as a date or a number. To use the control for this
purpose, you set the Type property to a valid data type. ASP.NET will then validate that the
user’s input can be cast into a valid instance of the specified type. If all you intend is a data
type check, you can also set the Operator property to DataTypeCheck. Figure 5-1 shows the
Type property being set from the Properties window for a CompareValidator control.

FigURE 5-1  The CompareValidator control being set to verify that the user has entered a date value.

The CompareValidator control uses the ValueToCompare property to set a constant that is
used to perform a comparison. For example, you might want to make sure that the user enters
a birth date greater than 1900. You could do so by setting the ValueToCompare property to
1/1/1900. You would then set the Operator property of the control. This property defines how
to perform the comparison and can be set to Equal, NotEqual, GreaterThan, GreaterThanEqual,
LessThan, LessThanEqual, or DataTypeCheck. In the case of the birth date example, you would
set this value to GreaterThanEqual. If you select DataTypeCheck, you can leave ValueToCompare
blank, because ASP.NET simply verifies that the input is in the correct format.

You can also use the ControlToCompare property to define another control that is used to
perform the comparison. In this case, you are doing a comparison from one control to the next.
For example, if you are asking a user to enter a range of dates, you would want the second
defined date to be later than the first. You could use a CompareValidator control to perform
this check. You would set its ControlToValidate property to the second date entry text box,
and its ControlToCompare property to the first date entry text box. You would then set the
Operator property to GreaterThan.

 234	 ChAPTER 5	 Input Validation and Site Navigation

Using the RangeValidator Control
You often need to ensure that a value entered by a user is within a predefined range of accept-
able values. For example, you might want to create a webpage that shows sales for the current
year, through a specific date. You would then want to verify that the user has entered a date value
that is within the range of the current year. To do so, you can use the RangeValidator control.

The RangeValidator control verifies that user input is within a specified range of values.
This control has two very specific properties for managing the range of acceptable
values: MinimumValue and MaximumValue. These properties work as their name indicates.
The RangeValidator control also uses the Type property to determine the data type of the
user’s input.

If you want the user to enter a date in the past from the current calendar year, you would
set the Type property to Date. You would then set the MinimumValue and MaximumValue
properties programmatically on the server to represent the current year. The following code
shows an example of what this might look like.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 RangeValidatorSalesDate.MinimumValue = "1990"()

 RangeValidatorSalesDate.MaximumValue = _
 DateTime.Now.Year.ToString()

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 RangeValidatorSalesDate.MinimumValue = "1990";
 RangeValidatorSalesDate.MaximumValue =
 DateTime.Now.Year.ToString();
 }
}

Using the RegularExpressionValidator Control
The RegularExpressionValidator control performs its validation based on a regular expression. A
regular expression is a series of pattern-matching codes that you can use to identify and change
simple and complex character sequences. The control uses the ValidationExpression property to
contain the regular expression that is compared to the data that is to be validated. The data is
validated if it matches the regular expression.

 Lesson 1: Performing Input Validation ChAPTER 5 235

The regular expression language is complex, and Microsoft does not identify an under-
standing of the language as an exam objective, so this book will not teach its details. Fortunately,
however, Visual Studio does have several predefined regular expressions from which to choose.
For example, you might simply need to confirm that a user has entered a valid Internet email
address. You can do so by selecting the button next to the ValidationExpression property in the
Properties window. When you do this, you open the Regular Expression Editor dialog box shown
in Figure 5-2.

FigURE 5-2  The Regular Expression Editor dialog box used for selecting predefined regular expressions
for a RegularExpressionValidator control.

More INfo  REgULAR EXPREssiOns

For more information about regular expressions, including tutorials and sample regular
expressions, refer to the following sites:

http://www.regexlib.com/

http://www.regular-expressions.info/

The CustomValidator Control
Even with the robust set of validation controls provided by ASP.NET, you still might find yourself
having another validation need. Luckily, there is the CustomValidator control. You can use it
to create your own validation and have that validation run alongside the other validation on a
page. The CustomValidator control performs validation-based code that you write. You can use
JavaScript to write validation code that will be executed on the client side; you can also write
server-side validation code by using your preferred Microsoft .NET Framework language.

Custom Client-Side Validation
Client-side validation provides users with immediate feedback when they are working with
your page. If you intend to write custom validation and are using other client-side validation,
you should consider writing the JavaScript necessary for your custom validation scenario. Your
custom validation JavaScript needs to participate in the data validation framework that the
other validation controls use. Following this framework ensures that your custom validation
controls work alongside the other validation controls.

 236	 ChAPTER 5	 Input Validation and Site Navigation

The first step in writing your custom client-side validation is to define a JavaScript function
inside your webpage HTML source (not the code-behind). This function must have the following
method signature.

function ClientFunctionName(source, arguments)

You can name your function to suit your needs. However, the parameters should follow the
standard shown here. Your function will be automatically called by the data validation frame-
work after it is attached to a CustomValidator control. When the function is called, the source
parameter will contain a reference to the validation control that is performing the validation.
The arguments parameter is an object that has a property called Value; this property contains
the data to be validated by your client-side function.

Next, you need to write your validation logic. This logic should evaluate arguments.Value
and determine if it is valid or not. After you have determined this, you set the arguments.IsValid
property to true (valid) or false (invalid).

Finally, you attach your client-side function to a CustomValidator control by setting the
ClientFunctionName property of the CustomValidator control to the name of your validation
function.

Consider an example. Suppose you need custom validation for managing password rules at
the client level. Your requirement might be that passwords must be between 6 and 14 characters
in length and must contain at least one uppercase letter, one lowercase letter, and one numeric
character. Suppose that your page includes a TextBox control for entering a new password, a
Button control for submitting the password change, a ValidationSummary control for showing
the long error message, a RequiredFieldValidator control to ensure that the user has typed a
password, and a CustomValidator control for validating the actual password. Your webpage
source might look as follows.

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="NewPassword.aspx.vb"
Inherits="NewPassword" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head2" runat="server">
 <title>Change Password</title>
</head>
<body style="font-family: Arial">
 <form id="form1" runat="server">
 <div>
 <table width="400">
 <tr><td colspan="2" style="font-size: x-large">Change Password</td></tr>
 <tr>
 <td colspan="2">
 <asp:ValidationSummary ID="ValidationSummary1" runat="server" />
 </td>
 </tr>
 <tr>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 1: Performing Input Validation ChAPTER 5 237

 <td width="190" align="right" valign="middle">New password:</td>
 <td width="210" valign="middle">
 <asp:TextBox ID="NewPasswordTextBox" runat="server"
TextMode="Password"></asp:TextBox>
 <asp:RequiredFieldValidator ID="RequiredFieldValidatorPassword"
 runat="server" ErrorMessage="Please enter a valid password" text="*"
 ToolTip="Please enter a valid password"
 ControlToValidate="NewPasswordTextBox"></asp:RequiredFieldValidator>

 <asp:CustomValidator ID="NewPasswordCustomValidator" runat="server"
 Text="*" ToolTip="Password must be between 6-14 characters and
include 1 capital letter, 1 lowercase letter, and 1 number"
 ErrorMessage="Password must be between 6-14 characters and include 1
capital letter, 1 lowercase letter, and 1 number"
 ControlToValidate="NewPasswordTextBox"
 ClientValidationFunction="ValidatePassword"></asp:CustomValidator>
 </td>
 </tr>
 <tr>
 <td></td>
 <td><asp:Button ID="ButtonSubmit" runat="server" Text="Submit" /></td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

The next step is to add client-side validation code to the webpage source. You can do so
before the <body> tag on the page. The following provides an example JavaScript function
called ValidatePassword. Notice that the function signature matches the one defined by the
data validation framework. Also notice the setting of arguments.IsValid.

Sample of Validate Password Client-Side Validator

<script language="javascript" type="text/javascript">
 function ValidatePassword(source, arguments) {
 var data = arguments.Value.split('');
 //start by setting false
 arguments.IsValid = false;

 //check length
 if(data.length < 6 || data.length > 14) return;

 //check for uppercase, lowercase, and number
 var uc = false; var lc = false; var num = false;
 for (var c in data) {
 if (data[c] >= 'A' && data[c] <= 'Z') {
 uc = true;
 } else if (data[c] >= 'a' && data[c] <= 'z') {
 lc = true;
 } else if (data[c] >= '0' && data[c] <= '9') {
 num = true;
 }
 if (uc && lc && num) {

 238	 ChAPTER 5	 Input Validation and Site Navigation

 arguments.IsValid = true;
 break;
 }
 }
 } </script>

The final step is to set the CustomValidator control’s ClientValidationFunction property
to the function name ValidatePassword. You can then run the webpage to test the example.
When the TextBox control loses focus, the custom client-side validation is executed, as shown
in Figure 5-3.

FigURE 5-3  The client-side validation causes the ValidationSummary control to display the error message.

Custom client-side validators are typically used only for complex validations that cannot be
done with a regular expression. For example, you might use a custom client-side validator on
a user registration page to query a web service to verify that a user name is not already taken
without requiring the page to post back to the web server. This simple example is only intended
to demonstrate how to connect the JavaScript function with the ASP.NET CustomValidator.

Custom Server-Side Validation
The CustomValidator control can work client side, server side, or both. To implement server-side
validation with the CustomValidator control, handle its ServerValidate event. This server-side
event can be trapped in your code-behind file to execute code that you write. You provide
an event handler for the specified CustomValidator control the same way you would for any
other control. Server-side validation provides the same two types of parameters that you use
for client-side validation: source provides access to the source validation control, and args
provides the args.Value property for checking the data that should be validated. You also use
the args.IsValid property to indicate validation success or failure. The following code shows the
password example using the ServerValidate event to perform server-side validation.

 Lesson 1: Performing Input Validation ChAPTER 5 239

Sample of Visual Basic Code

Protected Sub NewPasswordCustomValidator_ServerValidate(_
 ByVal source As Object, _
 ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs) _
 Handles CustomValidatorNewPassword.ServerValidate

 Dim data As String = args.Value
 ' Start by setting false
 args.IsValid = False

 ' Check length
 If data.Length < 6 OrElse data.Length > 14 Then
 Return
 End If

 ' Check for uppercase, lowercase, and numeric
 Dim uc As Boolean = False
 Dim lc As Boolean = False
 Dim num As Boolean = False
 For Each c As Char In data
 If Char.IsUpper(c) Then
 uc = True
 ElseIf Char.IsLower(c) Then
 lc = True
 ElseIf Char.IsNumber(c) Then
 num = True
 End If

 If uc AndAlso lc AndAlso num Then
 'must be valid
 args.IsValid = True
 Exit For
 End If
 Next
End Sub

Sample of C# Code

protected void NewPasswordCustomValidator_ServerValidate(object source,
 ServerValidateEventArgs args)
{
 string data = args.Value;
 // Start by setting false
 args.IsValid = false;

 // Check length
 if (data.Length < 6 || data.Length > 14) return;

 // Check for uppercase, lowercase, and numeric
 bool uc = false; bool lc = false; bool num = false;
 foreach (char c in data)
 {
 if (char.IsUpper(c))
 {
 uc = true;
 }

 240	 ChAPTER 5	 Input Validation and Site Navigation

 else if (char.IsLower(c))
 {
 lc = true;
 }
 else if (char.IsNumber(c))
 {
 num = true;
 }

 if (uc && lc && num)
 {
 //must be valid
 args.IsValid = true;
 break;
 }
 }
}

The server-side validation you write does not need to provide exactly the same validation
as that of the client-side code. For example, the custom client-side script for a CustomValidator
control that validates a five-character customer ID might simply test to ensure that five charac-
ters are provided within the acceptable range (and are uppercase and lowercase as required).
The server-side validation might perform a database query to ensure that the customer ID is
that of a valid customer in the database.

Quick Check
	 1. Which validation control can be used to determine whether data that is entered

into a TextBox control is of type Currency?

	 2. What control can be used to display all validation errors on a page inside a
pop-up window?

Quick Check Answers
	 1. You can use the CompareValidator control to do a data type check. Set its

Operator property to DataTypeCheck and its Type property to Currency.

	 2. The ValidationSummary control can be used to show a summary of validation
error messages for a page. The control can also be used as a pop-up browser
window.

PrActIcE	 Working with validation Controls

In this practice, you create a webpage that simulates user registration with a site. This page will
contain TextBox controls for the user to enter a name, email address, password, and password
confirmation.

 Lesson 1: Performing Input Validation ChAPTER 5 241

The following are the validation rules for the page:

■ All fields must contain data.

■ The user name field must be between 6 and 14 characters in length. These characters
can be uppercase, lowercase, numeric, or underscores.

■ The user’s email address should be in valid email address format.

■ The password and confirm password fields will be 6 to 14 characters. The user’s password
must contain at least one uppercase letter, one lowercase letter, and one number (as
described in the custom validation control example earlier in this chapter).

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book's companion CD. For more information about the
project files and other content on the CD, see "Using the Companion Media" in this book's
Introduction.

ExErcIsE	 Creating the Website and Adding Controls

In this exercise, you create the website and add the user input controls.

	 1. Open Visual Studio and create a new ASP.NET Empty Web Site.

	 2. Add a new web form named userreg.aspx without a master page. In design view, add
the words User Registration to the top of the page.

	 3. On separate lines, add the data entry field descriptions: User name:, Email:, Password:,
and Confirm password:.

	 4. Add a TextBox control to each description. Name the TextBox controls UsernameTextbox,
EmailTextbox, PasswordTextbox, and ConfirmPasswordTextbox.

	 5. Set the TextMode property of PasswordTextBox and ConfirmPasswordTextBox to
Password.

	 6. Add a Button control under the text boxes. Set the Text property of the Button control
to Register.

	 7. All of the TextBox controls require user input. Therefore, you will add a RequiredField-
Validator after each TextBox control. Name each of these controls relative to the field it
validates. For each of the RequiredFieldValidator controls, set the ControlToValidate prop-
erty to the TextBox that is being validated. Set the ErrorMessage and ToolTip properties
to your user name is required, your email is required, A password is required, and
you must confirm your password, as appropriate. Set the Text property to an asterisk ().

	 8. Next, you will define validation for the UserNameTextBox control. The user name field
must be between 6 and 14 characters in length. These characters can be uppercase,
lowercase, numeric, or underscores.

 242	 ChAPTER 5	 Input Validation and Site Navigation

	 9. To process this rule, you will use a RegularExpressionValidator control. Add one
next to the UserNameTextBox control and set the ControlToValidate property to
UsernameTextbox.

	 10. Set the Text property to an asterisk; set the ErrorMessage and ToolTip properties to Please
use only letters and numbers with no spaces. Finally, set the ValidationExpression
property to the regular expression \w{6,14}. The UserNameTextBox control should
look similar to the following.

<asp:RegularExpressionValidator ID="RegularExpressionValidator1" runat="server"
 ControlToValidate="UserNameTextBox"
 ErrorMessage="Please use only letters and numbers with no spaces"
 ToolTip="Please use only letters and numbers with no spaces"
 ValidationExpression="\w{6,14}">*</asp:RegularExpressionValidator>

	 11. The field you need to validate next is the user’s email address. To do so, you will use
another regular expression validation control. Add it next to the EmailTextBox control.
Set its Text, ToolTip, ControlToValidate, and ErrorMessage properties. Use the Properties
window to set the control’s ValidationExpression property. Select Internet Email Address
from the list of available regular expressions.

	 12. The next control you need to add validation to is the PasswordTextBox control. You
will use the custom validation example defined earlier in the chapter.

	 a. To start, add a CustomValidator control next to the PasswordTextBox control.

	 b. Set the ControlToValidate property to PasswordTextbox.

	 c. Set the Text property to an asterisk (*).

	 d. Set the ErrorMessage and ToolTip properties to Please enter 6-14 characters,
including at least 1 uppercase letter, 1 lowercase letter, and 1 number.

	 e. Set the ClientValidationFunction property to validatePassword.

	 f. Below the head section of the HTML source, add the code from the “Sample of
Validate Password Client-Side Validator,” listing shown earlier in this lesson.

	 g. Add the ServerValidate event handler for the CustomValidator control to your
code-behind page. In this method, add the code from the “Custom Server-Side
Validation” section earlier in this lesson.

	 13. The final validation you need to do is to ensure that both the password and confirm
password fields contain the same data. To do so, start by adding a CompareValidator
control next to the ConfirmPasswordTextBox control.

	 a. Set the ControlToValidate property to ConfirmPasswordTextbox.

	 b. Set the ControlToCompare property to PasswordTextbox.

	 c. Set the Text property to *.

	 d. Set the ErrorMessage and ToolTip properties to both password fields must
match.

 Lesson 1: Performing Input Validation ChAPTER 5 243

	 14. Finally, add a ValidationSummary control to the top of the webpage. This will be used
to display the long error messages when the user submits the form.

The completed webpage is shown in Figure 5-4.

FigURE 5-4  The completed webpage containing all validation controls.

	 15. Run the webpage.

	 16. Before entering any information into the TextBox controls, click Register. Verify that
the RequiredFieldValidators are displayed by noting the errors that are displayed in the
ValidationSummary control and by hovering your pointer over each of the asterisks to
see each tooltip.

	 17. Test the user name validation by typing fewer than six characters into the TextBox-
UserName control and clicking Register. Note the validation error. Also, try typing
15 or more characters. Next, type 10 characters into the field but use an invalid
character such as the apostrophe (‘). Finally, type valid data into the text box to
ensure that the validation control works properly.

	 18. Test the email field by entering an invalid email address. Finally, test with a valid email
address.

	 19. Test the password field for the appropriate input by trying to input fewer than 6
characters or more than 14 characters. Also, attempt a password that is all lowercase,
all uppercase, or all numeric. Notice that special characters, such as the plus sign (+),
minus sign (-), and percent sign (%), are allowed in the password, but not required.
Finally, attempt to enter a valid password.

	 20. Test the confirmation password by typing a confirmation password that does not
match the password. Test again with a matching password.

 244	 ChAPTER 5	 Input Validation and Site Navigation

Lesson Summary
■ The data validation framework provides a set of validation controls that bind to one or

more web controls to perform validation of the data that is typed into those web controls.

■ The ASP.NET validation controls provide both client-side and server-side validation.

■ You can disable client-side validation by setting the EnableClientScript property to false.

■ The validation controls available in ASP.NET include CustomValidator, CompareValidator,
RangeValidator, RegularExpressionValidator, and RequiredFieldValidator.

■ The ValidationSummary control can be added to a webpage to provide a summary of
the validation errors on the webpage and as a pop-up message.

■ The RegularExpressionValidator control is used to specify validation patterns.

■ The CustomValidator control allows you to provide your custom client-side and server-
side code to perform input validation.

■ The Page.Validate method can be explicitly called to force validation.

■ You can query a webpage’s IsValid property to verify that the page is valid before
running code. In fact, if you depend on validated inputs from the user, you must check
this yourself in your code. ASP.NET won’t invalidate the page for you if there is invalid
input. (That is, ASP.NET won’t throw an exception or notify you in any other way than
the IsValid property.)

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Performing Input Validation.” The questions are also available on the companion CD in a
practice test, if you prefer to review them in electronic form.

Note  AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You need to validate a vendor ID entered by a user. The valid vendor IDs exist in a
database table. How can you validate this input?

	 A. Provide a RegularExpressionValidator control and set the ValidationExpression
property to /DbLookup{code}.

	 B. Provide a RangeValidator control, and set the MinValue property to
DbLookup(code) and the MaxVaue property to DbLookup(code).

	 c. Provide a CustomValidator control with server-side code to search the database
for the code.

	 D. Provide a CompareValidator control and set the compare expression to the name
of a server-side function that performs a database lookup of the code.

 Lesson 2: Performing Site Navigation ChAPTER 5 245

	 2. You have created a webpage that contains many controls that are validated by using
validation controls. This page also contains Button controls that perform postbacks.
You disabled all of the client-side validation and noticed that when you clicked any
of the Button controls, the code in the Click event handler was executing even when
some of the controls did not have valid data. How can you best solve this problem to
ensure that code is not executed when invalid data exists?

	 A. In the Click event handler method for each of your Button controls, test the
webpage’s IsValid property and exit the method if this property is false.

	 B. In the Load event handler method of the webpage, test the webpage’s IsValid
property and exit the method if this property is false.

	 c. Re-enable the client-side script to disable postback until valid data exists.

	 D. Add the runat="server" attribute to all of the validation controls.

	 3. You have created an elaborate webpage that contains many validated controls. You
want to provide a detailed message for each validation error, but you don’t have space
to provide the detailed message next to each control. What can you do to indicate an
error at the control and list the detailed error messages at the top of the webpage?

	 A. Set the Text property of the validator control to the detailed message and set the
ErrorMessage property to an asterisk. Place a ValidationSummary control at the top
of the webpage.

	 B. Set the ErrorMessage property of the validator control to the detailed message
and set the Text property to an asterisk. Place a ValidationSummary control at the
top of the webpage.

	 c. Set the ToolTip property of the validator control to the detailed message and set
the ErrorMessage property to an asterisk. Place a ValidationSummary control at the
top of the webpage.

	 D. Set the ToolTip property of the validator control to the detailed message and set
the Text property to an asterisk. Place a ValidationSummary control at the top of the
webpage.

Lesson 2: Performing site navigation

Seamless navigation from one webpage to another is what makes a collection of webpages
feel like a web application. Developers must consider when and how to move a user between
pages. This movement should seem automatic and planned, with the user in control. When
setting up navigation, developers need to consider how to handle navigation following post-
backs and how to allow a user to navigate within the site.

When a page performs a postback, web applications typically end up posting data to the
webpage that originated the request. However, there are scenarios in which an application
might post data from one webpage to another. Developers also need to consider where the
application will navigate to as a result of a particular postback.

 246	 ChAPTER 5	 Input Validation and Site Navigation

All websites have some form of user navigation control. The sites that stand out are those
that provide easy-to-use navigation. Of course, you as the developer need to provide this navi-
gation. You must determine what happens as the result of user-driven navigation—especially
when a user is in the process of a transaction such as the purchase of a product.

This lesson covers tools for users to navigate your site and techniques that developers can
use to transfer requests between pages.

After this lesson, you will be able to:
■	 Determine the correct method for navigating a user from one page to another in

your site depending on your needs.
■	 Redirect users to pages by using both client-side and server-side methods.
■	 Use the SiteMap web server control to display a representation of a site’s navigation

structure inside the SiteMapPath, Menu, and TreeView navigation controls .

Estimated lesson time: 40 minutes

Is Page Navigation Necessary?
Page navigation is the process of moving between one actual page of your website and another.
However, with controls such as the Wizard control and technologies such as Asynchronous
JavaScript and XML (AJAX), you can embed a lot of functionality inside a single actual page in
your site. In this way, navigation takes on a new meaning. You are no longer moving between
pages. Rather, you are moving around on your page. You might do so from the client, and you
might do so as a response from a postback to the server.

Embedding all the controls and data collection for a particular process on a single page can
make your work easier. Instead of moving data from page to page or storing it in the database
or on the server, you can rely on the page itself to manage the entire process. Of course, these
solutions are not always suitable for each data collection scenario. Therefore, it is important to
know what is involved when doing page-to-page navigation.

Choosing a Method to Navigate Pages
There are many ways to navigate from one page to another in ASP.NET. It’s helpful to first
identify these ways and then examine each in detail. The following are the methods for
page-to-page navigation in an ASP.NET site:

■ Client-side navigation Client-side code or markup allows a user to request a new
webpage. Your client code or markup requests a new webpage in response to a client-
side event, such as the click of a hyperlink or the execution of JavaScript as part of a
button click.

■ Cross-page posting A control and form are configured to post back to a webpage
that is different than the one that made the original request.

 Lesson 2: Performing Site Navigation ChAPTER 5 247

■ Client-side browser redirect Server-side code sends a message to the browser,
informing the browser to request a different webpage from the server.

■ server-side transfer Server-side code transfers control of a request to a different
webpage.

Client-Side Navigation
One of the easiest ways to allow navigation to a different webpage is to provide a HyperLink
control on the form and set the NavigateUrl property to the desired destination. The
HyperLink control generates an HTML anchor tag, <a>. The NavigateUrl property is placed
into the href attribute of the <a> element. The following example shows both the source
of a HyperLink control and its rendered HTML.

HyperLink Control: Source

<asp:HyperLink ID="HyperLink1"
 runat="server" NavigateUrl="~/NavigateTest2.aspx">Goto NavigateTest2</asp:HyperLink>

HyperLink Control: Rendered HTML

Goto NavigateTest2

In this example, if this control is placed on a webpage called NavigateTest1.aspx, and the
HyperLink control is clicked, the browser simply requests the NavigateTest2.aspx page. This
means that no data is posted to NavigateTest2.aspx. If NavigateTest2.aspx requires data, you
need to find a way to get the data to the page. One way to do this is to embed the data in
the query string in the NavigateUrl property of the HyperLink control.

Another means of forcing client-side navigation is through JavaScript. In this case, you write
code to perform webpage navigation by changing the document object’s location property
to a new URL. The document object represents the webpage in client-side JavaScript; setting
its location property causes the browser to request the webpage defined by the location
property’s value.

The following example contains an HTML button element with a bit of client-side JavaScript
to request a new page when the button is clicked.

<input id="Button1" type="button"
 value="Goto NavigateTest2"
 onclick="return Button1_onclick()" />

Notice that the onclick event is configured to call the client-side method, Button1_onclick.
The JavaScript source for the Button1_onclick method is added into the <head> element of
the page as follows.

<script language="javascript" type="text/javascript">
function Button1_onclick() {
 document.location="NavigateTest2.aspx";
}
</script>

 248	 ChAPTER 5	 Input Validation and Site Navigation

Once again, the NavigateTest2.aspx page is requested, and no data is posted back to the
web server. Of course, you could send data into the function as part of a parameter and then
append that data to the query string of the request.

Cross-Page Posting
Cross-page posting is frequently the best choice in a scenario in which data is collected on one
webpage and processed on another webpage that displays the results. In such a scenario, a
Button control typically has its PostBackUrl property set to the webpage to which the process-
ing should post back. The page that receives the postback receives the posted data from the
first page for processing. This page is referred to as the processing page.

The processing page often needs to access data that was contained inside the initial page
that collected the data and that delivered the postback. The previous page’s data is available
inside the Page.PreviousPage property. This property is set only if a cross-page post occurs. If
the PreviousPage property is set to Nothing (null in C#), no cross-page posting occurred. You
can access the controls found in the previous page by using the FindControl method of the
PreviousPage property (which is a NamingContainer).

In the following example, a webpage called DataCollection.aspx contains a TextBox control
called TextBox1 and a Button control that has its PostBackUrl set to ~/ProcessingPage.aspx.
When the data collection page invokes the processing page, it executes server-side code to
pull the data from the data collection page, encode it by using HtmlEncode, and then put it
inside a Label control. The code to do so is as follows.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Page.PreviousPage Is Nothing Then
 LabelData.Text = "No previous page in post"
 Else
 LabelData.Text = _
 Server.HtmlEncode(CType(PreviousPage.FindControl("TextBox1"), TextBox).Text)
 End If

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if(Page.PreviousPage == null)
 {
 LabelData.Text = "No previous page in post";
 }
 else
 {
 LabelData.Text =
 Server.HtmlEncode(((TextBox)PreviousPage.FindControl("TextBox1")).Text);
 }
}

 Lesson 2: Performing Site Navigation ChAPTER 5 249

Accessing Posted Data as Strongly Typed Data
You can also provide access to cross-page posted data through strongly typed properties on
the page. This eliminates the need to call FindControl and execute the type casting calls. You
first define the public property (or properties) on your data collection page, and then you set
the PreviousPageType directive on the processing page to point to the data collection page.
ASP.NET does the remaining work to provide you with the properties that the strongly typed
Page.PreviousPage object supports.

In the following example, the DataCollection.aspx page performs a cross-page postback to
ProcessingPage.aspx. However, it first defines a public property called PageData, as follows.

Sample of Visual Basic Code

Public ReadOnly Property PageData() As String
 Get
 Return TextBox1.Text
 End Get
End Property

Sample of C# Code

public string PageData
{
 get { return TextBox1.Text; }
}

As in the previous example, the DataCollection.aspx page also contains a Button control
on which the PostBackUrl property has been set to "~/ProcessingPage.aspx".

To access the newly created PageData property for the processing page, you need to
set the PreviousPageType directive in the ProcessingPage.aspx page. This directive is added
after the Page directive in the page’s source and looks like the following.

<%@ PreviousPageType VirtualPath="~/ProcessingPage.aspx" %>

The processing page contains a Label control that is populated from the PageData property.
The following code demonstrates this.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Page.PreviousPage Is Nothing Then
 LabelData.Text = "No previous page in post"
 Else
 LabelData.Text = _
 PreviousPage.PageData
 End If

End Sub

 250	 ChAPTER 5	 Input Validation and Site Navigation

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (PreviousPage == null)
 {
 LabelData.Text = "No previous page in post";
 }
 else
 {
 LabelData.Text =
 PreviousPage.PageData;
 }
}

Note that you might find that IntelliSense does not show the PageData property when
you code this example. Simply build the page that causes the data type of the PreviousPage
property to be set, and the PageData property will be visible to IntelliSense.

Client-Side Browser Redirect
Often you need to redirect a user to another page based on the result of his or her request or
postback to the server. For example, a user might click a Submit Order button on your page.
After processing the order successfully, you might then want to redirect the user to an order
summary page. The Page.Response object contains the Redirect method for doing just that.

The Redirect method can be used in your server-side code to instruct the browser to
initiate a request for another webpage. The redirect is not a postback; to the web server, the
client behaves as if the user clicked a hyperlink.

Consider the following example code. Here the SubmitOrder.aspx page contains a Button
control that performs a postback to the server. After that postback has processed, a call is
made to redirect the user to the OrderDetails.aspx page.

Sample of Visual Basic Code

Protected Sub ButtonSubmit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonSubmit.Click

 Response.Redirect("~/OrderDetails.aspx")

End Sub

Sample of C# Code

protected void ButtonSubmit_Click(object sender, EventArgs e)
{
 Response.Redirect("~/OrderDetails.aspx");
}

 Lesson 2: Performing Site Navigation ChAPTER 5 251

The redirect is accomplished by sending an HTTP response code of 302 to the browser along
with the URL of the page to which to redirect. The address that is displayed in the browser is
updated to reflect the new URL location. Note that this comes at the cost of performing an
extra call to the server.

The PreviousPage property does not get populated when you are using the Redirect
method. To access data from the original page, you need to resort to traditional methods
of passing data, such as placing the data into cookies or session state variables or passing
the data in the query string.

Server-Side Transfer
You can use server-side transfers to cause ASP.NET to process a different webpage without
requiring a new request from the browser. For example, if the browser requests page1.aspx,
and page1.aspx calls Page.Server.Transfer("page2.aspx"), ASP.NET will process page2.aspx—
even though the browser’s address bar still shows page1.aspx.

Similar to the redirect example discussed in the previous topic, you execute a Transfer call
from the server. This is typically the result of a postback. As an example, suppose you have
a page called OrderRequest.aspx, and this page contains a button for submitting an order.
When an order is submitted, your code on the server might transfer the entire request to
another page called OrderProcessing.aspx. The following shows an example of making this
method call.

Sample of Visual Basic Code

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Server.Transfer("~/OrderProcessing.aspx", False)

End Sub

Sample of C# Code

protected void Button1_Click(object sender, EventArgs e)
{
 Server.Transfer("~/OrderProcessing.aspx", false);
}

The Transfer method has an overload that accepts a Boolean parameter called preserveForm.
You set this parameter to indicate whether you want to keep the form and query string data. You
can also access the PreviousPage property during a transfer (just as you would with cross-page
posting). If the page you transfer to throws an unhandled exception, processing will return to the
original page.

 252	 ChAPTER 5	 Input Validation and Site Navigation

real World

Tony Northrup

In the real world, many classes aren’t as useful as they seem. For example, the
SiteMap class (discussed next) doesn’t use the industry standard format that

search engines accept when you submit a site map. Therefore, you still need to
write code to generate a separate site map for search engines. Server.Transfer,
however, is actually far more useful than it might initially appear.

Server.Transfer allows you to switch to a different ASPX page without the user
knowing. This means that you can create multiple ASPX pages (and their code-
behind files) for a single page, allowing you to present users with a single webpage
that appears in several completely different formats.

Imagine that you’re creating a retail website that sells movies on DVDs and music
on CDs. You might have a single Product.aspx page that displays any product that
the website sells, but you also might want to display movie previews and reviews
for the DVDs, and audio previews and band information for the CDs. You don’t have
to create a single page for both layouts; within Product.aspx, look up whether the
product is a DVD or CD, and then use Server.Transfer to process the request with
a product type–specific page, such as ProductDVD.aspx or ProductCD.aspx. Put any
common components in a master page. For times when the user attempts to look
up a product in the database that does not exist, you can also use Server.Transfer to
redirect the user to an HTTP 404 File Not Found error page.

The real power of Server.Transfer is that it allows you to separate how webpages
appear to users from the internal structure of the site.

Using the Site Map Web Server Control
Thus far you have seen how to help push users from page to page by using both client-side and
server-side techniques. Another key component of any website is a solid navigational structure
for users. Users need to be able to navigate to the various features and functionality provided by
your application. ASP.NET provides controls to help you both manage the navigational structure
of your site and provide the display of that structure to users.

You can manage and document your site structure by using a site map. A site map in ASP.NET
is an XML file that contains the overall structure and hierarchy of your site. Site maps are used to
populate ASP.NET navigation controls, such as the NavigationMenu, SiteMapPath, and TreeView
controls, with your site’s page hierarchy. You create and manage this file. This gives you control
over which pages are top-level pages, which pages are nested pages within that top level, and
any pages to which users will not be allowed to navigate.

 Lesson 2: Performing Site Navigation ChAPTER 5 253

You can add a site map to your application by right-clicking your website and selecting Add
New Item | Site Map. A site map is an XML file with the extension .sitemap. You add nodes to
the site map by adding <siteMapNode> elements. Each of these elements has a title attribute
that gets displayed to the user, a url attribute to define the page to which to navigate, and a
description attribute for defining information about the page. A .sitemap file (typically named
Web.sitemap) for a small order-entry site might look as follows.

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/Default.aspx" title="Home" description="">
 <siteMapNode url="~/Catalog.aspx" title="Our Catalog" description="">
 <siteMapNode url="~/ProductCategory.aspx" title="Products" description="" />
 <siteMapNode url="~/Product.aspx" title="View Product" description="" />
 </siteMapNode>
 <siteMapNode url="~/Cart.aspx" title="Shopping Cart" description="" />
 <siteMapNode url="~/Account.aspx" title="My Account" description="">
 <siteMapNode url="~/SignIn.aspx" title="Login" description="" />
 <siteMapNode url="~/PassReset.aspx" title="Reset Password" description="" />
 <siteMapNode url="~/AccountDetails.aspx" title="Manage Account" description="">
 <siteMapNode url="~/Profile.aspx" title="Account Information" description="" />
 <siteMapNode url="~/OrderHistory.aspx" title="My Orders" description="">
 <siteMapNode url="~/ViewOrder.aspx" title="View Order" description="" />
 </siteMapNode>
 </siteMapNode>
 </siteMapNode>
 <siteMapNode url="~/AboutUs.aspx" title="About Us" description="" />
 <siteMapNode url="~/Privacy.aspx" title="Privacy Policy" description="" />
 <siteMapNode url="~/ContactUs.aspx" title="Contact Us" description="" />
 <siteMapNode url="~/MediaKit.aspx" title="Media Relations" description="" />
 </siteMapNode>
</siteMap>

The site map defines the hierarchy and navigational structure of your site. It determines which
pages involve subnavigation of the outer top-level navigation. It also determines which pages
are left out of your direct navigation. In this example, that might include pages for checkout,
shipping, and credit card processing. You do not want users to navigate directly to these pages.
Rather, you want them to start with the shopping cart and use the navigation techniques dis-
cussed previously to move through the buying process.

Using the SiteMap Class
The SiteMap class provides programmatic access to the site navigation hierarchy from within
your code-behind page. Its two primary properties are RootNode and CurrentNode, and both
return SiteMapNode instances. The SiteMapNode object represents a node in the site map
and has the Title, Url, and Description properties. To access nodes in the hierarchy, you can
use the SiteMapNode instance’s ParentNode, ChildNodes, NextSibling, and PreviousSibling
properties. For example, the following code snippet can be used to navigate to the webpage
that is listed as the parent webpage in the Web.sitemap file.

 254	 ChAPTER 5	 Input Validation and Site Navigation

Sample of Visual Basic Code

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Response.Redirect(SiteMap.CurrentNode.ParentNode.Url)

End Sub

Sample of C# Code

protected void Button1_Click(object sender, EventArgs e)
{
 Response.Redirect(SiteMap.CurrentNode.ParentNode.Url);
}

Displaying Site Map Information to Users
Of course, the site map information is just an XML file. To display this information, you
need to put a navigational control on a webpage. This control can take a site map file
or a SiteMapDataSource control as its data source and display information accordingly.

A SiteMapDataSource control is simply a control designed to provide you with programmatic
access to a site map file. This control can also be used by the navigation controls to provide a
source for their data. You can use a SiteMapDataSource control by dragging it onto your page.
It will automatically connect with the site map file you have defined for your site.

There are a couple of attributes you can use to configure the SiteMapDataSource control.
The first is ShowStartingNode. You can set this value to false if you do not want the user to see
the root node in your site map file. The second is StartingNodeOffset. This is useful if you are
creating a sub-navigational control and only want to show parts of the navigation. You can set
this to the node at which you want to start. The following shows this control added to a page.

<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
 StartingNodeOffset="0" ShowStartingNode="False" />

Like the site map file, the SiteMapDataSource control does not have a visual representation
to the user. Instead, it manages access to your site map data. To show the data to the user, you
must add a navigational control and connect it to the SiteMapDataSource control. There are
three main navigational controls available in ASP.NET: Menu, TreeView, and SiteMapPath.

The Menu control is used to show the structure of your site in a menulike format. It allows
users to navigate both from the top level and to child levels within your site. There are many
attributes that allow you to manage the Menu control; many of them have to do with the style
and layout of the control. Two attributes to be aware of are DataSourceId and Orientation. You
use the DataSourceId attribute to set the data source for the control. You can set it to the ID
of a SiteMapDataSource control on your page. Orientation allows you to set the menu to be
displayed vertically or horizontally. The following shows the markup source for a Menu control.

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1"
 MaximumDynamicDisplayLevels="5" Orientation="Horizontal">
</asp:Menu>

 Lesson 2: Performing Site Navigation ChAPTER 5 255

Figure 5-5 shows a Menu control that uses the site map defined earlier. Notice that this
Menu control is expanded for the My Account child items.

FigURE 5-5 A Menu control on a webpage.

The TreeView control shows your site structure in a collapsible tree format. It allows the user
to navigate to the hierarchy of your site and then select an item and navigate to the selected
page. It works with the SiteMapDataSource control the same way the Menu control does.
Figure 5-6 shows the same site map file shown in a TreeView control.

FigURE 5-6  A TreeView control on a webpage.

 256	 ChAPTER 5	 Input Validation and Site Navigation

The last navigational control, SiteMapPath, allows the user to see his or her current location
within the site along with the path of pages followed to get there. This is often referred to as
the breadcrumb trail of site navigation. This is useful if users navigate deeply into your site and
need to work their way back up.

The SiteMapPath control can be added to a page or a master page file. It automatically picks
up the site map file; you do not need to configure a data source. It then associates the site map
with the actual page being requested by the user. Based on this information, it provides naviga-
tion back up to the parent page of the shown child page. Figure 5-7 shows a SiteMapPath for
the Profile.aspx page in the site map XML file example defined earlier.

FigURE 5-7 A SiteMapPath control on a webpage.

Quick Check
■ Which method of navigation requires the most communication between the

browser and the web server?

Quick Check Answer
■ Client-side browser redirect requires the most communication because it is a

server-side method that tells the browser to request a new page, thus causing
multiple calls to the server.

 Lesson 2: Performing Site Navigation ChAPTER 5 257

PrActIcE	 Working with site navigation

In this practice, you create the basis for the navigation of a web application for managing
customers and their calls.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Creating the Web Application Project

In this exercise, you create the web application project. You also add a site map XML file and
configure the layout of the navigation controls on the Default.aspx page.

	 1. Open Visual Studio and create a new ASP.NET Empty Web Site project called
WorkingWithsitenavigation by using your preferred programming language.

	 2. Add a site map file to the website by right-clicking the project in Solution Explorer and
selecting Add New Item. Select the Site Map item from the Add New Item dialog box.
Leave the name of the file as Web.sitemap.

	 3. Add a set of <siteMapNode> elements to the site map. Each node should represent a
page in your fictitious customer service application. Your site map XML file should look
as follows.

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="Default.aspx" title="Home" description="">
 <siteMapNode url="SearchCustomers.aspx" title="Search Customers"
 description="">
 <siteMapNode url="CustomerDetails.aspx" title="Customer Details"
 description="" />
 </siteMapNode>
 <siteMapNode url="NewCustomer.aspx" title="New Customer" description="" />
 <siteMapNode url="CallLog.aspx" title="Log Call" description="" />
 <siteMapNode url="ReportsList.aspx" title="Reports" description="">
 <siteMapNode url="ReportIssues.aspx" title="Issues By Priority"
 description="" />
 <siteMapNode url="ReportCalls.aspx" title="Customer Call Report"
 description="" />
 <siteMapNode url="ReportActivities.aspx" title="Activities Report"
 description="" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

 258	 ChAPTER 5	 Input Validation and Site Navigation

	 4. Open the Site.master page. Remote the default NavigationMenu control.

	 5. Add two SiteMapDataSource controls to the page. You can do so from the Toolbox in
the Data section. Configure one SiteMapDataSource control to not show the first node
in the source data; name this node menusitemapDatasource. Configure the second
to show all of the site map data; name this node TreesitemapDatasource. These
controls should look as follows.

<asp:SiteMapDataSource ID="MenuSiteMapDataSource"
 ShowStartingNode="false" runat="server" />
<asp:SiteMapDataSource ID="TreeSiteMapDataSource" runat="server" />

	 6. Add a Menu control to the master page. Configure this control to use the menu data
source control. Set its display to show menu items horizontally across the top of the
page by setting the Orientation property to Horizontal. Your control’s configuration
might look as follows.

<asp:Menu ID="Menu1" runat="server" DataSourceID="MenuSiteMapDataSource"
 Orientation="Horizontal">
</asp:Menu>

	 7. Add a TreeView control to the master page. Set the DataSourceId attribute to
TreeSiteMapDataSource. This control should look as follows.

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="TreeSiteMapDataSource">
</asp:TreeView>

	 8. Add a SiteMapPath control to the master page. You can use the default settings.

	 9. Finally, add a content page to the site: CustomerDetails.aspx. Be sure to specify
Site.master as the master page. Add some content to the page. Optionally, put
each of the navigation controls in a <div> tag, specify a class for each <div> tag,
and then edit the Site.css style sheet to provide formatting for the navigation bar.
The completed project from the companion CD demonstrates basic layout using
<div> tags.

	 10. Right-click the Default.aspx page and select Set As Start Page.

	 11. Run the web application to display the Default.aspx page. Your page should resemble
the one shown in Figure 5-8.

 Lesson 2: Performing Site Navigation ChAPTER 5 259

FigURE 5-8  The CustomerDetails.aspx webpage with all the navigation controls.

	 12. Click the Customer Details link on both the Menu and TreeView controls, and notice
that they both open the same page.

Lesson Summary
■ There are multiple ways to use code to allow users to navigate from page to page in

your site. You can write both client and server code to do so.

■ You can send the entire processing of a page over to another page by using the server-
side Page.Server.Transfer method. This is useful if you want to hide the file name of the
processing page or run different pages for a single user request.

■ You can create a site map XML file to represent the navigational structure of your website.
You can display this information by using the Menu, TreeView, and SiteMapPath controls.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Performing Site Navigation.” The questions are also available on the companion CD as a
practice test, if you prefer to review them in electronic form.

Note  AnsWERs

Answers to these questions and explanations of why each answer is correct or incorrect are
located in the “Answers” section at the end of the book.

 260	 ChAPTER 5	 Input Validation and Site Navigation

	 1. Which of the following server-side methods of the HttpServerUtility class can be used
to navigate to a different webpage without requiring a round trip to the client?

	 A. Redirect

	 B. MapPath

	 c. Transfer

	 D. UrlDecode

	 2. Which control automatically uses the Web.sitemap file to display site map information
to a user on a webpage?

	 A. Menu

	 B. TreeView

	 c. SiteMapDataSource

	 D. SiteMapPath

	 3. You want to provide an Up button for your webpages that users can click to navigate one
level higher on your website. You want to define the hyperlink programmatically by using
the site map. Which class can you use to access the site map content to accomplish this?

	 A. SiteMapPath

	 B. SiteMapDataSource

	 c. SiteMap

	 D. HttpServerUtility

Lesson 3: Using Web Parts

Many webpages are collections of components. These components work as self-contained bits
of functionality. For example, examine your favorite news site—it probably has a navigation bar
to the left, a title bar at the top, at least one column of news, and a footer. Additionally, many
news and portal sites provide customized, optional components, such as weather reports and
stock quotes.

ASP.NET Web Parts give you the ability to provide your users with control over the
components that appear on a webpage. With Web Parts, users can minimize or completely
close groups of controls. So if they want to see a weather report on your page, they can add
a weather component—or they can close it to save room for other content. You can also
provide a catalog of Web Parts to enable users to add groups of controls wherever they want
on a page.

This lesson describes how to create and use ASP.NET Web Parts.

 Lesson 3: Using Web Parts ChAPTER 5 261

After this lesson, you will be able to:
■	 Describe what Web Parts are and how they can be used.
■	 Add Web Parts to a page.
■	 Create a webpage that allows users to edit and rearrange Web Parts.
■	 Connect Web Parts to each other to allow sharing of data.
■	 Enable personalization for Web Parts to allow customized settings to be

persisted.

Estimated lesson time: 90 minutes

What Are Web Parts?
Web Parts are components of predefined functionality that can be embedded in a webpage.
They have a centralized framework, management structure, and customization model. These
components of functionality can be added to and removed from pages by both site designers
and individual users. They can even be moved around on a page to fit the individual needs
of users.

Figure 5-9 shows an example of a Web Part page. Notice that the individual Web Parts
have client-side menus that enable users to control them.

FigURE 5-9 Web Parts generate client-side menus to enable customization.

 262	 ChAPTER 5	 Input Validation and Site Navigation

You can also use a CatalogZone control to add a catalog to your Web Part page. A catalog
allows users to add Web Parts to and remove them from the zones defined on your page.
Figure 5-10 shows the same page in edit mode. Here users are given a list of Web Parts from
which to choose. They can add these components to the defined zones on the page.

FigURE 5-10  You can use a CatalogZone control to enable users to add Web Parts on demand, without
writing any code.

Web Part pages and sites can provide users with several customization options. This is great
when you are developing bits of functionality that will be deployed to a wide audience. Some
common Web Parts you might create include the following:

■ A list of recent news articles relating to your organization

■ A calendar showing upcoming events

■ A list of links to related websites

■ A search box

■ Picture thumbnails from a photo gallery

■ Site navigation controls

■ A blog

 Lesson 3: Using Web Parts ChAPTER 5 263

■ News articles pulled from a Really Simple Syndication (RSS) feed

■ Local weather information retrieved from a web service

■ Stock market quotes and graphs

Any control can act as a Web Part, including standard controls and custom controls. Adding
Web Parts to a page doesn’t necessarily require writing any code, because you can do so entirely
with the Visual Studio designer.

Note sOURCEs FOR WEb PARTs

Several sites on the Internet offer free Web Parts that you can download and add to
your site.

The WebParts Namespace
ASP.NET includes many Web Parts; there are 13 controls in the designer Toolbox alone. These
controls and classes can be found inside the System.Web.UI.WebControls.WebParts namespace.
Many of these classes are discussed in depth in later sections. The following list provides a high-
level overview of the most important WebParts classes.

■ WebPartmanager The WebPartManager control is required on every page that
includes Web Parts. It does not have a visual representation. Rather, it manages all
the Web Part controls and their events on the specified page.

■ CatalogPart The CatalogPart control provides the user interface (UI) for managing
a group of Web Parts that can be added to a Web Part page. This group is typically
sitewide (and not just specific to a certain page).

■ PageCatalogPart The PageCatalogPart control is similar to the CatalogPart control.
However, PageCatalogPart only groups those Web Parts that are part of a specific page.
If a user closes certain Web Parts on the page, he or she can use the PageCatalogPart
control to return them to the page.

■ EditorPart The EditorPart control allows users to define customizations, such as the
modification of property settings, for the specified Web Part.

■ DeclarativeCatalogPart The DeclarativeCatalogPart control allows you to declare
Web Parts that should be available to add to a page or to the entire site.

■ WebPartZone The WebPartZone control is used to define an area on your page in
which Web Parts can be hosted.

■ EditorZone The EditorZone control provides an area on the page where EditorPart
controls can exist.

■ CatalogZone The CatalogZone control defines an area in which a CatalogPart control
can exist on the page.

 264	 ChAPTER 5	 Input Validation and Site Navigation

IMportaNt  WEb PARTs DATAbAsE

The ASP.NET Web Parts require the ASP.NET personalization database. This allows the
tracking of user customizations to specific Web Parts and Web Part pages. This database,
ASPNETDB, will be installed for you by Visual Studio when you run your first Web Part
page. By default, the database is a Microsoft SQL Server Express database. You can,
however, upgrade this to work with various editions of Microsoft SQL Server.

Defining Web Part Zones
You add Web Parts to a page by placing them in zones. Zones define areas on the page in
which Web Parts can be placed by a user or added by a developer. A zone has a width, height,
and placement on the page. You can add one, many, or no Web Parts to a single zone. Figure
5-11 shows the zones defined by the Web Part page shown in the previous two figures.

Web Part Manager

Web Part Zone 2:
Contoso

Web Part Zone 3:
Fabrikam

Catalog Zone:
Manage Web Parts

Web Part Zone 1:
Vendor Totals

FigURE 5-11  Zone definition for the example Web Part page.

Zones also allow you to set common styles for the Web Parts that are placed within the
zone. This is called the Web Part’s chrome. The chrome includes the Web Part’s header style,
the menu styles, outline borders, content styles, edit mode style, and more. Web Parts added
to a zone take on the styles defined by that zone’s chrome. Of course, you can define the
common zone style definitions by using a skin, as described in Chapter 2.

You create Web Part zones by using the WebPartZone control. Again, this control defines
an area on the page that contains (or can contain) Web Parts. This control also includes the
HeaderText attribute. This attribute is used to define the text displayed to the user when
the page (and zone) is in edit mode. Look closely at Figure 5-10 for an example of this text
being displayed above the zone.

 Lesson 3: Using Web Parts ChAPTER 5 265

As an example, consider the top zone in Figure 5-9, shown earlier. To define this zone, you
add a WebPartZone control to your page. To place Web Parts inside this zone, you have to add
the ZoneTemplate control inside the WebPartZone. The ZoneTemplate control lets you add other
ASP.NET controls to the zone and combine them into actual Web Parts. (This is discussed later in
this lesson.) The following markup shows an example.

<asp:WebPartManager ID="WebPartManager1" runat="server">
</asp:WebPartManager>

<asp:WebPartZone ID="WebPartZoneVendor" runat="server"
 HeaderText="Vendor Aggregate" style="width: 650px; height: auto">
 <ZoneTemplate>

 <!--Add content to the zone-->

 </ZoneTemplate>
</asp:WebPartZone>

Notice that the markup also contains the definition for the WebPartManager control. This
control is required of every Web Part page. It does not have a visual representation; it is used
by ASP.NET to manage the Web Parts on the page.

Creating Web Parts
There are three principal methods for creating ASP.NET Web Parts that can be managed by
the WebPartManager inside your webpages. The first is to create a standard user control; the
second (and simplest) is to use an existing ASP.NET control (such as Label) to define your Web
Part; and the third is to create your own custom control and derive it from the WebPart class.
This section covers the first two methods. The latter, custom controls, is covered in Chapter 7,
“Creating Custom Web Controls.” The custom control method does offer the most granular con-
trol over your Web Parts, but it is also the most time-consuming and complicated method. The
other two methods offer a simpler approach that can be built on for most Web Part scenarios.

Building Web Parts with User Controls
Web Parts are defined inside the zones on your page. They can be added to the zones at
design time or run time, or they can be configured to be there by the user. To create a Web
Part based on a user control, you simply need to add the user control to a Web Part zone. The
ASP.NET Web Part model takes care of the rest. For example, notice that in Figure 5-9 (shown
earlier) the two bottom Web Parts (Contoso and Fabrikam) are similar. These could be defined
by a single user control, and thus this user control could have two instances on the page. To
use a user control (on any ASP.NET page), you must first register it with the page. This is done
by adding the @ Register directive for the control near the top of the page. The following line
of code provides an example.

<%@ Register src="VendorWebPart.ascx" tagname="VendorWebPart" tagprefix="uc1" %>

 266	 ChAPTER 5	 Input Validation and Site Navigation

After the control is registered, you then add it to a Web Part zone. You can do so by nesting
it inside the ZoneTemplate declaration. The following markup shows the VendorWebPart user
control added to a Web Part zone.

<asp:WebPartZone ID="WebPartZone2" runat="server" HeaderText="Fabrikam"
 style="width: 350px; float: left; height: auto;">

 <ZoneTemplate>
 <uc1:VendorWebPart ID="VendorWebPart1" runat="server" title="Fabrikam" />
 </ZoneTemplate>

</asp:WebPartZone>

Notice the addition of the title attribute to the user control definition. This tells the Web
Part what title to display according to the Web Part’s chrome style setting.

Creating a Web Part Control from an Existing ASP.NET Control
You can also create a Web Part simply by inserting a standard ASP.NET control inside a
<ZoneTemplate> element. The Web Part manager will take care of the rest. For example, the
top section of Figure 5-9 shows a single Web Part titled Vendor Totals. This Web Part was
created by using a Label control. The Label control then nests other controls inside it. These
controls define the actual contents of the Web Part, whereas the Label control is simply the
container. The following code shows this example.

<asp:WebPartZone ID="WebPartZone1" runat="server"
 HeaderText="Vendor Aggregate" style="width: 700px; height: auto">
 <ZoneTemplate>
 <asp:Label ID="Label3" runat="server" Text="" title="Vendor Totals">
 <div style="margin-top: 12px; margin-bottom: 20px;
 line-height: 30px; font-size: 12pt">
 Total Active Users: 21

Total transactions today: 166

Revenue trades to-date: $34,450
 </div>
 </asp:Label>
 </ZoneTemplate>
</asp:WebPartZone>

Enabling Users to Arrange and Edit Web Parts
The Web Parts on your page can be displayed to the user in several different ways. The mode
of display is dependent on what the user is doing with the Web Parts and the hosting page at
the time. For example, if the user is simply viewing the Web Parts on a page, the display mode
is browse and the user sees the Web Part as it appears in this mode. Of course, there are
other modes with other display properties.

 Lesson 3: Using Web Parts ChAPTER 5 267

You change the display mode of the Web Parts on a page by using the WebPartManager
control. You do so by setting its DisplayMode property in your code-behind file. Table 5-1
shows the valid property values for DisplayMode.

TAbLE 5-1 Web Part Display Modes

DisPLAy mODE DEsCRiPTiOn

BrowseDisplayMode This is the standard way in which users browse webpages. This
is the default mode.

DesignDisplayMode This mode enables users to drag Web Parts to different locations.

EditDisplayMode Like design mode, edit mode enables users to drag Web Parts.
Additionally, users can select Edit from the Web Parts menu to
edit the title, size, direction, window appearance, and zone of
Web Parts by using AppearanceEditorPart and LayoutEditorPart
controls. To use this mode, you must add an EditorZone control
to your webpage, and then add either AppearanceEditorPart or
LayoutEditorPart, or both.

CatalogDisplayMode This mode enables users to add additional Web Parts that you
specify by using a CatalogZone control. This mode is available
only after you add a CatalogZone to your webpage.

ConnectDisplayMode This enables users to manually establish connections between
controls by interacting with a ConnectionZone control. For
example, Web Parts can be linked to show summary and detail
information for the same report. This mode is available only after
you add a ConnectionZone control to the page. For more infor-
mation about Web Parts connections, see the “Connecting Web
Parts” section later in this lesson.

As an example, consider the screen shown in Figure 5-10. You can see that the page is
in a different display mode. Here the user has clicked the Edit button under the Vendor
Management text to change the mode of the page. To enable this, the developer first set
up the page with a CatalogZone control. The following code shows the markup of the
layout of the CatalogZone control.

<asp:CatalogZone ID="CatalogZone1" runat="server" HeaderText="Manage Web Parts">

 <ZoneTemplate>
 <asp:PageCatalogPart ID="PageCatalogPart1" runat="server">
 </asp:PageCatalogPart>
 </ZoneTemplate>

</asp:CatalogZone>

 268	 ChAPTER 5	 Input Validation and Site Navigation

The next step is to put the page into this display mode when the user clicks the Edit button.
This is done inside the code-behind class. Of course, you also need code to return the page from
this mode back to the browse mode. The following shows the code for the button’s click event.

Sample of Visual Basic Code

Protected Sub ButtonEdit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonEdit.Click

 Dim mode As String = CType(ViewState("mode"), String)

 'switch modes
 If mode = "browse" Then
 ViewState("mode") = "edit"
 ButtonEdit.Text = "Done"
 WebPartManager1.DisplayMode = WebPartManager1.SupportedDisplayModes("Catalog")
 Else
 ViewState("mode") = "browse"
 ButtonEdit.Text = "Edit"
 WebPartManager1.DisplayMode = WebPartManager1.SupportedDisplayModes("Browse")
 End If

End Sub

Sample of C# Code

protected void ButtonEdit_Click(object sender, EventArgs e)
{

 string mode = (string)ViewState["mode"];

 //switch modes
 if (mode == "browse")
 {
 ViewState["mode"] = "edit";
 ButtonEdit.Text = "Done";
 WebPartManager1.DisplayMode = WebPartManager1.SupportedDisplayModes["Catalog"];
 }
 else
 {
 ViewState["mode"] = "browse";
 ButtonEdit.Text = "Edit";
 WebPartManager1.DisplayMode = WebPartManager1.SupportedDisplayModes["Browse"];
 }

}

Notice that in the code, the display mode is set by using the SupportedDisplayModes
collection. Also notice that in this case, the display mode is being set inside the ViewState
(in PageLoad) and then passed to the page. Of course, there are other display modes, as
defined in Table 5-1. This lesson’s practice will walk you through the creation of a page
that allows a user to switch between the various display modes.

 Lesson 3: Using Web Parts ChAPTER 5 269

Connecting Web Parts
One of the most powerful features of the Web Parts tool set is the ability to build connections
between Web Parts. To understand the possibilities, imagine building an internal application
to manage employee payroll. You could have:

■ A main Web Part so you can browse employee data.

■ A Web Part that displays a chart of the selected employee’s overtime pay.

■ A Web Part that shows a pie chart illustrating how payroll, benefits, stock options, and
pension fit into the employee’s overall compensation.

■ A Web Part that compares the employee’s pay to that of employees in the same position.

With Web Parts connections, the user can select an employee file and have all the other Web
Parts automatically update with that employee’s information. Naturally, the user analyzing the
data would have the ability to add, remove, and rearrange Web Parts.

Connections are also useful for consumer-oriented websites. For example, if you are building
a portal site, you might have Web Parts that display localized information based on the user’s
postal code, including the weather, local news, and the cafeteria menu. Rather than requiring
the user to specify his or her postal code for each individual Web Part, all Web Parts can
connect to a specialized Web Part that stores the users’ postal code.

Creating a Static Connection
Connections can be either static or dynamic. If a connection is static, you (as the developer)
establish the connection during the development process, and it cannot be changed by the
user. Static connections are permanent and cannot be deleted by users.

Static connections typically involve a provider and one or more consumer Web Parts. The
provider provides the connection data. The consumer receives the provider data. You define pro-
viders and consumers by using the attribute-based programming model of the .NET Framework.
To create a static connection between Web Parts, you can follow these basic steps:

	 1. Create a provider Web Part. A provider Web Part can derive from the WebPart class, or
you can create it as a user control. You must create a public method inside your provider
with the ConnectionProvider attribute attached to it. This method should return the
value that the consumer will receive. The following code shows the code-behind file for
a user control provider Web Part that contains a TextBox control and a Button control.

Sample of Visual Basic Code

Partial Class Provider
 Inherits System.Web.UI.UserControl

 Dim _textBoxValue As String = ""

 <ConnectionProvider("TextBox provider", "GetTextBoxValue")> _
 Public Function GetTextBoxValue() As String
 Return _textBoxValue
 End Function

 270	 ChAPTER 5	 Input Validation and Site Navigation

 Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 _textBoxValue = TextBoxProvider.Text
 End Sub

End Class

Sample of C# Code

public partial class Provider : System.Web.UI.UserControl
{
 string _textBoxValue = "";

 [ConnectionProvider("TextBox provider", "GetTextBoxValue")]
 string GetTextBoxValue()
 {
 return _textBoxValue;
 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 _textBoxValue = TextBoxProvider.Text;
 }

}

	 2. Create a consumer Web Part. A consumer Web Part can derive from the WebPart class, or
it can be a user control. You must create a public method with the ConnectionConsumer
attribute that accepts the same type that the provider’s ConnectionProvider method
returns. The following code demonstrates a consumer Web Part user control.

Sample of Visual Basic Code

Partial Class Consumer
 Inherits System.Web.UI.UserControl

 <ConnectionConsumer("TextBox consumer", "ShowTextBoxValue")> _
 Public Sub ShowTextBoxValue(ByVal textBoxValue As String)
 LabelConsumer.Text = textBoxValue
 End Sub

End Class

Sample of C# Code

public partial class Consumer : System.Web.UI.UserControl
{
 [ConnectionConsumer("TextBox consumer", "ShowTextBoxValue")]
 void ShowTextBoxValue(string textBoxValue)
 {
 LabelConsumer.Text = textBoxValue;
 }
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 3: Using Web Parts ChAPTER 5 271

	 3. Create a webpage with a WebPartManager control. Add at least one WebPartZone
container.

	 4. Add your provider and consumer Web Parts to WebPartZone containers. The following
markup shows the preceding user controls added to the page.

<asp:WebPartZone ID="WebPartZoneProvider" runat="server"
 Height="400px" Width="300px">
 <ZoneTemplate>
 <uc1:Provider ID="Provider1" runat="server" title="Provider" />
 <uc2:Consumer ID="Consumer1" runat="server" title="Consumer" />
 </ZoneTemplate>
</asp:WebPartZone>

	 5. The next step is to add connection information to the WebPartManager markup. In
this case, you add a <StaticConnections> element that includes a WebPartConnection
control to declare the connection between the provider and consumer.

The WebPartConnection control must have an ID attribute, an attribute to identify the
provider control (ProviderID), an attribute to identify the provider method (Provider-
ConnectionPointID), an attribute to identify the consumer control (ConsumerID), and an
attribute to identify the consumer method (ConsumerConnectionPointID). The following
markup demonstrates this.

<asp:WebPartManager ID="WebPartManager1" runat="server">
 <StaticConnections>
 <asp:webPartConnection
 ID="conn1"
 ProviderID="Provider1"
 ProviderConnectionPointID="GetTextBoxValue"
 ConsumerID="Consumer1"
 ConsumerConnectionPointID="ShowTextBoxValue" />
 </StaticConnections>
</asp:WebPartManager>

Note that you should have one WebPartConnection control for each pair of connected
controls.

Exercise 3 in this lesson’s practice walks you through the process of creating controls that
connect to each other and configuring them in a webpage.

exaM tIp

For the exam, you should know exactly how to establish a static connection, which attri-
butes you must assign to each method, and what you must add to the ASPX page source.

 272	 ChAPTER 5	 Input Validation and Site Navigation

Enabling Dynamic Connections
Dynamic connections can be established by users. You enable these by adding a ConnectionsZone
control to the webpage.

To enable dynamic connections that a user can create or break, follow these steps:

	 1. Create a page with a provider and consumer connection, as described in the previous
section.

	 2. Optionally, establish a static connection between the provider and consumer, as
described in the previous section. This acts as a default connection that will always
be there, but that users can modify by adding a new, dynamic connection.

	 3. Add a ConnectionsZone control to the webpage.

	 4. Add a control to enable the user to enter connect mode, as described in “Enabling
Users to Arrange and Edit Web Parts” earlier in this lesson.

Establishing Dynamic Connections Among Web Parts
When a user views your page, he or she can enter connect mode and use the ConnectionsZone
control to edit connections. To edit a connection as a user, follow these steps:

	 1. Switch the display mode of the page to connect mode.

	 2. On the Web Parts menu for either the provider or the consumer, select Connect from
the menu, as shown in Figure 5-12.

FigURE 5-12  Selecting Connect from the Web Parts menu to edit the connection.

	 3. The ConnectionsZone object appears, as shown in Figure 5-13.

 Lesson 3: Using Web Parts ChAPTER 5 273

FigURE 5-13 Using the ConnectionsZone control to dynamically establish a connection.

	 4. If there is an existing connection, click Disconnect to break the current connection. Then,
click Create A Connection To A Consumer, select the consumer, and click Connect, as
shown in Figure 5-14.

FigURE 5-14  Clicking Connect to establish a dynamic connection between Web Parts.

	 5. When you are done editing connections, click Close. The Web Parts are connected,
just as if you had connected them statically.

 274	 ChAPTER 5	 Input Validation and Site Navigation

Quick Check
	 1. Why would you want to use Web Parts?

	 2. Which component is required for all pages that use Web Parts?

	 3. What component do you need to enable to allow a user to add new Web Parts
to a page?

Quick Check Answers
	 1. Web Parts enable users to customize the components on a page and the layout

of a page. Additionally, Web Parts can automatically collect and exchange data.

	 2. The WebPartManager control is required for all pages that use Web Parts.

	 3. The CatalogZone control enables a user to add new Web Parts to a page.

Personalizing Web Parts
Web Parts support personalization. Personalization allows changes to the layout to be stored
for each user so that the user sees the same layout the next time he or she goes to the page.
Web Parts personalization relies on client-side cookies. It uses these cookies to look up set-
tings in the ASPNETDB SQL Server database. Typically, when you store personalized settings,
you will also want to authenticate users by using either Windows or Forms authentication.
This is not required, however.

More INfo  UsER AUThEnTiCATiOn

For more information about user authentication, see Chapter 13, “Implementing User
Profiles, Authentication, and Authorization.”

Enabling Personalization for Custom Controls
By default, personalization automatically stores the location and other personalized Web Parts
settings as described in the “Enabling Users to Arrange and Edit Web Parts” section earlier in
this chapter. You can also store custom data in the personalization database to enable controls
to remember information about users. To do so, you define a public property on the control.
You then add the Personalizable attribute, as the following simplified code demonstrates.

Sample of Visual Basic Code

<Personalizable()> _
Property PostalCode() As String
 Get
 Return _postalCode
 End Get

 Set(ByVal value As String)
 _postalCode = value

 Lesson 3: Using Web Parts ChAPTER 5 275

 End Set
End Property

Sample of C# Code

[Personalizable]
public string PostalCode
{
 get
 {
 Return _postalCode;
 }

 set
 {
 _postalCode = value;
 }
}

Enabling Shared Personalization
Web Parts personalization is enabled by default, and authenticated users of a Web Parts page
are able to personalize pages for themselves without any special configuration. However, indi-
vidual or user-scoped personalization changes are visible only to the user who made them. If you
want to provide webmasters (or any user) with the power to make personalization changes that
affect how everyone sees Web Parts, you can enable shared personalization in your application’s
Web.config file.

Within the <system.web> section of the configuration file, add an <authorization> section,
and within that, add an <allow> element to specify which user or users have access to shared
personalization scope, as the following example shows.

<authorization>
 <allow verbs="enterSharedScope" users="SomeUserAccount"
 roles="admin" />
</authorization>

The specified user or users now have the ability to edit a page in shared personalization scope
so that the changes they make are visible to all users.

Disabling Personalization for a Page
You can also disable personalization for a page, which is useful if you want to take advantage
of personalization on some pages but not on others. To disable personalization on a page, set
the WebPartManager.Personalization.Enabled attribute to false. The following markup shows
an example.

<asp:webPartManager ID="webPartManager1" runat="server">
 <Personalization Enabled="False" />
</asp:webPartManager>

 276	 ChAPTER 5	 Input Validation and Site Navigation

PrActIcE	 Using Web Parts

In this practice, you create a webpage that uses Web Parts. You then expand the page capa-
bilities to enable users to customize the page, and then add controls that communicate with
each other.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Creating a Webpage with Web Parts

In this exercise, you create a webpage that uses Web Parts.

	 1. Open Visual Studio and create a new ASP.NET Web Site named myWebParts by using
either C# or Visual Basic.

	 2. Create a new web form without a master page, and name it Default2.aspx. In Solution
Explorer, right-click the new page and then click Set As Start Page. Now edit it in Source
view. From the Toolbox, on the WebParts tab, drag a WebPartManager control onto the
page. This control isn’t visible to users, but it must appear before any Web Part controls
or the runtime throws an exception.

	 3. From the Toolbox, on the WebParts tab, drag four WebPartZone controls to the page.
Set the IDs for these to TopWebPartZone, LeftWebPartZone, CenterWebPartZone,
and bottomWebPartZone. Then set the HeaderText property for the zones to Top
Zone, Left Zone, Center Zone, and bottom Zone, respectively. Also, set the layout
styles to display appropriately (which, in the real world, should be done with a style
sheet). Your markup code should look as follows.

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>My Web Part Page</title>
</head>
<body>
 <form id="form1" runat="server">

 <asp:WebPartManager ID="WebPartManager1" runat="server">
 </asp:WebPartManager>

 <div style="width: 700px">

 <asp:WebPartZone ID="WebPartZoneTop" runat="server"
 HeaderText="Top Zone" style="width: 700px; height: auto">
 </asp:WebPartZone>

 <asp:WebPartZone ID="WebPartZoneLeft" runat="server"

 Lesson 3: Using Web Parts ChAPTER 5 277

 HeaderText="Left Zone" style="width: 300px; float: left; height: 300px">
 </asp:WebPartZone>

 <asp:WebPartZone ID="WebPartZoneCenter" runat="server"
 HeaderText="Center Zone"
 style="width: 400px; float: right; height: 300px">
 </asp:WebPartZone>

 <asp:WebPartZone ID="WebPartZoneBottom" runat="server"
 HeaderText="Bottom Zone" style="width: 700px; height: auto;">
 </asp:WebPartZone>

 </div>

 </form>
</body>
</html>

Your page, in Design view, should look similar to the one shown in Figure 5-15.

FigURE 5-15  The webpage zones in Design view.

	 4. Add two new web user controls to your website by right-clicking the website in Solution
Explorer and choosing Add New Item. Name the new controls CalendarWebPart and
LogoWebPart. These will serve as simple Web Part examples. Add a Calendar control to
the CalendarWebPart user control. Add an image to the LogoWebPart control.

These custom controls serve as examples only. A real Web Part could do something
more like display the weather or query a database.

 278	 ChAPTER 5	 Input Validation and Site Navigation

	 5. Open Default2.aspx in Design view. Drag the LogoWebPart user control from Solution
Explorer to the Top Zone WebPartZone container. Next, drag CalendarWebPart to the
Left Zone WebPartZone container.

	 6. Enable Windows authentication by editing the Web.config file. In the <system.web>
section, remove the existing <authentication> definition. Then add the following code
to the <system.web> section to enable Windows authentication.

<authentication mode="Windows">
</authentication>

You can use Web Parts personalization with either Forms or Windows authentication.
Although Forms authentication is the better choice for Internet applications, Windows
authentication requires less configuration, which makes it better suited to this demon-
stration.

	 7. Run your application in a browser. The first time you do so, it might take a little longer
than expected to start, because Visual Studio is adding the ASPNETDB database to your
project. Notice that your two controls appear on the page. Click the menu button in the
upper-right corner of each control, and experiment with minimizing and closing the Web
Parts. Notice that if you close a control you cannot reopen it without rerunning the site.
Also notice that both Web Parts are currently labeled Untitled.

	 8. Return to Visual Studio and open Default2.aspx in Design view. To give the Web Parts
meaningful display names, you need to edit the Title property. Click the instance of
CalendarControl, view the properties, and notice that the title is not displayed. To edit
the Title property, you must manually add it to the source code, as shown here.

<asp:WebPartZone ID="WebPartZoneLeft" runat="server"
 HeaderText="Left Zone" style="width: 300px; float: left; height: 300px;">
 <ZoneTemplate>
 <uc2:CalendarWebPart ID="CalendarWebPart1" runat="server"
 title="Calendar" />
 </ZoneTemplate>
</asp:WebPartZone>

	 9. Create a title for both the CalendarControl and LogoControl instances. Save the page
and view it in a web browser again to verify that the title appears.

ExErcIsE	2	 Enabling Users to Customize Web Parts

In this exercise, you extend an existing Web Parts application to enable user customization.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 3, Exercise 1 project in the samples installed from the CD.

 Lesson 3: Using Web Parts ChAPTER 5 279

	 2. Open Default2.aspx in Source view. Inside the center zone, add a ZoneTemplate control.
Next, create a simple Web Part by placing a Label control inside the ZoneTemplate con-
trol. Finally, nest a DropDownList control inside the Label control. Set the ID property to
DropDownListmodes, and set the AutoPostBack property to true. Your markup should
look as follows.

<asp:WebPartZone ID="WebPartZoneCenter" runat="server"
 HeaderText="Center Zone" style="width: 400px; float: right; height: 300px;">
 <ZoneTemplate>
 <asp:Label ID="Label1" runat="server" Text="" title="Edit Page">
 <asp:DropDownList ID="DropDownListModes"
 runat="server" AutoPostBack="true">
 </asp:DropDownList>
 </asp:Label>
 </ZoneTemplate>
</asp:WebPartZone>

	 3. If you are using Visual Basic, edit the Default2.aspx @ Page declaration to set the
AutoEventWireup attribute to true. This is set to true by default in C#. This demon-
strates the proper @ Page declaration.

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>

	 4. Create a Page_Init event handler in your code-behind file. In the Page_Init method
(which is automatically called when the page is created), add an event handler so that
ASP.NET calls the GenerateModeList method, which you create in the next step, during
the InitComplete event. The following code demonstrates this.

Sample of Visual Basic Code

Sub Page_Init(ByVal sender As Object, ByVal e As EventArgs)
 AddHandler Page.InitComplete, AddressOf GenerateModeList
End Sub

Sample of C# Code

void Page_Init(object sender, EventArgs e)
{
 Page.InitComplete += new EventHandler(GenerateModeList);
}

	 5. Next, add a using statement for the System.Web.UI.WebControls.WebParts namespace.
Then define the GenerateModeList method, which is called during the InitComplete
event. In the event handler, write code to populate the DropDownListModes control by
using the SupportedDisplayModes property of the WebPartManager control. Be sure
to select the correct item in the list based on the current mode. The following sample
code demonstrates this.

 280	 ChAPTER 5	 Input Validation and Site Navigation

Sample of Visual Basic Code

Protected Sub GenerateModeList(ByVal sender As Object, ByVal e As EventArgs)

 Dim _manager As WebPartManager = _
 WebPartManager.GetCurrentWebPartManager(Page)
 Dim browseModeName As String = webPartManager.BrowseDisplayMode.Name

 DropDownListModes.Items.Clear()

 ' Fill the drop-down list with the names of supported display modes.
 For Each mode As webPartDisplayMode In _manager.SupportedDisplayModes

 Dim modeName As String = mode.Name

 ' Make sure a mode is enabled before adding it.
 If mode.IsEnabled(_manager) Then
 Dim item As ListItem = New ListItem(modeName, modeName)
 DropDownListModes.Items.Add(item)
 End If

 Next

 ' Select the current mode
 Dim items As ListItemCollection = DropDownListModes.Items
 Dim selectedIndex As Integer = _
 items.IndexOf(items.FindByText(_manager.DisplayMode.Name))

 DropDownListModes.SelectedIndex = selectedIndex
End Sub

Sample of C# Code

protected void GenerateModeList(object sender, EventArgs e)
{
 WebPartManager _manager = WebPartManager.GetCurrentWebPartManager(Page);
 String browseModeName = WebPartManager.BrowseDisplayMode.Name;
 DropDownListModes.Items.Clear();

 // Fill the drop-down list with the names of supported display modes.
 foreach (WebPartDisplayMode mode in _manager.SupportedDisplayModes)
 {
 String modeName = mode.Name;
 // Make sure a mode is enabled before adding it.
 if (mode.IsEnabled(_manager))
 {
 ListItem item = new ListItem(modeName, modeName);
 DropDownListModes.Items.Add(item);
 }
 }

 // Select the current mode
 ListItemCollection items = DropDownListModes.Items;
 int selectedIndex = items.IndexOf(items.FindByText(_manager.DisplayMode.Name));
 DropDownListModes.SelectedIndex = selectedIndex;
}

 Lesson 3: Using Web Parts ChAPTER 5 281

	 6. Add the event handler for the DropDownListModes.SelectedIndexChanged event. Then
write code to set the current mode to the mode selected from the list, as the following
code demonstrates.

Sample of Visual Basic Code

Protected Sub DropDownListModes_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles DropDownListModes.SelectedIndexChanged

 Dim manager As WebPartManager = _
 WebPartManager.GetCurrentWebPartManager(Page)
 Dim mode As WebPartDisplayMode = _
 manager.SupportedDisplayModes(DropDownListModes.SelectedValue)

 If Not (mode Is Nothing) Then
 manager.DisplayMode = mode
 End If

End Sub

Sample of C# Code

protected void DropDownListModes_SelectedIndexChanged(object sender, EventArgs e)
{
 WebPartManager manager =
 WebPartManager.GetCurrentWebPartManager(Page);

 WebPartDisplayMode mode =
 manager.SupportedDisplayModes[DropDownListModes.SelectedValue];

 if (mode != null)
 manager.DisplayMode = mode;
}

	 7. Run your website and open Default2.aspx in Windows Internet Explorer. (Other browsers
might not provide complete functionality.) Notice that your two controls appear on the
page. Click the drop-down list and select Design. Then drag your controls from one zone
to another. Click the list again and return to browse mode.

	 8. Return to Visual Studio and to your page in Design view. Remove the center zone con-
trol and replace it with a <div> tag that uses the same style. Keep the drop-down control.
Underneath it, add an EditorZone control. Then add an AppearanceEditorPart con-
trol and a LayoutEditorPart control to the EditorZone control. The following shows an
example of the markup.

<div style="width: 395px; float: right; height: auto; padding-left: 5px">
 <asp:DropDownList ID="DropDownListModes" runat="server" AutoPostBack="true"
 OnSelectedIndexChanged="DropDownListModes_SelectedIndexChanged">
 </asp:DropDownList>

 <asp:EditorZone ID="EditorZone1" runat="server">
 <ZoneTemplate>

 282	 ChAPTER 5	 Input Validation and Site Navigation

 <asp:AppearanceEditorPart ID="AppearanceEditorPart1" runat="server" />
 <asp:LayoutEditorPart ID="LayoutEditorPart1" runat="server" />
 </ZoneTemplate>
 </asp:EditorZone>
</div>

	 9. Run your application in Internet Explorer. Click the drop-down list and select the
newly added item, Edit. Next, click the menu button in the upper-right corner of the
calendar control and select Edit. Notice that the EditorZone, AppearanceEditorPart,
and LayoutEditorPart controls appear. Experiment with the controls to change their
appearance and layout. Notice that adding this capability didn’t require writing any
other code; you simply needed to add the controls to the page. The WebPartManager
control detects the presence of the EditorZone control and automatically enables
edit mode.

	 10. Return to Visual Studio and open your page in Source view. Next, add a CatalogZone
control below the EditorZone control. Now add a DeclarativeCatalogPart control into
the CatalogZone control.

	 11. Add the WebPartsTemplate tag inside the DeclarativeCatalogPart control. This enables
you to add controls to the catalog. Next, add your LogoControl and CalendarControl
controls to the CatalogZone control. This adds the controls to the catalog. The following
code provides an example.

<asp:CatalogZone ID="CatalogZone1" runat="server">
 <ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="DeclarativeCatalogPart1" runat="server">
 <WebPartsTemplate>
 <uc1:LogoWebPart ID="LogoWebPart1" runat="server" title="Logo" />
 <uc2:CalendarWebPart ID="CalendarWebPart1" runat="server"
 title="Calendar" />
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
</asp:CatalogZone>

	 12. Run your web application in Internet Explorer. Click the drop-down list and select the
newly added catalog mode. The catalog zone you created appears and shows the avail-
able controls. Select the logo control, select a zone from the drop-down list, and then
click Add. Continue experimenting with the control; switch back to browse mode when
you are done.

ExErcIsE	3	 Creating Connected Web Parts

In this exercise, you extend an existing application to enable connected Web Parts.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 3, Exercise 2 project in the samples installed from the CD.

 Lesson 3: Using Web Parts ChAPTER 5 283

	 2. Create three new web user controls as follows:

■ getname Add a Label control with the text Please type your name. Add
a TextBox control named nameTextbox. Then add a Button control named
submitbutton and labeled submit.

■ greetUser Add a Label control named greetingLabel.

■ shownamebackwards Add a Label control named backwardsLabel with the
text Enter name to see it spelled backwards.

	 3. Open the code-behind file for the GetName control. Add code to capture the text the
user types in the TextBoxName control when he or she clicks Submit.

	 4. Next, add the System.Web.UI.WebControls.WebParts namespace to the control. Create
a public method named GetUserName, and set the ConnectionProvider attribute. In
this method, return the name the user typed. This control provides the user’s name as
data to the consumer controls. The following shows an example.

Sample of Visual Basic Code

Partial Class GetName
 Inherits System.Web.UI.UserControl

 Private _name As String = String.Empty

 Protected Sub SubmitButton_Click_
 (ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles SubmitButton.Click
 _name = NameTextBox.Text
 End Sub

 <ConnectionProvider("User name provider", "GetUserName")> _
 Public Function GetUserName() As String
 Return _name
 End Function
End Class

Sample of C# Code

private string _name = string.Empty;

protected void SubmitButton_Click(object sender, EventArgs e)
{
 _name = NameTextBox.Text;
}

[ConnectionProvider("User name provider", "GetUserName")]
public string GetUserName()
{
 return _name;
}

 284	 ChAPTER 5	 Input Validation and Site Navigation

	 5. Open the code-behind file for the GreetUser control. Add the System.Web.UI.WebControls.
WebParts namespace to the code-behind file, and then create a public method named
GetName and set the ConnectionConsumer attribute. This control reads the user’s name
from the GetName control (after the user is connected) and displays it to the user as part
of a greeting.

	 6. Create the GetName method so that it accepts a string and uses it to create a greeting
by using the Label control, as the following code demonstrates.

Sample of Visual Basic Code

Partial Class GreetUser
 Inherits System.Web.UI.UserControl

 <ConnectionConsumer("User name consumer", "GetName")> _
 Public Sub GetName(ByVal Name As String)
 GreetingLabel.Text = "Welcome, " + Name + "!"
 End Sub

End Class

Sample of C# Code

public partial class GreetUser : System.Web.UI.UserControl
{
 [ConnectionConsumer("User name consumer", "GetName")]
 public void GetName(string Name)
 {
 GreetingLabel.Text = "Welcome, " + Name + "!";
 }

}

	 7. Open the code-behind file for the ShowNameBackwards control. Add the using state-
ment for the System.Web.UI.WebControls.WebParts namespace. Then create a public
GetName method as you did for GreetUser. You can use a similar definition for the
ConnectionConsumer attribute. Inside this method, write code to reverse the order
of the user’s name and display it in the LabelBackwards control, as the following code
demonstrates.

Sample of Visual Basic Code

Partial Class ShowNameBackwards
 Inherits System.Web.UI.UserControl

 <ConnectionConsumer("User name consumer", "GetName")> _
 Public Sub GetName(ByVal Name As String)
 Dim NameCharArray As Char() = Name.ToCharArray()
 Array.Reverse(NameCharArray)
 BackwardsLabel.Text = "Your name backward is: " & _
 New String(NameCharArray)
 End Sub
End Class

 Lesson 3: Using Web Parts ChAPTER 5 285

Sample of C# Code

public partial class ShowNameBackwards : System.Web.UI.UserControl
{
 [ConnectionConsumer("User name consumer", "GetName")]
 public void GetName(string Name)
 {
 char[] NameCharArray = Name.ToCharArray();
 Array.Reverse(NameCharArray);
 BackwardsLabel.Text = "Your name backward is: " +
 new string(NameCharArray);
 }
}

	 8. Open the Default2.aspx page you created in Design view, and add the GetName,
GreetUser, and ShowNameBackwards controls to the bottom zone. Specify titles
for each control, as shown here.

<asp:WebPartZone ID="WebPartZoneBottom" runat="server"
 HeaderText="Bottom Zone" style="width: 700px; height: auto;">
 <ZoneTemplate>
 <uc3:GetName ID="GetName1" runat="server" title="Enter Name" />
 <uc4:GreetUser ID="GreetUser1" runat="server" title="Greeting" />
 <uc5:ShowNameBackwards ID="ShowNameBackwards1" runat="server"
 title="Backwards Name" />
 </ZoneTemplate>
</asp:WebPartZone>

	 9. Open Default2.aspx in Source view. Within the WebPartManager control, add a
<StaticConnections> element. Within the <StaticConnections> element, add two
WebPartConnection controls that declare the connections between the GetName
provider and the GreetUser and ShowNameBackwards consumers.

The WebPartConnection control must have an ID attribute, an attribute to identify the
provider control (ProviderID), an attribute to identify the provider method (Provider-
ConnectionPointID), an attribute to identify the consumer control (ConsumerID), and an
attribute to identify the consumer method (ConsumerConnectionPointID). The following
markup demonstrates this.

<asp:webPartManager ID="webPartManager1" runat="server">
 <StaticConnections>
 <asp:webPartConnection
 ID="WebPartConnection1"
 ProviderID="GetName1"
 ProviderConnectionPointID="GetUserName"
 ConsumerID="GreetUser1"
 ConsumerConnectionPointID="GetName"
 />
 <asp:webPartConnection
 ID="WebPartConnection2"
 ProviderID="GetName1"
 ProviderConnectionPointID="GetUserName"

 286	 ChAPTER 5	 Input Validation and Site Navigation

 ConsumerID="ShowNameBackwards1"
 ConsumerConnectionPointID="GetName"
 />
 </StaticConnections>
</asp:webPartManager>

	 10. Run Default.aspx in your web browser. In the GetName control, type your name, and
then click the button. Your name appears in the other two controls.

Lesson Summary
■ Web Parts are controls that you create by using either custom controls that implement

the Web Part class or standard user controls and ASP.NET controls. Web Parts are also
managed by ASP.NET, which allows users to close, minimize, edit, and move them.

■ To add Web Parts to a page, add a WebPartManager control to the top of the page,
add WebPartZone containers to the page, and then add controls to the WebPartZone
containers.

■ To enable users to edit or rearrange Web Parts, you change the DisplayMode property
of the WebPartManager control on your page.

■ Web Parts can be connected so that they can share data. You connect them by defining
both provider and consumer Web Parts, using the attribute-based programming
model. In addition, you configure the connections between Web Parts by adding a
<StaticConnections> element to the WebPartManager control.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 3,
“Using Web Parts.” The questions are also available on the companion CD as a practice test,
if you prefer to review them in electronic form.

Note  AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. Which of the following can be a Web Part? (Choose all that apply.)

	 A. A control based on the Web User Control template

	 B. A standard Label control

	 c. A type derived from WebPart

	 D. A master page

 Case Scenarios ChAPTER 5 287

	 2. Which of the following are required to enable users to change the title of a Web Part?
(Choose all that apply.)

	 A. LayoutEditorPart

	 B. EditorZone

	 c. CatalogZone

	 D. AppearanceEditorPart

	 3. You have developed a webpage with many different Web Part components. Some Web
Parts are enabled by default, and you want to give the user the ability to display others.
Which classes should you use? (Choose all that apply.)

	 A. LayoutEditorPart

	 B. DeclarativeCatalogPart

	 c. CatalogZone

	 D. AppearanceEditorPart

	 4. You have created a Web Part control that prompts the user for personalization informa-
tion, including his or her name, region, and preferences. You want other controls to be
able to read information from this control to customize the information they display.
How should you modify your Web Part to enable other Web Parts to connect to it?

	 A. Create a method that shares the user’s information, and add the ConnectionConsumer
attribute to that method.

	 B. Create a method that shares the user’s information, and add the ConnectionProvider
attribute to that method.

	 c. Create a public property that shares the user’s information, and add the Connection-
Consumer attribute to that method.

	 D. Create a public property that shares the user’s information, and add the Connection-
Provider attribute to that method.

Case scenarios

In the following case scenarios, you apply what you’ve learned about input validation, site
navigation, and Web Parts. If you have difficulty completing this work, review the material in
this chapter before beginning the next chapter. You can find answers to these questions in the
“Answers” section at the end of this book.

 288	 ChAPTER 5	 Input Validation and Site Navigation

Case Scenario 1: Determining the Proper Validation
Controls to Implement on a User Name
You are an application developer for Humongous Insurance. You are developing a new customer
service portal. The first page users go to allows them to create a website account, which you then
link to their customer information in your internal database.

On the registration page, the user must enter a valid email address, password, and account
number. The password must be between 6 and 14 characters and contain at least one upper-
case letter, one lowercase letter, and one number.

	 1. Which validation controls will you implement on the user name text box?

	 2. Which validation controls will you implement on the password text box?

	 3. Which validation controls will you implement to validate the account number?

Case Scenario 2: Implementing a Site Map
You are an application developer for Humongous Insurance. You are creating a website that
customers can browse to answer frequently asked questions. To allow users to browse differ-
ent categories of help, you want to create a menu that contains a tree view of the locations
to which the user can navigate. You also want to display a breadcrumb path to show users
the path to the page, allowing them to quickly navigate to higher levels.

■ Which navigation controls will you use?

Case Scenario 3: Meeting Customization Requirements for
an Internal Insurance Application
You are an application developer for Humongous Insurance. Six months ago, you released
version 1.0 of a new .NET Framework web application that internal staff uses to perform
several critical tasks, including:

■ Looking up customer information when a subscriber calls.

■ Managing the list of in-network physicians.

■ Identifying subscribers who are behind on payments.

■ Analyzing claims to identify areas of high cost.

Since the release of your application, you’ve been focused on fixing bugs. However, the
application is now very stable, and you are beginning discussions with users to determine
future features. At this stage, your manager would like you to meet with some users, ana-
lyze their requests, and determine how feasible these features might be when using the
.NET Framework.

 Suggested Practices ChAPTER 5 289

Interviews
Following is a list of company personnel who were interviewed, and their statements:

■ Accounts Receivable manager We have about two dozen employees in accounts
receivable who are primarily responsible for chasing down subscribers who are behind
on their payments. Your current application works great; however, it doesn’t meet
everyone’s needs equally. To clarify, we have different groups for people responsible
for corporate accounts, public sector accounts, small business accounts, and individual
subscribers. Depending on the group, these employees want to see different informa-
tion on the page. If possible, I’d like to enable users to customize pages and have those
preferences remembered for each time they go to the page.

■ Underwriter I’m responsible for analyzing claims and determining how we need to
adjust prices to cover the cost of claims. I primarily use your application’s reporting fea-
tures. I love them—all I ask is that you make them more flexible. Right now, if I select a
type of claim, I can see a chart of how the costs for that type of claim have changed over
time. I’d like to be able to view that chart, but also view whether the claim is regional in
nature, and whether specific types of organizations have more of that type of claim than
others. Right now, I have to open different windows to see these different reports. I’d like
them all to appear on a single page when I click a claim type.

Questions
Answer the following questions for your manager.

	 1. How can you provide the personalization capabilities requested by the Accounts
Receivable Manager?

	 2. How can you enable different components to communicate with each other, as
described by the Underwriter?

suggested Practices

To successfully master the input validation and site navigation exam objectives presented in
this chapter, complete the following tasks.

Validate User Input
For this task, you should complete Practices 1 and 2. Complete Practice 3 to obtain extra
experience with the CustomValidator control.

■ Practice 1 Create a new webpage that collects data from users. Practice adding the
validation controls to restrict data entry to valid entries.

■ Practice 2 Disable all client-side validation and test server-side validation.

■ Practice 3 Add at least one CustomValidator control, and supply client-side and
server-side validation code.

 290	 ChAPTER 5	 Input Validation and Site Navigation

Create Page Layout
For this task, you should complete Practices 1 through 5 to gain experience with using navigation
and Web Parts.

■ Practice 1 Configure some HyperLink controls to navigate to different webpages on
the same website, and configure other HyperLink controls to navigate to a webpage
on a different website.

■ Practice 2 Add navigation controls to an existing website.

■ Practice 3 Using the Web Parts page you created in the Lesson 3 exercises, open the
webpage by using a browser other than Internet Explorer. Notice that ASP.NET renders
the Web Part controls differently.

■ Practice 4 Using the Web Parts page you created in Lesson 3, Exercise 3, expand the
connected control capabilities so that the user’s name is stored persistently.

■ Practice 5 Using the Web Parts page you created in Lesson 3, Exercise 3, remove the
static connections from Default.aspx. Then add a ConnectionsZone control to the page.
View the page and use the ConnectionsZone control to manually establish the connec-
tions among the GetName, GreetUser, and ShowNameBackwards controls.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just the lesson review questions in this chapter, or you can test yourself on all the
70-515 certification exam objectives. You can set up the test so that it closely simulates the
experience of taking a certification exam, or you can set it up in study mode so that you can
look at the correct answers and explanations after you answer each question.

More INfo  PRACTiCE TEsTs

For details about all the practice test options available, see “How to Use the Practice Tests”
in this book’s Introduction.

 ChAPTER 6 291

C h A P T E R 6

Globalization and
Accessibility
Many websites are developed for a single language and culture. However, these web-

sites are often accessed by people living in different countries and speaking different
languages. Website developers often ignore this potentially larger audience. Microsoft
ASP.NET allows you to expand your reach to this audience by externalizing your site’s
text into separate, localized files called resource files.

A resource file is created for each language and culture that your site supports. ASP.NET
determines the requested language and culture from the user’s request and checks your site
to see if it supports the request. If it does, ASP.NET will process the appropriate resources and
render your page in the requested language. If it does not, ASP.NET will pick up your default
resource file and return the response with that information.

If you want your site to be accessed by the widest variety of users, you must include
support for accessibility. This means that you must support the many different display types
and input devices that can be used to access your site. When you implement accessibility,
the additional features typically benefit all users of your site.

ASP.NET provides several features to help you with both globalization and accessibility.
This chapter covers these important topics from the perspective of an ASP.NET web
developer.

Exam objectives in this chapter:
■	 Developing Web Forms Pages

■ Implement globalization.

Lessons in this chapter:
■	 Lesson 1: Configuring Globalization and Localization 292
■	 Lesson 2: Configuring Accessibility 312

 Contents

 ChAPTER 6 291

 globalization and Accessibility 291
Before You Begin . 292

Lesson 1: Configuring Globalization and Localization 292

About ASP.NET Resources 293

Using Local Resource Files 293

Using Global Resources 300

HTML Layout Best Practices 304

Setting the Culture 305

Lesson Summary 311

Lesson Review 311

Lesson 2: Configuring Accessibility . 312

Public Accessibility Guidelines 313

How ASP.NET Controls Support Accessibility 313

Improving Visual Accessibility 314

Improving the Accessibility of Forms
That Require User Input 316

Testing Accessibility 318

Lesson Summary 324

Lesson Review 324

Case Scenarios . 325

Case Scenario 1: Upgrading an Application for Multiple Languages 325

Case Scenario 2: Making a Web Application Accessible 326

Suggested Practices . 326

Implement Globalization 326

Implement Accessibility 327

Take a Practice Test . 327

 292	 ChAPTER 6	 Globalization and Accessibility

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
with Microsoft Visual Studio by using Microsoft Visual Basic or Microsoft Visual C#. In addition,
you should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Using Hypertext Markup Language (HTML) and client-side scripting

■ Creating ASP.NET websites and forms

real World

Mike Snell

Most web applications I have written, seen, or played a part in were written for
a single-language, single-culture audience. In nearly all cases, globalization

was either an afterthought or never even a consideration. I have seen many of these
applications continue just fine for years, until they need to support another language.
Companies are bought, others merge, or new markets are explored. If you have had
a similar experience, you know that converting a single-language application to one
that supports globalization requires no small amount of tedious work.

It’s also true that implementing globalization at the start is much easier than it is
after the application has been around for a while. Given this fact, and the ease with
which ASP.NET applications can support globalization, I suggest that nearly all enter-
prise solution developers consider globalization from the start. Even if you have no
current plans to translate an application, this step will pay off in the future. If you are
writing an enterprise, mission-critical application, globalization should be assumed;
if you are writing commercial software, it is an absolute imperative.

Lesson 1: Configuring globalization and Localization

Many web application developers are asked to support users in a variety of cultures who speak
different languages. These developers might be writing intranet applications for multinational
companies, public websites for global audiences, or other web applications that need to reach
a wide audience. For these reasons, ASP.NET provides the infrastructure to create web appli-
cations that automatically adjust formatting and languages according to the user’s preferred
language and culture.

This lesson describes how you use these features to create web applications suitable for a
broad audience.

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 293

After this lesson, you will be able to:
■	 Support multiple languages in your website with resource files.
■	 Create a webpage layout that is flexible, allowing it to accommodate different

languages.
■	 Programmatically set the language and culture of a webpage.

Estimated lesson time: 30 minutes

About ASP.NET Resources
To display an ASP.NET page in one of several different languages, you could prompt the
user for his or her preferred language, and then write if-then statements to update the text
of your page. However, that would be a complex, time-consuming chore that would require
the person translating the website to know how to write code. Clearly this is not an effective
solution. Instead, you need to externalize the items requiring translation and allow your code
to connect to these items at run time. This allows a nontechnical translator to work without
having to touch the code. It also saves you from introducing any errors that might creep into
your code from the addition of language support.

ASP.NET uses resource files to support multiple languages. A resource file contains a
language-specific set of text for a page or for an entire site. Your code accesses a resource
file based on the user’s requested language in his or her machine settings or browser set-
tings. If a resource file exists for the requested language, ASP.NET uses it and thus renders
your site in the language specified. If no resource file exists for the request, ASP.NET uses
the default language setting for the site.

There are two types of resources in ASP.NET: local and global. Local resources are those
specific to a page. Global resources are shared throughout the site. Most globalized ASP.NET
applications take advantage of both. The sections that follow elaborate on each of these
types of resources.

Using Local Resource Files
A local resource is specific to a single webpage and should be used for providing a version
of a webpage in a different language. Local resources must be stored in the special App_
LocalResources folder. This is either a subfolder of your site or a subfolder inside any folder con-
taining webpages. If your site contains many folders, you might have an App_LocalResources
subfolder in each folder of your site.

Each local resource file is page specific. Therefore, it is named by using the page name
plus the .resx extension, as in PageName.aspx.resx. For example, to create a resource file for
the Home.aspx page, you would create a file called Home.aspx.resx. This becomes the default
base resource file for the Home.aspx page. ASP.NET uses this default resource file if it cannot
find a match for the user’s requested language-culture setting.

 294	 ChAPTER 6	 Globalization and Accessibility

You create language-specific versions of the resource file by copying the original file and
renaming it to include the specific language information, as in PageName.aspx.languageId.resx.
For example, a Spanish version of the Default.aspx page could be named Default.aspx.es.resx
(“es” is the abbreviation for Spanish). A German file could be named Default.aspx.de.resx (“de”
represents German).

Note LAngUAgE AnD CULTURE AbbREviATiOns

You can find a list of language and culture identifications by searching the Microsoft
Developer Network (MSDN) for “National Language Support (NLS) API Reference” or by
going to http://msdn.microsoft.com/en-us/goglobal/bb896001.aspx.

Culture-Specific Local Resources
In ASP.NET development, the term culture refers to regional language and formatting differ-
ences. For example, English spoken in the United States is slightly different than the English
spoken in England, Australia, or other parts of the world. Each country or region might also
have different standards for currency, date, and number formatting. For example, in the United
States, numbers are written in the following format: 12,345.67. In parts of Europe, the comma
and period are used differently, and the same number is written as 12.345,67.

When a request specifies a culture, the Microsoft .NET Framework will adjust formatting as
needed. That is, if you are formatting data as a date and the request defines both language
and culture, the .NET Framework will know to format the data according to the request. You
do not have to do anything additional in your code or resource files.

If, however, you need to translate differently based on culture, you should add a culture des-
ignation to your resource file. This is useful if there are different dialects you need to support,
such as the difference between English in the United States and Great Britain, or the difference
between Spanish in Mexico and Spain.

You add a culture designation to your resource by naming the file as follows:
PageName.aspx.languageId-cultureId.resx. As an example, a Spanish (es) resource file
designated for Mexico (mx) could be named as follows: Home.aspx.es-mx.resx. If you have
defined resource files for both es and es-mx, ASP.NET uses the es-mx file for users requesting
from Mexico; all other Spanish-speaking cultures receive the Home.aspx.es.resx file.

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 295

Examining the Contents of a Resource File
An ASP.NET resource file is an XML file that includes a set of key-value pairs for defining
resources. The keys are unique and are used to define and reference the resource. The value,
of course, is what is returned for the key. For example, the following markup shows the XML
inside a resource file for defining a resource string to be used to set a page’s title property.

<data name="PageResource1.Title" xml:space="preserve">
 <value>Customer Lookup</value>
</data>

In this example, the key (name) of the resource is PageResource1.Title, and the value is
Customer Lookup. Visual Studio provides a tool for editing resource files so that you do not
have to manually edit the XML. However, you can always open a .resx file inside the XML
editor if you need to.

Generating Local Resources
You can use Visual Studio to automatically generate the default version of your local resource file.
Doing so extracts the page and control elements into a resource file, which can save you time
and effort. Note that resources are only generated for controls on the page (and not text outside
of controls). To automatically generate a resource file by using Visual Studio, follow these steps:

	 1. Open your webpage (markup) in Visual Studio.

	 2. From the Tools menu, select Generate Local Resource. This causes Visual Studio to
perform the following tasks:

■ Create the App_LocalResources folder (if necessary).

■ Generate an XML-based local resource file for the webpage in the App_LocalResources
folder. This file contains resource settings for page elements (such as the title) and con-
trol properties (such as Text, ToolTip, Title, Caption, and other string-based properties).

Note mAnUAL CREATiOn OF REsOURCE FiLEs

You can also manually create a resource file. You first define the folder to store the file
(App_LocalResource) and then right-click and select Add New Item. You then select the
Resource File template.

As an example, consider the web form shown in Figure 6-1. This page contains TextBox,
Calendar, and Button controls. Notice the option to Generate Local Resource shown on the
Tools menu.

 296	 ChAPTER 6	 Globalization and Accessibility

FigURE 6-1 Generating a resource file directly from an ASPX page.

Generating a resource file for the page shown in Figure 6-1 externalizes the key string
properties of the controls on the page into a .resx file. This file can be opened and edited by
using Visual Studio’s resource file editor. Figure 6-2 shows the generated, default resource
file (CustomerLookup.aspx.resx) open inside Visual Studio. Notice that the Find button’s Text
property string value was set automatically based on the value defined in the markup.

FigURE 6-2 The generated resource file opened in the Visual Studio resource editor.

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 297

Remember, you can also work with the .resx file in an XML editor. Each key-value pair is an
XML <data> element with a name that matches the named element on the page. The following
shows an example of the Find button’s Text property resource inside the XML.

<data name="ButtonFindResource1.Text" xml:space="preserve">
 <value>Find</value>
</data>

Localizing Text Outside of Controls
Recall that Visual Studio did not generate resources for all the text on the page. Rather, it only
generated a resource for those items that were string properties of controls. Refer back to
Figure 6-1. Notice that there are several text items on the page that were not externalized as
resources. These items were not externalized because the text was not defined inside a control.
ASP.NET needs to attach resources to controls so that it can associate the control and resource
file through code running on the server. This is something you need to consider when creating
your pages. If the text on your page requires resource-based localization, it is best to encapsu-
late that text inside a control.

You have a couple of options for doing so. ASP.NET includes the <asp:Localize> control to
assist with localizing text. This control renders no markup to the page. It only works to localize
text that is typically outside of a control. You can also use an <asp:Label> control. This control
will provide you with additional markup options and works in a similar manner. The following
shows an example of a text element on the page that uses the <asp:Localize> control.

<asp:Localize ID="LabelTitle" runat="server" Text="Customer Lookup"
 meta:resourcekey="LabelTitleResource1"></asp:Localize>

Attaching Controls and Resources Implicitly
When Visual Studio generates a resource file, it also automatically changes your markup to
attach each page element with an associated resource. To do so, it adds the meta:resourcekey
markup as an attribute of a specific control. This tells ASP.NET to look up the value for this item
from the resource file by using the specified resource key (the name of the data element in the
.resx XML). This is referred to as implicit localization because it is based on matching resources
defined with the naming pattern Key.Property, where Key is the control name and Property is the
property of the control on which to match (as in ButtonFind.Text or ButtonFindResource1.Text).

The following markup shows an example of the Find button’s markup after the Text property
was externalized into an implicit resource.

<asp:Button ID="ButtonFind" runat="server" Text="Find" CssClass="submitButton"
 meta:resourcekey="ButtonFindResource1" />

Notice that this markup still has a value defined for the Text property. This is to aid you at design
time when laying out the page. Notice also that this markup contains the meta:resourcekey key
set to ButtonFindResource1. ASP.NET will use this key to look up resources in the specified .resx
file and match on any properties that might be set inside the resource file as meta:resourcekey.
<propertyName> or ButtonFindResource1.Text. If it finds a property match, it will replace that
control’s property value with the value found in the resource file.

 298	 ChAPTER 6	 Globalization and Accessibility

You can use this same method and naming convention when manually defining resources
and attaching them to your markup. This is important, because you often will add or change
controls on a webpage after you have generated the resource file. Visual Studio does not try
to automatically keep the resource file in sync. Therefore, you typically generate resource files
as one of the last steps of the development process. This becomes even more important as you
build up different resource files for different languages and cultures. A change to your page in
this case results in a change to each of the many resource files associated with the page.

Attaching Controls and Resources Explicitly
The implicit model discussed previously matches control property values to resources automati-
cally (based on the Key.Property convention). However, you can also write markup to match a
control’s property to a resource explicitly. The following markup shows an example of matching
the Text property with the ButtonFindResource1.Text resource.

<asp:Button ID="ButtonFind" runat="server" CssClass="submitButton"
 Text="<%$ Resources:, ButtonFindResource1.Text %>" />

Explicit localization requires that you write markup for every control property you want to
attach to a resource. Therefore, if you want to externalize another property as a resource, you
must both add the resource to the resource file and add the markup to your page, whereas
with implicit localization, you simply define the resource by using the appropriate naming
convention (Key.Property).

Creating Language-Specific Local Resources
You typically create culture-specific and language-specific resource files by first creating a
default resource file. You can use this default file as a base. You copy and paste it to create
a new resource file for the target language or culture and name the file accordingly. You
then need to modify the resource values for the new language or culture. To copy the
default resource file, follow these steps:

	 1. In Solution Explorer, right-click your default resource file and select Copy.

	 2. Right-click the App_LocalResources folder, and then select Paste.

	 3. Right-click the new resource file, and then select Rename. Type a new name for the
resource file that includes the language and culture code before the file extension.
For example, you might name the file CustomerLookup.aspx.fr.resx to create a French-
language version of the page (“fr” is the abbreviation for French).

	 4. Double-click the new resource file to open it in Visual Studio. Visual Studio displays a
table containing values and comments for each resource. Update the values for the
new culture, and then save the resource file.

You repeat these steps to create resource files for every language and culture that you want
to support. Recall that if you want to create a culture-specific file (in addition to a language-
specific one), you do so by separating culture and language with a hyphen, as in “es-mx” for
Spanish language, Mexican culture.

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 299

Testing Resource Files for Other Cultures
ASP.NET automatically determines the user’s preferred culture based on information provided
by the web browser. When the request is sent to the page, ASP.NET sets the Page.UICulture
property based on the request. You can use this property in your code. ASP.NET uses the
same property to select an appropriate resource file.

A web browser’s language preferences are set during installation. However, they can be
modified by users. You can also modify them to help test your site. To test other cultures by
using Windows Internet Explorer, update the preferred language by following these steps:

	 1. Open Internet Explorer. From the Tools menu, select Internet Options to launch the
Internet Options dialog box.

	 2. On the General tab, click Languages in the Appearance group. This opens the Language
Preference dialog box.

	 3. In the Language Preference dialog box, click Add.

	 4. In the Add Language dialog box, under Language, select the language you want to test,
and then click OK.

	 5. Figure 6-3 shows the English (Belize) (en-BZ) setting added to the language preferences.
From here, you select the language you want to test, and then click Move Up to move
that language to the top of the list. Finally, click OK twice to close the open dialog boxes.

FigURE 6-3 Redefining your preferred language in Internet Explorer to test your website
localization.

 300	 ChAPTER 6	 Globalization and Accessibility

You can now visit the webpage of your site and view the selected culture’s resource file.
When you are done testing, remember to reset your browser to your actual preferred
language and culture.

Using Global Resources
A global resource is one that is defined to be read from any page or code that is in the website.
Global resources are not page-specific resources like local resources. Rather, global resources
are designed for when you need to access a single resource from multiple webpages in your
site. In this way, you can define the resource once and share its value across pages.

Global resources are still .resx files. You still create a default file and a version for each
language and culture you intend to support. The file naming scheme remains the same as for
local resource files. However, global resource files are stored in the App_GlobalResources folder
at the root of an application. ASP.NET also generates an object that allows you to easily access
your global resources through code. In markup, you must use a global resource explicitly (global
resources are not used implicitly).

Creating Global Resources
To create a global resource, you start by creating a resource file and storing it in the App_
GlobalResources folder. This file should externalize all the resources you intend to share
across pages. You can then explicitly map individual control properties across pages to the
resource of choice. You can also use the resource in code. Finally, you can create separate
versions of the global resource file for each language and culture you intend to support.
ASP.NET will automatically associate the right version of the global resource file based on
the user’s defined language and culture setting (just as with local resources).

To create a global resource file, follow these steps:

	 1. In Solution Explorer, right-click the root of your website. Select Add ASP.NET Folder,
and then select App_GlobalResources. This will add a folder of the same name to the
root of your site.

	 2. Next, right-click the App_GlobalResources folder, and then select Add New Item.

	 3. In the Add New Item dialog box, select Resource File. In the Name text box, type any
file name with a .resx extension. For example, you could name your global resource file
SharedLocalizedText.resx. Click Add to add the resource file to your site.

	 4. Open the new resource file in Visual Studio. Visual Studio displays a table-like format
for adding and editing resources. From here you can add strings, images, icons, audio,
files, and other resources (see the Note on the next page). Remember, this is your
default resource file (based on the naming convention). Therefore, you add items here
that are meant to be in the default language and culture (when no language-specific
resource file version is found).

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 301

	 5. After you have defined your default resource file, you copy and paste it to create
resource files for different languages. You name these files the same way you would
local resource files. For example, you might name a French global resource file
SharedLocalizedText.fr.resx. You then open each language-specific version and
edit it to provide the resource translation.

Note CREATing nOn-sTRing REsOURCEs

You do not store non-string resources such as images as resources. Rather, you store the
name of the file and its path that the item represents. The resource XML stores information
that will link you to the actual file. You can then map this information to a control property
such as an Image control’s ImageUrl property.

Attaching Control Properties to Global Resources
After you have defined a global resource file, you can explicitly associate control properties
(such as Label.Text) from different pages to the global resource. In this way, you can share
the resource file across pages. ASP.NET will automatically display the correct text from your
resource file based on the user’s defined culture. Therefore, if you have a Label that displays
a greeting message on every page, you only need to define the message once for each
culture (rather than defining it in separate resource files for each webpage).

In design mode, you can associate a control’s property value with a global resource by
using the Expressions property. To do so, follow these steps:

	 1. Open your page in Design view in Visual Studio. View the Properties pane for one of
the controls.

	 2. Select the Expressions property (in the Data category). Click the ellipsis (…) button
next to the property to launch the control’s Expressions dialog box.

	 3. From the Bindable Properties list, select a property that you want to bind to a
resource.

	 4. From the Expression type list, select Resources.

	 5. In the Expression Properties list, set ClassKey to the name of your global resource file
(without the extension). Under that, set ResourceKey to the name of the resource
within the resource file. Figure 6-4 shows an example.

 302	 ChAPTER 6	 Globalization and Accessibility

FigURE 6-4 Using expressions to bind controls to global resources.

	 6. Click OK to close the dialog box.

After a resource is set, Visual Studio displays the default resource value for the control in
design view. Of course, this will be changed to display the language-specific resource when a
user visits the webpage.

Within the page markup, Visual Studio updates the control’s Text property to explicitly bind
to the resource. For example, if you are binding a Label control’s Text property to a resource
named WelcomeString in the SharedLocalizedText resource file(s), the markup looks as follows.

<asp:Label ID="LocalizeWelcome"
 Text="<%$ Resources:SharedLocalizedText, WelcomeString %>" runat="server"></asp:Label>

exaM tIp

You should be sure to know how to use the explicit <%$ Resources:ResourceFile,
ResourceID %> format for the exam.

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 303

Accessing Resource Values Programmatically
ASP.NET creates an object that allows you to access global resource values programmatically
by using the Resources.ResourceFilename.Resource syntax . This is a strongly typed class of the
Resources.Resource object for each global resource file. The class is created based on the file
name (minus the language and culture extensions).

Each resource in the file is a member of the class. For example, if you add a value named
WelcomeString to the resource file, SharedLocalizedText, you can assign the value to a Label
control’s Text property inside your page’s code-behind by using the following syntax.

Sample of Visual Basic Code

LabelLocalizedWelcome.Text = Resources.SharedLocalizedText.WelcomeString

Sample of C# Code

LabelLocalizedWelcome.Text = Resources.SharedLocalizedText.WelcomeString;

The preceding example assumes that you are accessing global resources programmatically
and that those resources are available at design time. However, your resource files might not be
available at design time, or you might want to access local resources programmatically. For these
purposes, ASP.NET provides the GetLocalResourceObject and GetGlobalResourceObject methods.
Each of these methods looks for a resource file, reads it, and provides the right resource.

To use the GetLocalResourceObject method, simply provide the name of the resource. To
use GetGlobalResourceObject, provide both the resource file name (without the extension)
and the resource name. For example, the following code uses these methods to get resources
for two different controls.

Sample of Visual Basic Code

Button1.Text = GetLocalResourceObject("Button1.Text").ToString()
Image1.ImageUrl = CType(GetGlobalResourceObject("WebResourcesGlobal", "LogoUrl"), String)

Sample of C# Code

Button1.Text = GetLocalResourceObject("Button1.Text").ToString();
Image1.ImageUrl = (String)GetGlobalResourceObject("WebResourcesGlobal", "LogoUrl");

Quick Check
	 1. In which folder should you store global resource files?

	 2. In which folder should you store local resource files?

Quick Check Answers
	 1. Global resources should be stored in the App_GlobalResources folder.

	 2. Store local resources in the App_LocalResources folder.

 304	 ChAPTER 6	 Globalization and Accessibility

HTML Layout Best Practices
Globalization can be as simple as replacing text with text from another language and reformat-
ting numbers and symbols. However, some languages, such as Arabic languages, require different
layouts because text flows from right to left. To allow webpages to be used by the widest variety
of cultures, follow these guidelines:

■ Avoid using absolute positioning and sizes for controls Rather than specifying
control locations in pixels, allow the web browser to position your controls auto-
matically. You can do this by simply not specifying a size or location. The easiest
way to determine whether any controls have absolute positions is to view the
source for a webpage. For example, the following illustrates a control that uses
absolute positioning (which should be avoided).

<div id = idLabel style = "position: absolute; left: 0.98em; top: 1.21em;
 width: 4.8em; height: 1.21em;">

■ Use the entire width and height of forms Although many websites specify the
number of pixels for the width of a form or table column, this can cause formatting
problems for languages that use more letters or a different text layout. Instead of
indicating a specific width, use 100 percent of the width of the web browser, as the
following sample demonstrates.

<table width=100%>

■ size elements relative to the overall size of the form When you do need to provide
a specific size for a control, use relative proportions to allow the entire form to be
easily resized. You can achieve this by using style sheet expressions, as the following
sample demonstrates.

<div style='
 height: expression(document.body.clientHeight / 2);
 width: expression(document.body.clientWidth / 2); '>

■ Use a separate table cell for each control This allows text to wrap independently
and ensures correct alignment for cultures in which text layout flows from right to left.

■ Avoid enabling the noWrap property in tables Setting HtmlTableCell.NoWrap to
true disables word wrapping. Although word wrapping might work well in your native
language, other languages can require more space and might not display correctly.

■ Avoid specifying the Align property in tables Setting a left or right alignment in a
cell can override layout in cultures that use right-to-left text.

■ Decouple check boxes and radio buttons from their text Putting the text that
describes a radio button or check box in a separate table cell allows that text to
wrap to accommodate larger text when translated.

In summary, the less explicitly you configure layout, the better your page can be localized,
because you leave layout decisions to the rendering engine and the client’s browser.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 305

Setting the Culture
Often, web browsers are configured with the user’s language preferences. However, many
times a user’s web browser is not configured correctly. For example, an American tourist at
an Internet café in Mexico might use a web browser that has been configured for Spanish.

Of course, it is likely that the American would prefer to read your site in English. For this
reason, you should use the browser’s setting as the default but allow users to override that
default setting in your application. This is often done by providing a setting value of the home
page that includes text in multiple languages describing how to change the language setting.
When a user changes the setting, you execute code to use this new setting (which is stored in
a cookie, session variable, or similar element).

In an ASP.NET webpage, you use two different Page properties to set language and culture:

■ Culture This object dictates the results of culture-dependent functions, such as the
date, number, and currency formatting. You can only define the Culture object with
specific cultures that define both language and regional formatting requirements,
such as es-MX or fr-FR. You cannot define the Culture object with neutral cultures
that define only a language, such as es or fr.

■ UiCulture This property dictates which global or local resources are to be loaded for
the page. You can define UICulture with either neutral or specific cultures.

You define the Culture and UICulture properties by overriding the page’s InitializeCulture
method. From this method, define the Culture and UICulture properties, and then call the
page’s base InitializeCulture method. The following code sample demonstrates this, assuming
that DropDownList1 contains a list of cultures.

Sample of Visual Basic Code

Protected Overloads Overrides Sub InitializeCulture()
 If Not (Request.Form("DropDownList1") Is Nothing) Then
 ‘define the language
 UICulture = Request.Form("DropDownList1")
 ‘define the formatting (requires a specific culture)
 Culture = Request.Form("DropDownList1")
 End If
 MyBase.InitializeCulture()
End Sub

Sample of C# Code

protected override void InitializeCulture()
{
 if (Request.Form["DropDownList1"] != null)
 {
 //define the language
 UICulture = Request.Form["DropDownList1"];

 //define the formatting (requires a specific culture)
 Culture = Request.Form["DropDownList1"];
 }
 base.InitializeCulture();
}

 306	 ChAPTER 6	 Globalization and Accessibility

Normally, you should provide users with a list of cultures and languages for which
you have configured resources. For example, if you have configured resources for English,
Spanish, and French, you should only allow users to choose from those three options.
However, you can also retrieve an array of all available cultures by calling the System.
Globalization.CultureInfo.GetCultures method. Pass this method a CultureTypes enumera-
tion that specifies which subset of available cultures you want to list. The most useful
CultureTypes values are the following:

■ AllCultures This represents all cultures included with the .NET Framework, including
both neutral and specific cultures. If you use AllCultures in your code, be sure to
verify that a selected culture is a specific culture before assigning it to the Culture
object.

■ neutralCultures Neutral cultures provide only a language and not regional formatting
definitions.

■ specificCultures Specific cultures provide both language and regional formatting
definitions.

Setting Culture Declaratively at the Page or Site Level
You can also declaratively set the culture for a website or webpage. To define the culture for an
entire website, add a <globalization> section to the Web.config file, and then set the UICulture
and Culture attributes, as the following sample demonstrates.

<globalization uiculture="es" culture="es-MX" />

To declare a culture for a webpage, define the UICulture and Culture attributes of the @
Page directive, as shown here.

<%@ Page uiculture="es" culture="es-MX" %>

By default, Visual Studio defines the UICulture and Culture page attributes as auto.

Note LOCALiZing CLiEnT sCRiPT

This lesson discussed localization as a server-based model. All localization is done on the
server, and the page is returned appropriately. However, you might need to use localization
when working with Asynchronous JavaScript and XML (AJAX) and client script. ASP.NET
supports this in a similar manner as discussed. For more information, search MSDN for
“Localizing Resources for Component Libraries Overview.”

PrActIcE	 Creating a Webpage That supports multiple Cultures

In this practice, you create a site that uses resource files for different languages.

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 307

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Creating a Webpage for Both English and Spanish

In this exercise, you create a webpage that displays language-specific text based on the user’s
browser preference, while allowing users to overwrite the default setting.

	 1. Open Visual Studio. Create a new file-based website (File | New | Web Site) called
globalsite.

By default, Visual Studio will create your site to use master pages. This example will
not use master pages (see the note later in this step for more information).

	 2. Delete the Default.aspx page. Add a new page to your site (right-click the site and select
Add New Item). Make sure that the Select Master Page check box is not selected in
the Add New Item dialog box. Name your page Default.aspx.

Note mAsTER PAgEs AnD iniTiALiZECULTURE

Master pages in ASP.NET do not include the InitializeCulture event. Therefore, you cannot
simply override this method in the master page and be done with setting your localization
for your site. Instead, you must override this event in every page of your site that uses the
master page. This typically involves creating a base page (that inherits from Page) for each
of your webpages so that you only have to write this code once.

In addition, the InitializeCulture event fires very early in the page life cycle. When
master pages are used, you do not have access to the form’s controls by their actual ID
property. ASP.NET has yet to convert them from its version to your naming standard.
Therefore, you have to reference controls by their ASP.NET name, such as
Request.Form["ctl00$MainContent$DropDownListLang"], instead of
Request.Form["DropDownListLang"].

Of course, there are other possible implementations that developers have come up with
(some involving the Application_BeginRequest event, for instance). All of this has to do
with how the page life cycle and master pages work (and not globalization). Therefore,
this practice is constrained to a single webpage with no master page.

	 3. Open the Default.aspx form. Add a Label and a DropDownList control to the page.
Name the controls LabelWelcome and DropDownListLang, respectively.

	 4. You will use the Label control to display a culture-specific greeting to the user. The
DropDownList control allows a user to choose a specific language. Set the DropDown-
List.AutoPostBack property to true. Your markup should look similar to the example on
the following page.

 308	 ChAPTER 6	 Globalization and Accessibility

<div>
 <h1>
 <asp:Label ID="LabelWelcome" runat="server"
 Text="Welcome" meta:resourcekey="LabelWelcomeResource1"></asp:Label>
 </h1>

 <asp:DropDownList ID="DropDownListLang" runat="server"
 AutoPostBack="true">
 </asp:DropDownList>
</div>

	 5. Make sure Default.aspx is open in Design view in Visual Studio. From the Tools menu,
select Generate Local Resource. This will create the App_LocalResources folder and the
Default.aspx.resx file.

	 6. In Solution Explorer, double-click Default.aspx.resx. For the LabelWelcomeResource1.Text
value, type hello. For the PageResource1.Title value, type English (replace existing text).
Close and save the Default.aspx.resx file.

	 7. In Solution Explorer, right-click Default.aspx.resx, and then click Copy. Right-click App_
LocalResources and click Paste. Next, rename the new resource file Default.aspx.es.resx.

	 8. Double-click Default.aspx.es.resx. For the LabelWelcomeResource1.Text value, type
hola. For the PageResource1.Title value, type Español. Then close and save the
Default.aspx.es.resx file.

	 9. Run your page in a web browser. Notice that the Label control displays “Hello” even
though you never directly set the LabelWelcome.Text property to this value. (You can
return to the markup on the page to see that the meta:resourcekey attribute of the
control was set by Visual Studio.) Also notice that the page title (shown in the Internet
Explorer title bar) displays “English”.

	 10. In Internet Explorer, follow these steps:

	 a. From the Tools menu, select Internet Options.
	 b. In the Internet Options dialog box, click the Languages button (at the bottom).
	 c. In the Language Preference dialog box, click Add.
	 d. In the Add Language dialog box, under Language, select Spanish (Mexico) [es-mx].

Click OK.
	 e. Back in the Language Preference dialog box, select Spanish from the Language list

and then click Move Up to make it your preferred language.
	 f. Click OK twice to return to Internet Explorer.Refresh the webpage, and verify that

the page displays the Spanish resources you provided.
	 11. Return to Visual Studio and open the code-behind file for Default.aspx. Add the

System.Globalization namespace to the page (with an Imports or using statement) to
allow the CultureInfo object to be used.

	 12. Add a Page_Load event handler to the code (or use the existing one). Write code to
populate the DropDownListLang control with a list of cultures. The following code
sample illustrates this.

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 309

Sample of Visual Basic Code

For Each ci As CultureInfo In CultureInfo.GetCultures_
 (CultureTypes.NeutralCultures)
 DropDownListLang.Items.Add(New ListItem(ci.NativeName, ci.Name))
Next

Sample of C# Code

foreach (CultureInfo ci in CultureInfo.GetCultures(CultureTypes.
 NeutralCultures))
{
 DropDownListLang.Items.Add(new ListItem(ci.NativeName, ci.Name));
}

Note nEUTRAL vs. sPECiFiC CULTUREs

This code sample uses CultureTypes.NeutralCultures cultures to get a list of cultures
that provide both language and culture information (for example en-us instead of just
en). You can use CultureTypes.SpecificCultures instead if you want the user to pick both
language and culture. You can use neutral cultures to define the UICulture object, but
you can only use specific cultures to define the Culture object.

	 13. Now create a method that overrides the InitializeCulture method for the page. This
method should include code that sets the page’s culture based on the item selected
from the DropDownListLang control. Because you are defining only language, use the
UICulture object, rather than the Culture object. Call the base InitializeCulture event
after you have defined UICulture. The following code sample demonstrates this.

Sample of Visual Basic Code

Protected Overloads Overrides Sub InitializeCulture()
 If Not (Request.Form("DropDownListLang") Is Nothing) Then
 UICulture = Request.Form("DropDownListLang")
 End If
 MyBase.InitializeCulture()
End Sub

Sample of C# Code

protected override void InitializeCulture()
{
 if (Request.Form["DropDownListLang"] != null)
 {
 UICulture = Request.Form["DropDownListLang"];
 }
 base.InitializeCulture();
}

 310	 ChAPTER 6	 Globalization and Accessibility

	 14. Run the page in a web browser. From the drop-down list, select English, as shown in
Figure 6-5.

FigURE 6-5 Selecting a new language and posting back to the page to fire the InitializeCulture
event.

	 15. The page should reload and display the English greeting. Select Español, and notice that
the page changes back to Spanish.

The drop-down list and your implementation of InitializeCulture allow ASP.NET to
automatically select the browser’s preferred language, yet still giving users the option
of overriding the default choice.

	 16. Repeat step 10 to reconfigure Internet Explorer to your normal language settings.

 Lesson 1: Configuring Globalization and Localization ChAPTER 6 311

Lesson Summary
■ Local resource files allow you to provide translations for controls on a single webpage.

Local resource files are named by using the format <PageName>.[languageId].resx.

■ Global resources provide translations for phrases that can be assigned to any control in
the web application. They should be placed in the App_GlobalResources folder at the
root of the application.

■ To make your page as easy to globalize as possible, follow these best practices:

■ Avoid using absolute positioning and sizes for controls.

■ Use the entire width and height of forms.

■ Size elements relative to the overall size of the form.

■ Use a separate table cell for each control.

■ Avoid enabling the NoWrap property in tables.

■ Avoid specifying the Align property in tables.

■ To programmatically set the language, set the UICulture object to the neutral or specific
culture abbreviation. To programmatically set the regional formatting preferences, set
the Culture object to the specific culture abbreviation.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Configuring Globalization and Localization.” The questions are also available on the companion
CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You need to create a webpage that is available in both the default language of English
and for users whose browsers identify them as German. Which of the following resource
files should you create? (Choose all that apply.)

	 A. App_LocalResources/Page.aspx.resx.de

	 B. App_LocalResources/Page.aspx.resx

	 c. App_LocalResources/Page.aspx.de.resx

	 D. App_LocalResources/Page.aspx.en.resx

 312	 ChAPTER 6	 Globalization and Accessibility

	 2. What must you do to enable users to select their own language preferences (outside
of browser and machine settings)? (Choose all that apply.)

	 A. Set the Page.Culture property.

	 B. Set the Page.UICulture property.

	 c. Override the Page.InitializeCulture method.

	 D. Override the Page.ReadStringResource method.

	 3. What markup would you write to explicitly attach the local resource, SubmitButtonText,
found inside the application’s collection of MyLocalResources.aspx.<language>.resx files,
to the Text property of a button control?

	 A. <asp:Button ID="Button1" runat="server" Text="<%$ Resources:,

 SubmitButtonText %>" />

	 B. <asp:Button ID="Button1" runat="server" Text="<%$

 Resources:MyLocalResources, SubmitButtonText %>" />

	 c. <asp:Button ID="Button1" runat="server" Text="<%$ SubmitButtonText,

 Resources:%>" />.

	 D. <asp:Button ID="Button1" runat="server" Text="<%$

 SubmitButtonText, Resources:MyLocalResources %>" />

	 4. You add a global resource with the name Login by using Visual Studio. How can you
access that global resource programmatically?

	 A. Resources.Resource.Login

	 B. Resources.Resource(“Login”)

	 c. Resources(“Login”)

	 D. Resources.Login

Lesson 2: Configuring Accessibility

Whether you are creating a public website for millions to use or a small intranet web appli-
cation, you should recognize the need to make it usable for those who need large text and
nontraditional input devices. For example, many users do not use a conventional mouse,
instead using an equivalent such as a foot switch, wand, eye or head tracking device, or
even speech recognition software. Others use screen readers that speak text on websites
aloud rather than displaying it on a monitor, or perhaps they use high-contrast display set-
tings. This lesson provides best practices for making your web application more accessible
to these users and their devices.

 Lesson 2: Configuring Accessibility ChAPTER 6 313

After this lesson, you will be able to:
■	 Describe public accessibility standards.
■	 Explain how ASP.NET controls provide accessibility by default.
■	 Create webpages that support visual accessibility tools.
■	 Create webpages that support accessibility tools for user input.
■	 Test the accessibility of individual webpages or entire web applications.

Estimated lesson time: 20 minutes

Public Accessibility Guidelines
Many people are working to make technology accessible to the widest audience possible.
One of the most prominent groups is the World Wide Web Consortium (W3C), a web stan-
dards organization. Through the Web Accessibility Initiative (WAI), W3C has created the Web
Content Accessibility Guidelines (WCAG).

More INfo WCAg

WCAG is very thorough; this book only attempts to cover the key points as they relate to
ASP.NET development. For more information about WCAG, go to the Web Accessibility
Initiative at http://www.w3.org/WAI.

The United States government has also created accessibility standards in Section 508 of the
Rehabilitation Act. Depending on the organization for which you are developing a web applica-
tion, you might be required to conform your application to these standards. The Section 508
guidelines are conceptually similar to the WCAG guidelines.

More INfo sECTiOn 508 gUiDELinEs

For more information about Section 508 guidelines, visit http://www.section508.gov.

How ASP.NET Controls Support Accessibility
ASP.NET controls are designed to be accessible by default. For example, login controls such
as Login, ChangePassword, PasswordRecovery, and CreateUserWizard use text boxes with
associated labels that identify these controls on a page and thus help users who use screen
readers or do not use a mouse for input. These controls also use input controls with tab index
settings, to make data entry without a mouse easier.

 314	 ChAPTER 6	 Globalization and Accessibility

Another way in which some ASP.NET controls support accessibility is by allowing users to skip
link text. Screen readers typically read the text of links from the top to the bottom of a page while
allowing users to choose a specific link. ASP.NET controls that include navigation links provide the
SkipLinkText property, which is enabled by default and allows screen readers to skip past the link
text (instead of reading a URL back to the user). The CreateUserWizard, Menu, SiteMapPath,
TreeView, and Wizard controls each support skipping links. These links are not visible to users
viewing the page with a traditional web browser. For example, the following HTML source code
(which has been slightly simplified) is generated and rendered to the browser by default when
you use a Menu control on a webpage.

 <img alt="Skip Navigation Links"
 src="/WebResource.axd?d=_9Q2Lm" width="0" height="0" />

... menu links ...

As the HTML demonstrates, a zero-pixel image file with the alternative text “Skip Navigation
Links” links to a location on the page immediately after the menu. Whereas traditional browsers
do not display the zero-pixel image, screen readers read the alternative text and allow users to
skip past the menu. The simplest way to follow this best practice is to use one of the ASP.NET
controls that provides the SkipLinkText property. However, if you implement custom controls
with navigation links, you can provide similar functionality.

Although ASP.NET controls are designed to be as accessible as possible, you, as the devel-
oper, must take advantage of these features by providing text descriptions for some controls.
The next sections provide more detailed information.

Improving Visual Accessibility
Many users have tools that supplement or replace a traditional monitor, including screen readers
and magnifiers. High-contrast display settings are also often used to enhance visibility. To make
your application as accessible as possible for users of these tools and techniques, follow these
guidelines:

■ Describe every image by using the AlternateText property to provide alternative text.
This is useful for users who have images disabled in browsers or otherwise cannot see
the pictures. Screen readers, which use speech synthesis to verbally read text on a web-
page, can read alternative text descriptions. You can also set the Image.DescriptionUrl
property to specify an HTML page that further describes an image, but you should
only configure it if you want to provide a longer description than is possible with
AlternateText. If an image is not important (such as an image that forms a border), set
the GenerateEmptyAlternateText property to True to cause screen readers to ignore it.

■ Use solid colors for background, and use contrasting colors for text. All users appre-
ciate easy-to-read text, especially users who might not be able to perceive low-contrast
text. Therefore, you should avoid text that is a similar shade to the background color.

 Lesson 2: Configuring Accessibility ChAPTER 6 315

■ Create a flexible page layout that scales correctly when text size is increased.
Internet Explorer and other browsers support the ability to increase text size, which
makes text easier to read. This is useful for both users who have specialized accessi-
bility settings and those with high-resolution displays.

■ set the Table.Caption property to a description of the table. Screen readers can
read the Table.Caption property to describe the purpose of the data contained in
a table to users. This allows the user to quickly determine whether he or she wants
to hear the contents of the table or skip past it. ASP.NET controls that render tables
(and support the Caption property) include Table, Calendar, DetailsView, FormView,
and GridView.

■ Provide a way to identify column headers. You can create table headers by using
the TableHeaderRow class and setting the TableSection property to the TableHeader
enumeration of the TableRowSection class. This causes the table to render a
<thead> element. When you create cells with the TableCell control, you can set
each AssociatedHeaderCellID property for the cell to the ID of a table header cell.
This causes the cell to render a header attribute that associates the cell with the
corresponding column heading, simplifying table navigation for users with screen
readers. The Calendar, DetailsView, FormView, and GridView ASP.NET server controls
render HTML tables with these features.

■ Avoid defining specific font sizes. Use heading tags (such as <H1> or <H3>) instead
of font sizes to support the user’s formatting options. Heading tags are available on
the Visual Studio Formatting toolbar.

■ Avoid requiring client scripts. Assistive technologies often cannot render client
scripts, so you should use client script only for nonessential effects, such as mouse
rollovers. For example, validator controls use client scripts to determine whether
input meets specified requirements, and then to dynamically display error messages.
However, screen readers and other assistive technologies might not render this cor-
rectly. Therefore, you should set the EnableClientScript property to false to improve
accessibility. WCAG standards do not allow controls that require client scripts, so if
you must comply with these standards, you should also avoid using the LinkButton,
ImageButton, and Calendar controls.

Note WCAg sTAnDARDs AnD CLiEnT sCRiPTs

In practice, your users might not have problems with the client scripts included with ASP.NET
server controls. These client scripts have been developed to comply with WCAG accessibility
guidelines. However, total WCAG compliance does require you to avoid insisting on client
script support.

If you cannot meet accessibility goals, consider providing alternative text-only webpages.
You can use global resources to allow both accessible and nonaccessible versions of a web-
page to share the same text content.

 316	 ChAPTER 6	 Globalization and Accessibility

Improving the Accessibility of Forms
That Require User Input
Many users prefer not to use a mouse or have difficulty using pointing devices. For these users,
it’s critical that you make your web application usable by keyboard alone. Although providing
keyboard shortcuts is common in Windows Forms applications, it’s less common in web
applications.

To make your application as accessible as possible from a keyboard, follow these guidelines:

■ set the DefaultFocus property for a form to place the cursor in the logical location
where data entry normally begins. DefaultFocus defines the placement of the cursor
when the user opens a webpage. Typically, you set the default focus to the topmost
editable field on a page.

■ Define the tab order in a logical way so that the user can complete forms without
using a mouse. Ideally, the user should be able to complete one text box and then
press the Tab key to jump to the next text box.

■ specify default buttons for forms and Panel controls by setting the Defaultbutton
property. Default buttons can be accessed simply by pressing Enter. Not only does
this make user input simpler for a user who doesn’t use a mouse, but it can speed
data entry for all users.

■ Provide useful link text. Screen readers read hyperlinked text aloud to enable users to
choose links. Therefore, hyperlinked text should describe the link. Avoid adding hyper-
links to text such as “Click here,” because users with a screen reader will not be able to
distinguish it from other links. Instead, provide the name of the link destination with the
hyperlink, as in “Instructions for contacting Contoso headquarters.”

■ Define access keys for button controls by setting the Accesskey property. You can
use access keys for web controls just like you would for a Windows Forms application.
When you set the AccessKey property for a control, the user can hold down the Alt key
and press the specified letter to immediately move the cursor to that control. The stan-
dard method of indicating a shortcut key is to underline a letter in the control. The next
guideline describes how to provide shortcut keys for TextBox controls.

■ Use Label controls to define access keys for text boxes. TextBox controls do not
have descriptions that can be easily read by screen readers. Therefore, you should
associate a descriptive Label control with a TextBox control and use the Label control
to define the TextBox control’s shortcut key. To associate the Label with another con-
trol, define both the AccessKey and AssociatedControlID properties. Also, underline
the access key in the label’s text by using the underline HTML element (<u>). Users
can then access the specified TextBox control by selecting Alt+<AccessKey>.

 Lesson 2: Configuring Accessibility ChAPTER 6 317

The following source code demonstrates a Label control and an associated TextBox
control.

<asp:Label
 AccessKey="N"
 AssociatedControlID="TextBox1"
 ID="Label1"
 runat="server"
 Text="<u>N</u>ame:">
</asp:Label>

<asp:TextBox ID="TextBox1" runat="server" />

■ Use the Panel control to create subdivisions in a form, and define the
Panel.groupingText property with a description of the controls in that panel.
ASP.NET uses the GroupingText property to create <fieldset> and <legend>
HTML elements, which can make forms easier for users to navigate. For example,
you might define separate Panel controls to collect a user’s shipping, billing, and
credit card information on a checkout page. The following HTML demonstrates
how ASP.NET renders the Panel.GroupingText property as a <legend> element.

<form method="post" action="Default.aspx" id="form1">
<div id="Panel1" style="height:50px;width:125px;">
 <fieldset>
 <legend>
 Shipping Information
 </legend>
 <input name="TextBox2" type="text" id="TextBox2" />
 </fieldset>
</div>
<div id="Panel2" style="height:50px;width:125px;">
 <fieldset>
 <legend>
 Billing Information
 </legend>
 <input name="TextBox1" type="text" id="TextBox1" />
 </fieldset>
</div>
</form>

■ specify meaningful error messages in the Text and Errormessage properties of
validator controls. Although the default asterisk (*) is sufficient to identify input
controls that need to be completed for some users, it is not useful to users with
screen readers. Instead, provide descriptive error messages, such as “You must
provide your email address.”

 318	 ChAPTER 6	 Globalization and Accessibility

real World

Mike Snell

If you have ever spent time writing accessible web applications, you have probably
noticed that your efforts have proved worthwhile for all users of your site. Of course,

this includes those users who do not use traditional monitors, keyboards, or other
input devices. However, I am surprised by how much the experience is also improved
for users who use standard equipment. These users benefit from descriptive text,
quick access keys, scaling fonts, and more. Accessibility not only helps people, it is
also good design.

Quick Check
	 1. What can you do to make a webpage more useful to users who use special

displays or screen readers to make text more readable?

	 2. What can you do to make a webpage more useful to a user who does not use
a mouse?

Quick Check Answers
	 1. First, avoid specifying font sizes or using colors that might be difficult to read.

Second, provide descriptions for images, tables, and forms that screen readers
can use.

	 2. Provide access keys for all controls that require user input, and underline the
access keys in associated labels. Define a logical tab order that allows the user
to progress through a form by using the Tab key. Additionally, specify default
buttons for forms and Panel controls.

Testing Accessibility
Visual Studio can test webpages or entire web applications for compliance with WCAG and
Section 508 standards. The sections that follow describe how to use Visual Studio to auto-
matically test your work.

Checking the Accessibility of a Single Page
To use Visual Studio to test the accessibility of a webpage, follow these steps:

	 1. In Visual Studio, open the page you want to check.

	 2. From the View menu, select Error List to display the Error List window.

 Lesson 2: Configuring Accessibility ChAPTER 6 319

	 3. From the Tools menu, select Check Accessibility. The Accessibility Validation dialog box
appears, as shown in Figure 6-6.

FigURE 6-6 Using the Accessibility Validation dialog box in Visual Studio to check the accessibility
of a webpage.

	 4. Select the check boxes for the type and level of accessibility checking that you want
to perform, and then click Validate. The results of the check are displayed in the Error
List pane.

Automatically Checking the Accessibility of a Web Application
You can use Visual Studio to automatically test the accessibility of an entire web application
as you are building it. To do so, follow these steps:

	 1. In Solution Explorer, right-click your website and select Property Pages.

	 2. Click the Accessibility node. Figure 6-7 shows an example.

FigURE 6-7 The Accessibility options in a project’s Property Pages in Visual Studio.

 320	 ChAPTER 6	 Globalization and Accessibility

	 3. Select the check boxes for the type and level of accessibility checking that you want to
perform, and then click Apply.

	 4. Next, select the Build node of the Property Pages dialog box.

	 5. In the Accessibility Validation group, select one or both of the following check boxes,
depending on whether you want to check individual pages, the entire website, or both
when building the website:

■ Include Accessibility Validation When Building Page

■ Include Accessibility Validation When Building Web

Figure 6-8 shows an example.

FigURE 6-8 Turning on accessibility validation at build time for a website.

	 6. Click OK to close the Property Pages dialog box.

Now, when you build your web application, Visual Studio automatically generates a list of
accessibility warnings. Accessibility warnings won’t prevent a successful build. You will have to
manually view the Error List to examine the accessibility issues. Figure 6-9 shows an example.

 Lesson 2: Configuring Accessibility ChAPTER 6 321

FigURE 6-9 The accessibility validation warnings generated at build time for a sample website.

PrActIcE	 improving the Accessibility of a Webpage

In this practice, you improve the accessibility of an ASP.NET web application.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

 322	 ChAPTER 6	 Globalization and Accessibility

ExErcIsE	 Making an Accessible Checkout Page

In this exercise, you update an existing (simplified) e-commerce checkout page to make it more
accessible by following accessibility best practices.

	 1. Navigate to the source code samples installed from the companion CD for this book.
Open the website inside the Lesson2-Exercise1-Partial-CS-VB folder. The website folder
is called AccessibilitySite.

	 2. Run the application and view the Default.aspx page in a browser. Make note of the
nonaccessible aspects of the page, including the following:

■ Lack of panels to divide the form

■ Noncontrasting colors

■ Lack of alternative text for images

■ No tab order specified

■ Labels not associated with text boxes

■ No default focus

■ No default button configured

Figure 6-10 shows an example of this page in a browser.

FigURE 6-10 A page that has not been optimized for accessibility.

 Lesson 2: Configuring Accessibility ChAPTER 6 323

	 3. To begin fixing these problems, in Visual Studio first add two Panel controls to the page:
one for the shipping address and the other for the billing address. Next, move the ship-
ping address and billing address images and tables into their respective panels.

	 4. Set the GroupingText property for the new Panel controls to shipping Address and
billing Address respectively. Remove the shipping address and billing address images
from the form.

The Panel controls help with accessibility by enabling users to easily navigate to differ-
ent parts of a form, and the GroupingText property replaces the shipping and billing
address images (which screen readers cannot read).

	 5. Using the image editor of your choice, replace the Contoso-Logo.gif file with a logo that
has colors with more contrast. The existing foreground and background colors are too
similar and are not easily readable.

You might also want to remove the background color altogether from the outer
<div> tag.

Note COmPLying WiTh LOgO REQUiREmEnTs

Many organizations have very strict logo requirements that specify the colors that must
be used when displaying the logo. However, most organizations also have a high-contrast
version of their logo. For more information, contact the public relations group within your
organization.

	 6. Provide alternative text for the logo by setting the Image1.AlternateText property to
Contoso, inc. logo.

	 7. Specify a tab order for the text boxes by setting the TextBox.TabIndex property for each
text box. Set the text box at the top of the page to 1, and number the rest sequentially
as you work down the page. Also, set the TabIndex properties for the two buttons at the
bottom of the page.

	 8. Replace the text that is currently labeling the text boxes with Label controls. For each
Label control, define a unique AccessKey property and underline that letter in the label.
Also, define the AssociatedControlID property to associate each label with the correct
TextBox control.

	 9. Configure a default button and default focus. Typically this is done through attributes
of the <form> tag. However, you do not have access to these tags when using master
pages. Therefore, you must write code to set these values. Add the following code to
your page’s load event.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Form.DefaultFocus = TextBox1.ClientID
 Me.Form.DefaultButton = Button3.UniqueID
End Sub

 324	 ChAPTER 6	 Globalization and Accessibility

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 this.Form.DefaultFocus = TextBox1.ClientID;
 this.Form.DefaultButton = Button3.UniqueID;
}

	 10. Run the application in a web browser. Use the shortcut keys to navigate between fields
(Alt+<AccessKey>). View the alternative text for the logo by pointing to the logo.

	 11. Return to Visual Studio. From the Tools menu, select Check Accessibility. Examine the
errors that are displayed in the Error List pane to see accessibility issues.

Lesson Summary
■ Two of the most prominent accessibility standards are W3C’s WCAG standards and the

United States government’s Section 508 standards.

■ ASP.NET controls support accessibility whenever possible. For example, controls that
provide multiple navigation links give users with screen readers the opportunity to
skip the links.

■ To make webpages as visually accessible as possible, follow these guidelines:

■ Provide good alternative (alt) text for all graphics.

■ Write useful link text.

■ Use tables and their alternatives correctly.

■ Avoid requiring client scripts.

■ To make webpages accessible for users with different input tools, design good keyboard
navigation by providing keyboard shortcuts, default buttons, and logical tab orders.

■ Visual Studio can test your webpage or an entire web application for WCAG and
Section 508 compliance.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Configuring Accessibility.” The questions are also available on the companion CD as a practice
test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

 Case Scenarios ChAPTER 6 325

	 1. Which Image properties can you define to enable screen readers to describe a picture
on a webpage? (Choose all that apply.)

	 A. AccessKey

	 B. AlternateText

	 c. DescriptionUrl

	 D. ToolTip

	 2. Which of the following are accessibility features provided by ASP.NET? (Choose all
that apply.)

	 A. Controls provide properties that enable you to provide hidden descriptions that
are available to screen readers.

	 B. Controls are displayed in high contrast by default.

	 c. Controls that include a list of links at the top provide hidden links to skip over the links.

	 D. Controls display text in large font sizes by default.

	 3. For which of the following guidelines does ASP.NET provide automated testing?
(Choose all that apply.)

	 A. WCAG Priority 1

	 B. WCAG Priority 2

	 c. ADA

	 D. Access Board Section 508

Case scenarios

In the following case scenarios, you apply what you’ve learned in this chapter. If you have diffi-
culty completing this work, review the material in this chapter before beginning the next chapter.
You can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Upgrading an Application for Multiple
Languages
You are an application developer for Contoso, Inc., which manufactures shelving and display
units that are used by retail outlets. Traditionally, Contoso’s sales staff has been focused entirely
within the United States. Typically, a sales representative develops a relationship with a retail
chain, and then provides access to the Contoso web application for new orders and support.
You are responsible for developing that web application.

 326	 ChAPTER 6	 Globalization and Accessibility

Contoso has decided to expand globally. First the company plans to expand into Canada,
and later into Mexico. The sales staff is struggling, however, because Contoso’s identity is too
focused around the English-speaking United States. Sales staff members in Canada complain
that although in some parts of Canada people prefer to speak French, the website is English
only. Similarly, Mexican sales staff members have requested a Spanish website with regional
settings that are aligned with those commonly used in Mexico.

Answer the following questions for your manager.

	 1. How can we provide a French version of our website?

	 2. How can translators provide updated text for the website?

	 3. How can users choose between the French and English versions of our website?

	 4. How can we distinguish between Mexican regional requirements and those of other
Spanish-speaking countries, such as Spain?

Case Scenario 2: Making a Web Application Accessible
You are an application developer working for Humongous Insurance. Recently, management
has begun an initiative to make all facilities and other resources usable with alternative input
and display devices, using the United States government’s Rehabilitation Act, Section 508, as
a guideline. Your intranet web application is included within the scope of this initiative.

Answer the following questions for your manager.

	 1. How can we determine whether any aspects of your web application are not compliant
with Section 508?

	 2. What does it mean for an application to be accessible?

	 3. Will the updated web application be awkward to use with a traditional keyboard,
mouse, and monitor if we make it accessible?

	 4. What types of things do you need to do to make your web application compliant with
Section 508?

suggested Practices

To successfully master the exam objective presented in this chapter, complete the following tasks.

Implement Globalization
For this task, you should complete Practices 1, 2, and 3 for a better understanding of how
to provide web applications for multiple languages and cultures. If you want an under-
standing of the real-world complexity of providing web application translations, complete
Practice 4 as well.

 Take a Practice Test ChAPTER 6 327

■ Practice 1 Update the web application you created in Lesson 1 to also display French
and German languages.

■ Practice 2 Update the web application you created in Lesson 1 to display a list of specific
cultures, and add resources for multiple specific cultures.

■ Practice 3 Configure Internet Explorer to use a different preferred language. Then visit
your favorite websites to see which ones provide alternative languages. Make note of
which elements of the page have changed.

■ Practice 4 Create an application to enable translators who are not developers to create
local and global resource files. Then use the tool to provide an alternative language
version of the last web application you created.

Implement Accessibility
For this task, you should complete Practice 1 to understand the accessibility tools in Windows 7.
Practices 2 gives you an idea of how screen readers work. Practice 3 will give you an under-
standing of how to best develop accessible web applications.

■ Practice 1 Experiment with the Windows 7 accessibility tools. To use these accessibility
tools, click Start, click Control Panel, click Ease Of Access, and then click Ease Of Access
Center.

■ Practice 2 Experiment with the screen reader simulation at http://www.webaim.org
/simulations/screenreader.php to experience how screen readers can be used to
interact with webpages.

■ Practice 3 Using the last production web application you created, use the Check
Accessibility tool to identify any accessibility problems. Then address as many of
the accessibility problems as possible.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you
can look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 7 329

C h A P T E R 7

Creating Custom Web
Controls
Microsoft ASP.NET provides you with a basis on which to build new controls, create

new controls by combining existing controls, and extend the controls that ship with
the Microsoft .NET Framework. As you work in your business domain, there are many
times when you need to create and share common functionality across pages. Often this
functionality is specific to the needs of your application. For example, imagine that you are
coding a human resources application that enables users to edit employee data. In this case,
you might encapsulate the employee editing feature as a control and expose it on multiple
webpages (perhaps once to the employee and again to an administrator). Your new control
might rely on existing controls such as TextBox, Button, and Label controls. Using this
approach to create a control allows you to share this common functionality across web-
pages and centralize your support to a single location.

With ASP.NET, you can create two levels of controls: user controls and web server controls.
User controls group existing controls together to provide encapsulated functionality inside
a single site. Web server controls are just like the ASP.NET controls that ship with the .NET
Framework. They take advantage of design-time support in the Integrated Development
Environment (IDE) and can be used across sites. This chapter covers how to create and use
these two primary types of custom web controls.

Exam objectives in this chapter:
■	 Developing and Using Web Forms Controls

■ Implement user controls.
■ Implement server controls.

Lessons in this chapter:
■	 Lesson 1: Creating User Controls 331
■	 Lesson 2: Creating Custom Web Server Controls 355

 Contents

 ChAPTER 7 329

 Creating Custom Web Controls 329
Before You Begin . 330

Lesson 1: Creating User Controls . 331

Creating User Controls 331

Defining User Control Events 333

Defining Properties in User Controls 337

Adding a User Control to a Page 339

Dynamically Loading User Controls 339

Creating a Templated User Control 340

Lesson Summary 353

Lesson Review 353

Lesson 2: Creating Custom Web Server Controls . 355

Creating a Custom Web Server Control 356

Adding Toolbox Support for a Custom Web Server Control 364

Creating a Custom Designer for a Custom Web Server Control 370

Creating a Composite Control 372

Creating a Templated Custom Web Server Control 377

Registering Your Controls in Web.config 378

Lesson Summary 383

Lesson Review 383

Case Scenarios .384

Case Scenario 1: Sharing Controls Between Applications 385

Case Scenario 2: Providing Layout Flexibility 385

Suggested Practices . 385

Create a New User Control 385

Create a New Custom Web Server Control 386

Create a New Composite Web Server Control 386

Create a New Templated Control 386

Take a Practice Test . 386

 330	 ChAPTER 7	 Creating Custom Web Controls

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
with Microsoft Visual Studio by using Microsoft Visual Basic or Microsoft Visual C#. In addition,
you should be comfortable with all of the following:

■ The Visual Studio 2010 IDE

■ Using Hypertext Markup Language (HTML) and client-side scripting

■ Creating ASP.NET websites and forms

■ Adding web server controls to a webpage

■ Working with Microsoft ADO.NET, XML, and Microsoft Language-Integrated Query (LINQ)

real World

Mike Snell

Custom web controls offer development teams many advantages. However, I
have seen a lot of teams that ignore custom web controls, don’t know how

to create them, or simply don’t see the benefits. The benefits are significant: code
can be reused; there is less code to support; there is a single source for updates;
developers can quickly compose pages made up of multiple bits of functionality;
and more.

These benefits are hard to ignore. I therefore recommend that teams start by at
least creating user controls for almost everything. User controls are as easy to
create as a webpage (often becoming even easier as the developed functionality is
further encapsulated) and provide most of the big benefits of custom web controls.
Think user control first and you will start to see these benefits in your code base.

As you develop your site, you will undoubtedly discover those bits of functionality
that would be useful to both your site and to other sites you plan to build (or
sites that others in your organization will build). In this case, you should first
determine whether this functionality is specific to your business domain. If it is
not, you might want to seek out controls that already offer this functionality. You
can typically download very good controls for a reasonable price. If the functionality
is specific to your domain and used across sites, you should seek sponsorship from
management for turning that functionality into a custom web server control. You
will be glad you did every time someone adds that control to a page.

 Lesson 1: Creating User Controls ChAPTER 7 331

Lesson 1: Creating User Controls

A user control is a file you create that contains a set of other ASP.NET controls and code grouped
together to provide common functionality. The user control can then be used on different pages
within a website.

User controls in ASP.NET are created as ASCX files. An ASCX file is similar to the webpage’s
ASPX file and can have its own code-behind page. To enable reuse, you must include the ASCX
and code-behind files in each project that requires the user control. For this reason, user controls
are typically reserved for reuse within a particular site. If you need the control to be reusable
between sites, you should consider abstracting the functionality as a web server control. (See
Lesson 2, “Creating Web Server Controls,” in this chapter.)

In this lesson, you learn how to create a standard user control and use it on a webpage. You
then explore how to create a user control that defines different templates for layout.

After this lesson, you will be able to:
■	 Create a user control.
■	 Add a user control to a webpage.
■	 Handle events within the user control code-declaration block or code-behind file.
■	 Create and use a templated user control.

Estimated lesson time: 40 minutes

Creating User Controls
User controls provide an easy way to combine several controls into a single unit of functionality
that can be dragged onto multiple webpages in the same site. Pages within a site often contain
common functionality that uses similar sets of controls. In these cases, encapsulating this func-
tionality allows for reuse and helps define a consistent user interface (UI). As an example, imagine
a site that needs to prompt users for address information during the checkout process. The site
might request both billing and shipping information. You might encapsulate several ASP.NET
controls to allow for the input of name, address, city, state or province, and postal code into a
single user control. This user control can be reused whenever address input is required.

The user controls that you create inherit from the UserControl class. This class inherits from
the TemplateControl class. The full class hierarchy is shown in Figure 7-1.

 332	 ChAPTER 7	 Creating Custom Web Controls

FigURE 7-1 The UserControl class is the base class for creating user controls.

User controls are created by using a procedure similar to building a standard webpage. You
create a user control in Visual Studio from the Add New Item dialog box. From there, you select
Web User Control. This adds a file with the .ascx extension to your application. The user control
has both a Design view and a Source view, similar to that of an ASPX page. However, a quick
glance at the markup reveals the @ Control directive instead of the @Page directive of an ASPX
page. The following markup shows an example.

Sample of Visual Basic Code

<%@ Control Language="VB"
 AutoEventWireup="false"
 CodeFile="MyWebUserControl.ascx.vb"
 Inherits="MyWebUserControl" %>

Sample of C# Code

<%@ Control Language="C#"
 AutoEventWireup="true"
 CodeFile=" MyWebUserControl.ascx.cs"
 Inherits=" MyWebUserControl" %>

You drag controls onto a user control just as you would onto a page. For example, if you
were developing the Address control discussed previously, you might add text, TextBox controls,
Button controls, and style and layout information to the user control. Of course, the resulting
user control needs to be added to a webpage for it to work. However, the design experience
when building a user control is very similar to that of building a page. Figure 7-2 shows a
custom Address user control in the Visual Studio designer.

 Lesson 1: Creating User Controls ChAPTER 7 333

FigURE 7-2 User control design uses either Design view or Source view, much like webpage design.

Note sEPARATE yOUR COnTROLs FROm ThEiR DEsign

Generally, it is wise to refrain from putting much style information beyond layout inside
a user control. This allows a user control to take on the styles and themes defined by the
pages and site to which it is added.

Defining User Control Events
User controls can have their own encapsulated events. These include life cycle events such
as Init and Load. These events are called in sync with the events on the page. For example,
after the page Init event is called, the control’s Init event is called in turn. Processing then
returns to the page for the Load event; following this, the control’s Load event is called.
This continues throughout the life cycle. This model allows you to develop user controls
in a manner similar to developing a webpage.

User controls can also cause a postback for the webpage to which they belong. When a user
control causes a postback, its events are raised accordingly along with the events of the page.
The event handlers for a user control, however, are typically encapsulated in the particular user
control. This ensures that the code for these events can be maintained independent of the
pages that use the user controls.

Consider the Address user control example. This control has a Save button. You might want
to trigger an event that saves the address information for the user and the address type (billing
or shipping, for instance) when the user clicks this button. To do so, you add a button click
event handler to the user control and put your code there. When the user control is added

 334	 ChAPTER 7	 Creating Custom Web Controls

to a page and the page is executed, a click of the Save button executes the code on the user
control. The following code shows a simple example of the Address user control’s Save button
click event calling out to a custom class called UserProfile.

Sample of Visual Basic Code

Protected Sub ButtonSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonSave.Click

 'to do: validate user input

 'save new address for user
 UserProfile.AddNewAddress(Me.UserId, Me.AddressType, _
 TextBoxAddress1.Text, TextBoxAddress2.Text, _
 TextBoxCity.Text, TextBoxState.Text, TextBoxPostalCode.Text)

End Sub

Sample of C# Code

protected void ButtonSave_Click(object sender, EventArgs e)
{
 //to do: validate user input

 //save new address for user
 UserProfile.AddNewAddress(this.UserId, this.AddressType,
 TextBoxAddress1.Text, TextBoxAddress2.Text,
 TextBoxCity.Text, TextBoxState.Text, TextBoxPostalCode.Text);
}

Notice that in the preceding code, the calls to the AddNewAddress method also include
access to properties on the user control (UserId and AddressType). The properties were added
to the user control definition and are discussed In the upcoming section entitled “Defining
Properties in User Controls.”

Passing Events Up to the Page
Often you do not know the actual implementation of a particular control’s event at design
time. In such cases, you can add the control, such as a Button control, to your user control
and allow the developer who uses the user control to implement the event handler for the
Button control’s click event. You can do so by defining an event on your user control and
passing this event to the webpage when the Button control’s click event fires.

As an example, let’s look again at the Address user control’s Save button. You might need
to define an event that is passed to the page when this button is clicked. This event would
most likely pass the values from the user control’s subcontrols back to the page (unless they
are exposed as properties, as discussed in the next section). Therefore, you would modify the
Address user control to expose an event and raise that event in response to a Save button click.

The following code block steps you through sample code for this example. First, you should
define the event arguments class, which should inherit from EventArgs. The class will be used
by the event to pass the address information from the user control to the page. You then add
properties that align with your scenario to the class.

 Lesson 1: Creating User Controls ChAPTER 7 335

Sample of Visual Basic Code

Public Class AddressEventArgs
 Inherits EventArgs

 Public Sub New(ByVal addressLine1 As String, _
 ByVal addressLine2 As String, ByVal city As String, _
 ByVal state As String, ByVal postalCode As String)

 Me._addressLine1 = addressLine1
 Me._addressLine2 = addressLine2
 Me._city = city
 Me._state = state
 Me._postalCode = postalCode
 End Sub

 Private _addressLine1 As String
 Public ReadOnly Property AddressLine1() As String
 Get
 Return _addressLine1
 End Get
 End Property

 Private _addressLine2 As String
 Public ReadOnly Property AddressLine2() As String
 Get
 Return _addressLine2
 End Get
 End Property

 Private _city As String
 Public ReadOnly Property City() As String
 Get
 Return _city
 End Get
 End Property

 Private _state As String
 Public ReadOnly Property State() As String
 Get
 Return _state
 End Get
 End Property

 Private _postalCode As String
 Public ReadOnly Property PostalCode() As String
 Get
 Return _postalCode
 End Get
 End Property

End Class

 336	 ChAPTER 7	 Creating Custom Web Controls

Sample of C# Code

public class AddressEventArgs : EventArgs
{
 public AddressEventArgs(string addressLine1, string addressLine2,
 string city, string state, string postalCode)
 {
 this.AddressLine1 = addressLine1;
 this.AddressLine2 = addressLine2;
 this.City = city;
 this.State = state;
 this.PostalCode = postalCode;
 }

 public string AddressLine1 { get; private set; }
 public string AddressLine2 { get; private set; }
 public string City { get; private set; }
 public string State { get; private set; }
 public string PostalCode { get; private set; }
}

The next step is to add code that declares an event to the user control’s class. You then add
code that handles the Button click event. Inside the click event, you raise your event back to the
consuming page. The page that uses your user control can then trap the event and respond
accordingly. The following shows an example of both the event declaration and the Button click
event.

Sample of Visual Basic Code

Public Event SaveButtonClick(ByVal sender As Object, ByVal e As AddressEventArgs)

Protected Sub ButtonSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonSave.Click

 Dim addArgs As New AddressEventArgs(TextBoxAddress1.Text, _
 TextBoxAddress2.Text, TextBoxCity.Text, _
 TextBoxState.Text, TextBoxPostalCode.Text)

 RaiseEvent SaveButtonClick(Me, addArgs)

End Sub

Sample of C# Code

public event EventHandler<AddressEventArgs> SaveButtonClick;

protected void ButtonSave_Click(object sender, EventArgs e)
{
 if (SaveButtonClick != null)
 {
 SaveButtonClick(this, new AddressEventArgs(TextBoxAddress1.Text,
 TextBoxAddress2.Text, TextBoxCity.Text, TextBoxState.Text,
 TextBoxPostalCode.Text));
 }
}

 Lesson 1: Creating User Controls ChAPTER 7 337

The last step is to consume the event on the page to which the user control was added. You
will see how to add a user control to a page in the upcoming section “Adding a User Control
to a Page.” After you have added the user control to the page, you must write code to trap the
event raised by the user control. In Visual Basic, you can add a handler for the user control’s
exposed event in the code editor simply by using the Handles keyword. (You can generate this
event by using the drop-down menus at the top of the Visual Basic code window.) In C#, you
wire up a handler by using the += syntax inside the Page_Init method. Inside your handler, you
use AddressEventArgs as required (in this scenario, to save the address information to the user’s
profile). The following is an example. Note that the example assumes that a UserProfile class
exists and that two properties were added to the user control (UserId and AddressType). You
will learn how to add properties to a user control in the next section.

Sample of Visual Basic Code

Protected Sub AddressUserControl1_SaveButtonClick(ByVal sender As Object, _
 ByVal e As AddressEventArgs) Handles AddressUserControl1.SaveButtonClick

 UserProfile.AddNewAddress(AddressUserControl1.UserId, _
 AddressUserControl1.AddressType, e.AddressLine1, e.AddressLine2, _
 e.City, e.State, e.PostalCode)

End Sub

Sample of C# Code

protected void Page_Init(object sender, EventArgs e)
{
 AddressUserControl1.SaveButtonClick += this.AddressUserControl1_SaveButtonClick;
}

private void AddressUserControl1_SaveButtonClick(object sender, AddressEventArgs e)
{
 UserProfile.AddNewAddress(AddressUserControl1.UserId,
 AddressUserControl1.AddressType, e.AddressLine1, e.AddressLine2,
 e.City, e.State, e.PostalCode);
}

Defining Properties in User Controls
The user controls you create often need configuration data. You can define this configuration
data by using properties on the user control itself. Properties added to user controls can then
be configured in the markup for the page that uses the control and on the Properties pane in
the design editor. When developers use the user control, they can set the properties declara-
tively through markup. These properties are also available through IntelliSense.

Properties that will be configured by developers when using a user control can be set at
design time or at run time and are available on postback. This is the same as with other controls
in ASP.NET. Properties that are set through code must be reset on postback to avoid being lost.
Again, this is the same as with other ASP.NET controls.

 338	 ChAPTER 7	 Creating Custom Web Controls

You define a user control property as you would any other class-level property in the .NET
Framework. For example, to add the UserId and AddressType properties to the Address user
control, you would add code as follows to the user control’s class.

Sample of Visual Basic Code

Public Property UserId() As Integer
Public Property AddressType() As UserProfile.AddressType

Sample of C# Code

public int UserId { get; set; }
public UserProfile.AddressType AddressType { get; set; }

As you saw previously, you can set these properties on the page to which you add the user
control. In “Adding a User Control to a Page” later in this section, you will learn how to add a
user control to a page and set its properties.

Accessing Control Values
Often you have to write code that works with the values of controls contained inside a user con-
trol. Controls contained within a user control are declared as protected members of the control.
This means that they are not directly accessible outside the user control class. Therefore, to gain
access to a control, you can return a reference to it through a property setting. However, this
exposes the entire control. A more common scenario is to define at least a property that allows
a user to set and get the values of a control. This allows you to contain the user control but
provide access to the enclosed controls.

As an example, suppose that the Address user control needs to allow users to preset values
of the controls contained by the user control. In this case, you can expose the TextBox.Text
properties as properties of the user control. The following code sample shows one of the user
control’s TextBox.Text properties (TextBoxAddress1) exposed as a value from the user control.
You could repeat this code for the other controls inside the Address user control if you needed
direct access to these control values.

Sample of Visual Basic Code

Public Property AddressLine1() As String
 Get
 Return TextBoxAddress1.Text
 End Get
 Set(ByVal value As String)
 TextBoxAddress1.Text = value
 End Set
End Property

Sample of C# Code

public string AddressLine1
{
 get { return TextBoxAddress1.Text; }
 set { TextBoxAddress1.Text = value; }
}

 Lesson 1: Creating User Controls ChAPTER 7 339

Adding a User Control to a Page
You can add a user control to a webpage by simply dragging it from Solution Explorer to a
webpage in Design view. When you add the user control to a page, you can see the control’s
visual makeup in Design view. If you switch to Source view, you can see the markup information
that Visual Studio added to your page. The following shows sample markup of the Address user
control when it is added to a webpage.

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="UserProfileUpdate.aspx.vb" Inherits="UserProfileUpdate" %>

<%@ Register src="AddressUserControl.ascx" tagname="AddressUserControl"
 tagprefix="uc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <uc1:AddressUserControl ID="AddressUserControl1" runat="server"
 AddressType="Home" />
 </div>
 </form>
</body>
</html>

Notice the @ Register directive at the top of the page. You must include this directive to
register the user control on the page. The TagPrefix attribute is a namespace identifier for the
control. Your markup uses this prefix to define the control. The default TagPrefix is uc1 (as in
User Control 1). Of course, you can change this value. The TagName attribute is the name of the
control. The Src attribute is the location of the user control file. The actual instance definition
for the control is nested within the <form> tag. Notice that the ID is automatically created as
AddressUserControl1. Also, notice that the AddressType custom property is defined as an
attribute of the control. The other property, UserId, is meant to indicate a unique ID of the
user whose address values are being modified. Therefore, this property would most likely be
set in code (from a query string value, session state, a cookie, or something similar).

Dynamically Loading User Controls
Like other server controls, user controls can be loaded dynamically. Loading controls dynamically
can be useful in situations in which you want to add a variable number of instances of a control
to a page.

 340	 ChAPTER 7	 Creating Custom Web Controls

To dynamically load a user control, you use the LoadControl method of the Page class.
This method takes the name and path to a file that contains the user control’s definition. The
method also returns a reference to the control class it creates. You can set this to a variable
by casting the returned object to a strong type. For this to work, the control must already be
registered with the page.

For example, suppose that you need to add multiple instances of the Address user control
discussed previously to a new page at run time, and that the number of instances you need
to add is based on the number of stored addresses for the user. The following code shows an
example of how you would dynamically load the control.

Sample of Visual Basic Code

Dim addressControl As AddressUc = _
 CType(LoadControl("AddressUserControl.ascx"), AddressUc)

form1.Controls.Add(addressControl)

Sample of C# Code

AddressUc addressControl =
 (AddressUc)LoadControl("AddressUserControl.ascx");

form1.Controls.Add(addressControl);

Notice the second line of code. After the control has been loaded, it needs to be added to
the Form object for display and use.

Creating a Templated User Control
A templated user control provides separation of control data from the presentation of that
data. A templated user control does not provide a default UI layout. Instead, this layout
is provided by the developer who uses the user control on his or her page. This provides
increased flexibility in terms of layout while keeping the encapsulation and reuse benefits
of a user control.

There are several steps for creating a templated user control:

	 1. Start by adding a user control file to your web application.

	 2. Add an ASP.NET PlaceHolder control to the user control’s markup. This defines a
placeholder for the templated layout. You will expose this placeholder as a property
of your user control. Developers who use your control will then define their markup
layout code inside this template.

	 3. Create a class file in your site to serve as a naming container for your control. A naming
container is simply a control container that allows you to search for a contained child
control by using FindControl, which you’ve used with both Page and MasterPage in
previous chapters. This is important to know because in addition to containing controls,
your templated, UserControl-based class file will need to contain a reference to the data
with which your user control works. This data will be bound to the child controls when a
developer creates his or her own layout template based on your control.

 Lesson 1: Creating User Controls ChAPTER 7 341

The naming container-based class you’ll create inherits from Control and implements the
INamingContainer interface, just as is done with UserControl itself. The class should also
contain public properties for any data elements it is meant to contain.

	 4. In your user control’s code-behind file, implement a property of type ITemplate. This
property will serve as the template for users of your control (and exposes the placeholder
created in step 2). The name you give this property will be the name of the template tag
in any consuming page’s markup.

Apply the TemplateContainerAttribute attribute to the ITemplate property; this marks
the property as a template. To this attribute, pass the type of the naming container class
for binding data (created in step 3) as an argument of the constructor. This serves to
allow binding between the container and the template definition markup when the user
control is added to a page.

In this step you also apply the PersistenceModeAttribute attribute to the ITemplate
property. You pass the enumeration value of PersistenceMode.InnerProperty into the
attribute’s constructor.

	 5. Add code to the Page_Init method of the user control. Here you test for the ITemplate
property. If the ITemplate property is set, you create an instance of the naming container
class and create an instance of the template in the naming container. You then add the
naming container instance to the Controls collection of the PlaceHolder server control.

	 6. You might also need to pass data from your user control to the naming container. This
allows users to set properties of your user control, and store and use them in the con-
tainer. For these situations, you must define this data in your user control as properties
that a developer who is using your user control can set. You then must pass a reference
to this data to the naming container. This ensures that the naming container is updated
when the property values change on the user control.

As an example, suppose you want to implement the Address control discussed previously
as a templated user control so that developers can define their own layout when using your
control. To get started, you create a web User Control and add a PlaceHolder control to its
markup, as shown in the following.

The Address User Control Markup
Sample of Visual Basic Code

<%@ Control Language="VB" AutoEventWireup="false"
 CodeFile="AddressUcTemplated.ascx.vb" Inherits="AddressUcTemplated" %>

<asp:PlaceHolder runat="server"
 ID="PlaceHolderAddressTemplate">
</asp:PlaceHolder>

Sample of C# Code

<%@ Control Language="C#" AutoEventWireup="true"
 CodeFile="AddressUcTemplated.ascx.cs" Inherits="AddressUcTemplated" %>

<asp:PlaceHolder runat="server"
 ID="PlaceHolderAddressTemplate">
</asp:PlaceHolder>

 342	 ChAPTER 7	 Creating Custom Web Controls

You then add code to the code-behind file for the user control. This includes the ITemplate
property and the Page_Init code. The ITemplate property is used to define the layout area for
users of the user control. The Page_Init code is where you instantiate the naming container
you created and connect it to the layout template.

In addition, the code-behind file should contain any properties you want the user to be able
to access from the user control. In our example, we would probably define an Address property
that exposes a custom Address class (not shown). This class contains the address properties
discussed previously. The following shows an example of the code-behind file for the Address
user control.

The Address User Control’s Code-Behind File
Sample of Visual Basic Code

Partial Class AddressUcTemplated
 Inherits System.Web.UI.UserControl

 Public Sub Page_Init(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Me.Init

 'clear the controls from the placeholder
 PlaceHolderAddressTemplate.Controls.Clear()

 If LayoutTemplate Is Nothing Then
 PlaceHolderAddressTemplate.Controls.Add(_
 New LiteralControl("No template defined."))
 Else

 Dim container As New AddressUcContainer(Me.Address)

 Me.LayoutTemplate.InstantiateIn(container)

 'add the controls to the placeholder
 PlaceHolderAddressTemplate.Controls.Add(container)
 End If

 End Sub

 Private _layout As ITemplate
 <PersistenceMode(PersistenceMode.InnerProperty)> _
 <TemplateContainer(GetType(AddressUcContainer))> _
 Public Property LayoutTemplate() As ITemplate
 Get
 Return _layout
 End Get
 Set(ByVal value As ITemplate)
 _layout = value
 End Set
 End Property

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 1: Creating User Controls ChAPTER 7 343

 Private _address As New Address()
 Public Property Address() As Address
 Get
 Return _address
 End Get
 Set(ByVal value As Address)
 _address = value
 End Set
 End Property

End Class

Sample of C# Code

public partial class AddressUcTemplated :
 System.Web.UI.UserControl
{
 protected void Page_Init(object sender, EventArgs e)
 {
 //clear the controls from the placeholder
 PlaceHolderAddressTemplate.Controls.Clear();

 if (LayoutTemplate == null)
 {
 PlaceHolderAddressTemplate.Controls.Add(
 new LiteralControl("No template defined."));
 }
 else
 {
 AddressUcContainer container = new
 AddressUcContainer(this.Address);

 this.LayoutTemplate.InstantiateIn(container);

 //add the controls to the placeholder
 PlaceHolderAddressTemplate.Controls.Add(container);
 }
 }

 [PersistenceMode(PersistenceMode.InnerProperty)]
 [TemplateContainer(typeof(AddressUcContainer))]
 public ITemplate LayoutTemplate { get; set; }

 public Address Address { get; set; }
}

The final step is to define the naming container. Note that the preceding code actually used
the naming container (AddressUcContainer) as if it were already defined. Recall that the naming
container must inherit from Control and implement the INamingContainer interface. Property
values passed from the user control to the naming container should be passed in the con-
structor. If you need to be able to set properties of the user control and have those property
values reflected in the naming container, you must set the properties as an object reference.
The following code shows an example of exposing the Address class through the naming
container (this assumes a using or imports statement for System.Web.UI).

 344	 ChAPTER 7	 Creating Custom Web Controls

The Naming Container Class
Sample of Visual Basic Code

Public Class AddressUcContainer
 Inherits Control
 Implements INamingContainer

 Public Sub New(ByVal address As Address)
 Me.Address = address
 End Sub

 Private _address As Address
 Public Property Address() As Address
 Get
 Return _address
 End Get
 Set(ByVal value As Address)
 _address = value
 End Set
 End Property

End Class

Sample of C# Code

public class AddressUcContainer : Control, INamingContainer
{
 public AddressUcContainer(Address address)
 {
 this.Address = address;
 }

 public Address Address { get; set; }
}

Using a Templated User Control
Like any user control, a templated user control must be used within the same site or project
and can be added to a webpage by dragging it from Solution Explorer onto the page. Recall
that this registers the control with the page as follows.

<%@ Register src="AddressUcTemplated.ascx" tagname="AddressUcTemplated"
 tagprefix="uc1" %>

You then define the template for the user control’s layout. In the Address user control
example, this means nesting layout and code within the <LayoutTemplate> tag that was
defined with the ITemplate property. Inside the template, you can reference data by calling
the Container object. This object is an instance of the naming container class created as
part of the templated user control process. The following markup shows the definition of
the user control on a page.

 Lesson 1: Creating User Controls ChAPTER 7 345

<uc1:AddressUcTemplated ID="AddressUcTemplated1"
 runat="server" AddressType="Home">
 <LayoutTemplate>
 <h1>Edit Home Address</h1>
 <table>
 <tr>
 <td>Address Line 1:</td>
 <td>
 <asp:TextBox ID="TextBoxAddress" runat="server"
 Text="<%#Container.Address.AddressLine1%>"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>Address Line 2:</td>
 <td>
 <asp:TextBox ID="TextBoxAddressLine2" runat="server"
 Text="<%#Container.Address.AddressLine2%>"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>City:</td>
 <td>
 <asp:TextBox ID="TextBoxCity" runat="server"
 Text="<%#Container.Address.City%>"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>State:</td>
 <td>
 <asp:TextBox ID="TextBoxState" runat="server"
 Text="<%#Container.Address.State%>"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>Postal Code:</td>
 <td>
 <asp:TextBox ID="TextBoxPostalCode" runat="server"
 Text="<%#Container.Address.PostalCode%>"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <asp:Button ID="ButtonSave" runat="server" Text="Save"
 OnClick="ButtonSave_Click"/>
 </td>
 </tr>
 </table>
 </LayoutTemplate>
</uc1:AddressUcTemplated>

 346	 ChAPTER 7	 Creating Custom Web Controls

You must also add code to the consuming page’s code-behind file. This code should call
the Page.DataBind method to ensure that the container is bound to the templated layout.
The following code shows an example.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 'simulate getting a user and loading his or her profile
 AddressUcTemplated1.Address.AddressLine1 = "1234 Some St."
 AddressUcTemplated1.Address.City = "Pontiac"
 AddressUcTemplated1.Address.State = "MI"
 AddressUcTemplated1.Address.PostalCode = "48340"

 'bind data to controls
 Page.DataBind()

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 //simulate getting a user and loading his or her profile
 AddressUcTemplated1.Address.AddressLine1 = "1234 Some St.";
 AddressUcTemplated1.Address.City = "Ann Arbor";
 AddressUcTemplated1.Address.State = "MI";
 AddressUcTemplated1.Address.PostalCode = "48888";

 //bind data to controls
 Page.DataBind();
}

Note that the templated user control does not display in the Visual Studio Design view. You
need to create a custom web control for that to work (see Lesson 2). However, when you run the
webpage, it displays as designed. Figure 7-3 shows an example of the AddressUcTemplated user
control running in a browser.

 Lesson 1: Creating User Controls ChAPTER 7 347

FigURE 7-3 The templated Address user control.

Quick Check
	 1. Without writing much code, what is the easiest way to group several TextBox

and Label controls that offer shared functionality so that they can be dragged
onto a webpage as a unit?

	 2. What type of control can be used to provide data that is to be rendered but that
allows the webpage designer to specify the layout of the data?

Quick Check Answers
	 1. Create a web user control.

	 2. A templated user control can be used.

 348	 ChAPTER 7	 Creating Custom Web Controls

PrActIcE	 Working with User Controls

In this practice, you create a version of the Address user control discussed in the text.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Creating the Website and the User Control

In this exercise, you create a new website, add a web user control, and define the user control’s
functionality.

	 1. Open Visual Studio and create a new website by using your preferred programming
language (File | New | Web Site). Name the website UserControlLab.

	 2. Add a web user control to the site: right-click the website in Solution Explorer and
choose Add New Item. In the Add New Item dialog box, select Web User Control.
Name the user control AddressUserControl.ascx.

	 3. Open the user control and add input elements to the markup for address, city, state/
province, and postal code. Your control markup should look similar to the following.

<%@ Control Language="C#" AutoEventWireup="true"
 CodeFile="AddressUserControl.ascx.cs" Inherits="AddressUserControl" %>

<div>
 Address

 <asp:TextBox ID="TextBoxAddress" runat="server" Width="325px"
 Height="80px" TextMode="MultiLine"></asp:TextBox>
 <div style="width: 450px">
 <div style="float: left; margin-right: 3px">
 City

 <asp:TextBox ID="TextBoxCity" runat="server" Width="150"></asp:TextBox>
 </div>
 <div style="float: left; margin-right: 3px">
 State / Province

 <asp:TextBox ID="TextBoxStateProv" runat="server" Width="80"></asp:TextBox>
 </div>
 <div style="float: left">
 Postal Code

 <asp:TextBox ID="TextBoxPostalCode" runat="server" Width="70"></asp:TextBox>
 </div>
 </div>
 <asp:Button ID="ButtonSave" runat="server" Text="Save"
 onclick="ButtonSave_Click" />
</div>

 Lesson 1: Creating User Controls ChAPTER 7 349

	 4. Open the code-behind file and add properties to expose the Text property of the user
control’s TextBox controls. Your code should look similar to the following.

Sample of Visual Basic Code

Partial Class AddressUserControl
 Inherits System.Web.UI.UserControl

 Public Property Address() As String
 Get
 Return TextBoxAddress.Text
 End Get
 Set(ByVal value As String)
 TextBoxAddress.Text = value
 End Set
 End Property

 Public Property City() As String
 Get
 Return TextBoxCity.Text
 End Get
 Set(ByVal value As String)
 TextBoxCity.Text = value
 End Set
 End Property

 Public Property StateProvince() As String
 Get
 Return TextBoxStateProv.Text
 End Get
 Set(ByVal value As String)
 TextBoxStateProv.Text = value
 End Set
 End Property

 Public Property PostalCode() As String
 Get
 Return TextBoxPostalCode.Text
 End Get
 Set(ByVal value As String)
 TextBoxPostalCode.Text = value
 End Set
 End Property
End Class

 350	 ChAPTER 7	 Creating Custom Web Controls

Sample of C# Code

public partial class AddressUserControl : System.Web.UI.UserControl
{
 public string Address
 {
 get { return TextBoxAddress.Text; }
 set { TextBoxAddress.Text = value; }
 }
 public string City
 {
 get { return TextBoxCity.Text; }
 set { TextBoxCity.Text = value; }
 }
 public string StateProvince
 {
 get { return TextBoxStateProv.Text; }
 set { TextBoxStateProv.Text = value; }
 }
 public string PostalCode
 {
 get { return TextBoxPostal.Text; }
 set { TextBoxPostal.Text = value; }
 }
}

	 5. Next, you will define the event handler for the Save button. This event will raise an event
to the host of the user control. Given that the user control already exposes properties
for reading its values, the event will not pass them as an argument; it will simply raise
a generic event. Add the event declaration to the user control’s code-behind class file.
This code should read as follows.

Sample of Visual Basic Code

Public Event SaveButtonClick(ByVal sender As Object, ByVal e As EventArgs)

Sample of C# Code

public event EventHandler SaveButtonClick;

	 6. Finally, add code to the button’s click event that raises this event. The following is an
example.

Sample of Visual Basic Code

Protected Sub ButtonSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonSave.Click

 RaiseEvent SaveButtonClick(Me, New EventArgs())

End Sub

 Lesson 1: Creating User Controls ChAPTER 7 351

Sample of C# Code

protected void ButtonSave_Click(object sender, EventArgs e)
{
 if (SaveButtonClick != null)
 {
 SaveButtonClick(this, new EventArgs());
 }
}

	 7. Compile your code and make sure there are no errors.

ExErcIsE	2	 Hosting the User Control on a Webpage

In this exercise, you consume the user control created in the previous exercise.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you
can copy the completed Lesson 1, Exercise 1 project from the CD to your hard drive
and begin from there.

	 2. Open the Default.aspx page in Design view. Delete the content inside the MainContent
control. While still in Design view, drag AddressUserControl.ascx to the page from
Solution Explorer. Figure 7-4 shows an example of the page in Design view.

FigURE 7-4 The AddressUserControl inside a page in design view.

 352	 ChAPTER 7	 Creating Custom Web Controls

	 3. Change to Source view for the page. Start typing inside the control’s tag. Notice that
you can initialize the control’s custom properties through markup and that IntelliSense
is fully aware of these properties and even offers them to you as it would any other
standard ASP.NET property. These properties are also available in the Properties
window in Design view.

	 4. In this step, you add an event handler to trap the event fired by the user control
when a user clicks the Save button. Start by opening the code-behind file for the
Default.aspx page.

■ In Visual Basic, use the drop-down control at the top left of the code editor to
select the user control (AddressControl1). Then use the drop-down list on the
right to select the SaveButtonClick event handler. This should generate your
event handler stub as follows.

Protected Sub AddressUserControl1_SaveButtonClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles AddressUserControl1.SaveButtonClick

End Sub

■ In C#, you need to first add a method to the page. This method should have the same
signature as the event exposed by the user control. You then need to associate the
event from the user control to the newly defined method. You can do this inside
the page’s Init method. The following code shows an example.

protected void AddressUserControl1_SaveButtonClick(object sender, EventArgs e)
{
}

protected void Page_Init(object sender, EventArgs e)
{
 AddressUserControl1.SaveButtonClick +=
 this.AddressUserControl1_SaveButtonClick;
}

	 5. You now need to add code to the intercepted event. For this example, this code will
simply take the user’s input and write it out to the debug window. The following shows
an example.

Sample of Visual Basic Code

Protected Sub AddressUserControl1_SaveButtonClick(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles AddressUserControl1.SaveButtonClick

 System.Diagnostics.Debug.WriteLine("Address: " & _
 AddressUserControl1.Address & _
 " City: " & AddressUserControl1.City & _
 " State or Province: " & AddressUserControl1.StateProvince & _
 " Postal Code: " & AddressUserControl1.PostalCode)

End Sub

 Lesson 1: Creating User Controls ChAPTER 7 353

Sample of C# Code

protected void AddressUserControl1_SaveButtonClick(object sender, EventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Address: " +
 AddressUserControl1.Address +
 " City: " + AddressUserControl1.City +
 " State or Province: " + AddressUserControl1.StateProvince +
 " Postal Code: " + AddressUserControl1.PostalCode);

}

	 6. Finally, run the application in debug mode to view the results. (You might be prompted
to enable debugging for the site. Click OK to enable debugging.) Enter address infor-
mation in the user control. Click the Save button. Return to Visual Studio and view the
Output window (View | Output) to see the results of the trapped Save button’s event.

Lesson Summary
■ User controls enable web developers to easily combine ASP.NET controls into a single

control for encapsulating common functionality.

■ A user control cannot be compiled to its own dynamic-link library (DLL) and shared. It can
only be shared within a single website (with the exception of copy and paste, of course).

■ A user control follows the same life cycle events as a page. The user control’s events
are called in sync with the corresponding page events (such as Init and Load).

■ You can expose properties, events, and methods in a user control.

■ You add a control to a webpage by using the @ Register directive and indicating the
source ASCX file for the user control.

■ You can dynamically load a user control at run time by using the LoadControl method
of the Page class.

■ You can create templated user controls, which allow the webpage designer to specify the
formatting of data that the user control provides. A templated user control requires a
Placeholder control and a class that implements the INamingContainer interface.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Creating User Controls.” The questions are also available on the companion CD in a practice
test, if you prefer to review them in electronic form.

 354	 ChAPTER 7	 Creating Custom Web Controls

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You want to create a user control that will encapsulate basic data entry functionality and
that will be reused across a site. What steps should you take? (Choose all that apply.)

	 A. Create an ASPX file and use the @ Register directive at the top of the page to
indicate that the markup in the file is a user control.

	 B. Create a code-behind file for your user control that contains a class that inherits
from System.Web.UI.UserControl.

	 c. Create a code-behind file for your user control that contains a class that inherits
from System.Web.UI.Page.

	 D. Create an ASCX file and use the @ Control directive at the top of the page to
indicate that the markup in the file is a user control.

	 2. You want to consume a user control on a page. However, you do not know the number
of instances you want to create. This information will be available at run time. Therefore,
you want to dynamically create these controls. Which actions should you take? (Choose
all that apply.)

	 A. Add the controls by using the Controls.Add method of the page instance.

	 B. Add the controls by using the Controls.Add method of the form instance.

	 c. Call the form’s LoadControl method for each control you want to add to
the page.

	 D. Call the page’s LoadControl method for each control you want to add to
the page.

	 3. You want to create a user control to display data, but you are concerned that you
don’t know how the webpage designers want to format the data. Also, some of the
page designers mention that the format of the data might be different, depending
on the webpage. How can you best create a user control to solve this problem?

	 A. Create a separate user control for each webpage and get each webpage designer
to tell you the format to implement in each user control.

	 B. Create a separate user control for each variation of the format after the webpage
designers give you the desired formatting options.

	 c. Create a templated user control that exposes the data to the webpage designers
so they can specify their desired format.

	 D. Create a user control that simply renders the data and let the webpage designers
specify the style properties for the user control.

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 355

	 4. You have two TextBox controls inside your user control. You want to allow a developer
using the user control to initialize, read, and modify the Text property of these controls.
What step should you take?

	 A. Add a constructor to the user control. The constructor should take parameters for each
of the TextBox.Text properties. It will then set these parameter values appropriately.

	 B. Create properties on the user control that allow users to get and set the Text property
of each TextBox control.

	 c. You don't need to do anything. Controls added to a user control, by default, expose
their default property.

	 D. Add code to the Init method of the user control. This code should raise an event.
The page that hosts the control can then use this event to set the TextBox.Text
properties accordingly.

Lesson 2: Creating Custom Web server Controls

Lesson 1 showed you how to encapsulate functionality into a user control that can be shared
within the boundaries of a single website. There are many times, however, when you write
functionality that can be useful to multiple websites. The functionality could be a specialized
calendar control, a corporate user lookup control, a specialized data validation control, or
something similar. In these situations, you can encapsulate the functionality into a web server
control that can be deployed as a DLL file and used across multiple websites.

Custom web server controls are easier for developers to use than mere user controls. You
can define a full design-time experience for the consumers of your control. This experience
includes Toolbox and designer functionality. Of course, this support means that developers
will treat the control as an encapsulated entity, no different than any built-in control provided
by ASP.NET. Therefore, you typically end up writing more code when creating a web server con-
trol (as compared to a simple user control). This lesson explores the creation of web server
controls for ASP.NET developers.

After this lesson, you will be able to:
■	 Create a custom web server control.
■	 Add custom web server controls to a webpage.
■	 Add Toolbox support for a custom web server control.
■	 Create a custom designer for a custom web server control.
■	 Consume a custom web server control in a website.

Estimated lesson time: 60 minutes

 356	 ChAPTER 7	 Creating Custom Web Controls

real World

Mike Snell

In my experience, I have seen very few instances of development teams that create
custom web server controls. I attribute this to the ease of creating user controls

versus the perceived difficulty of building and supporting custom web server con-
trols. My advice, however, is to create custom web server controls where they make
sense: as reusable controls across websites. After creating the first control, I think
you will find custom web server controls easy enough to create and worth the effort.

Creating a Custom Web Server Control
A custom web control is a control that you write that inherits either from the WebControl class
or from an existing web server control. Each custom web control contains the code necessary
to render the control (or inherits it from another control). The control can be compiled into a
separate DLL file that can be shared among applications and can optionally be installed in the
global assembly cache (GAC).

There are two common approaches to creating a custom web server control. The first
approach is to create a web server control that inherits directly from WebControl. The
WebControl class provides a base set of functionality. With this functionality, you can handle
styles by using UI-related properties such as BackColor, ForeColor, Font, Height, and Width.
However, this leaves you with a lot of work to finish developing the control. The second
approach is to inherit from an existing web server control that already provides the core
features you need for your control. This can give you a jump start and allow you to focus on
what makes your control different. This is the more common scenario. This section explores
both approaches.

Regardless of the approach, you should carefully consider how the control will be reused.
If the custom web server control is targeted to multiple websites, you should place the new
custom web server control class into a class library project to create a DLL file that can be
shared. If the custom web server control is only meant for the current website, you can add
the custom web server control’s class file to the website (or create a user control instead).

exaM tIp

Be sure to know the difference between user controls and web server controls. You
should have a solid understanding of both applicable usage and how to create both
types of controls.

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 357

Inheriting from an Existing ASP.NET Web Server Control
A common scenario is to create a custom web server control by inheriting from an existing
ASP.NET web server control and adding additional functionality. This method ensures that
you get the base functionality from the inherited control. You then extend this functionality
with your custom code.

As an example, suppose you want to create a control that includes both a label and a TextBox
control. You might call this control LabeledTextBox. This custom control will include text that
labels the TextBox (such as “User Name” or “Address”). This text should be set by developers
when they use your control. You might also want to allow them to set the width of this text to
help with alignment.

To create this control, you can start by adding a class file to your website (do this only if you
do not intend to share the control across sites), create a class library project and set a reference
to System.Web, or create an ASP.NET Server Control project (the preferred method).

You then define a class that inherits from TextBox. You must also set a reference to the
System.Web namespace inside your class library. You then create properties that allow
developers to set the label text and the width of the label prompt. Because the control
inherits from TextBox, it will also expose the properties of the TextBox control by default.

The final step is to render the display of your user control. For this you must override the
Render method of the TextBox control. The Render method will use an HtmlTextWriter to write
your display information (the TextBox prompt) and the base rendering of the TextBox control.
The following code shows an example of the complete, custom LabeledTextBox web control.

Sample of Visual Basic Code

Public Class LabeledTextBox
 Inherits TextBox

 Public Property PromptText() As String
 Public Property PromptWidth() As Integer

 Protected Overrides Sub Render(ByVal output As HtmlTextWriter)

 output.Write(_
 "{1} ", _
 PromptWidth, PromptText)

 MyBase.Render(output)

 End Sub

End Class

 358	 ChAPTER 7	 Creating Custom Web Controls

Sample of C# Code

public class LabeledTextBox : TextBox
{
 public string PromptText { get; set; }
 public int PromptWidth { get; set; }

 protected override void Render(HtmlTextWriter output)
 {
 output.Write(
 @"{1} ",
 PromptWidth, PromptText);

 base.Render(output);
 }
}

Note that this control does not, at present, provide much design-time support. However, the
control can still be used as a server control on a webpage. If the control is to be externalized into
its own project, you must build it and set a reference to it from a website. The control should
then show up by default in the Toolbox (if you created an ASP.NET Server Control project). You
can then add your control to a webpage or create it inside code (as you would any other con-
trol). The following code shows how to create two instances of the control inside a webpage’s
the Page_Init event. (Note that this code assumes the use of a master page.)

Sample of Visual Basic Code

Protected Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Init

 Dim content As ContentPlaceHolder = _
 CType(Me.Master.FindControl("MainContent"), ContentPlaceHolder)

 Dim width As Integer = 150
 Dim prompt1 As New MyUserControls.LabeledTextbox()

 prompt1.PromptText = "Enter Name:"
 prompt1.PromptWidth = width

 content.Controls.Add(prompt1)

 Dim br As New LiteralControl("
")
 content.Controls.Add(br)

 Dim prompt2 As New MyUserControls.LabeledTextbox()
 prompt2.PromptText = "Enter Address:"
 prompt2.PromptWidth = width
 content.Controls.Add(prompt2)

End Sub

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 359

Sample of C# Code

protected void Page_Init(object sender, EventArgs e)
{
 ContentPlaceHolder content =
 (ContentPlaceHolder)this.Master.FindControl("MainContent");
 int width = 150;
 MyUserControls.LabeledTextBox prompt1 = new
 MyUserControls.LabeledTextBox();

 prompt1.PromptText = "Enter Name:";
 prompt1.PromptWidth = width;
 content.Controls.Add(prompt1);

 LiteralControl br = new LiteralControl("
");
 content.Controls.Add(br);

 MyUserControls.LabeledTextBox prompt2 = new
 MyUserControls.LabeledTextBox();
 prompt2.PromptText = "Enter Address:";
 prompt2.PromptWidth = width;
 content.Controls.Add(prompt2);
}

Figure 7-5 shows the rendered webpage.

FigURE 7-5 The LabeledTextBox control rendered on a webpage.

 360	 ChAPTER 7	 Creating Custom Web Controls

support	for	Viewstate	in	custom	control	Properties

You might have noticed in the previous example that the two custom properties
(PromptText and PromptWidth) do not provide ViewState support. This might not

be a problem if you expect the users of your control to set this value in markup and
not change it. However, if these properties need to be manipulated inside code, you
might want to provide ViewState support to ensure a consistent developer experience
similar to that of other ASP.NET controls. This will ensure that the properties set inside
server code are not suddenly switched back to markup values after a postback.

You can add ViewState support for your properties by expanding Set and Get. The Set
method simply adds the value to the ViewState. The Get method looks for the value in
the ViewState and, if the value is found, returns it. The following shows example code
for adding ViewState support for the PromptText property in the prior example.

Sample of Visual Basic Code

Private _promptText As String
Public Property PromptText() As String
 Get
 Dim s As String = CStr(ViewState("PromptText"))
 If s Is Nothing Then
 Return String.Empty
 Else
 Return s
 End If
 End Get

 Set(ByVal Value As String)
 ViewState("PromptText") = Value
 End Set
End Property

Sample of C# Code

public string PromptText
{
 get
 {
 String s = (String)ViewState["PromptText"];
 return ((s == null) ? String.Empty : s);
 }

 set
 {
 ViewState["PromptText"] = value;
 }
}

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 361

Inheriting Directly from the WebControl Class
Another approach to creating a custom web control is to create a control that inherits
directly from the WebControl class. This approach is preferable when there is no existing
control that provides enough default behavior similar to the control you want to implement.
When inheriting from the WebControl class, you typically override the Render method to
provide the HTML output you want for your control. However, you might also use one of
the other Render methods shown in Table 7-1.

TAbLE 7-1 Rendering Methods of the WebControl Class

mEThOD DEsCRiPTiOn

Render You can use the Render method when you want to control all out-
put of your control’s HTML to the client. By default, the Render
method will first call RenderBeginTag, then RenderContent, and
finally RenderEndTag. If you override this method, you control
whether or not these other methods are called.

RenderContents You use this method to ensure that the HTML for your control is ren-
dered between the appropriate begin and end HTML tags. When
Render is called on your control (manually or automatically by
ASP.NET), it will call three methods in a sequence: RenderBeginTag,
RenderContent, and RenderEndTag. Any custom code you add to
these methods through overriding will be executed.

RenderBeginTag
and RenderEndTag

These methods are used to render HTML both at the beginning of
a control listing and at the end. You override these methods when
creating custom controls that display multiple controls between
opening and closing tags.

RenderChildren If your custom control has child controls inside its ControlCollection,
you can call this method to ensure that each is rendered as part of
the HTML output.

As an example, suppose you want to create a custom control that allows a user to display
a logo and an associated company name for the logo. For this, you might create two prop-
erties: LogoUrl and CompanyName. You would then add code to render the output. In the
following example, the RenderBeginTag and RenderContents methods are used to display
the HTML for the control. Note that RenderEndTag is not required, because it is automati-
cally called and will render an end tag based on the supplied begin tag.

 362	 ChAPTER 7	 Creating Custom Web Controls

Sample of Visual Basic Code

Public Class LogoControlVb
 Inherits WebControl

 Public Property LogoPath As String
 Public Property CompanyName As String

 Public Overrides Sub RenderBeginTag(ByVal writer As System.Web.UI.HtmlTextWriter)
 writer.RenderBeginTag("div")
 End Sub

 Protected Overrides Sub RenderContents(ByVal output As HtmlTextWriter)
 output.Write("
", LogoPath)
 output.Write(CompanyName + "
")
 End Sub
End Class

Sample of C# Code

public class LogoControl : WebControl
{
 public string LogoPath { get; set; }
 public string CompanyName { get; set; }

 public override void RenderBeginTag(HtmlTextWriter writer)
 {
 writer.RenderBeginTag("div");
 }

 protected override void RenderContents(HtmlTextWriter output)
 {
 output.Write(@"
", LogoPath);
 output.Write(CompanyName + "
");
 }
}

Figure 7-6 shows the control being used inside an ASPX page. Notice that the LogoPath
and CompanyName properties are defined in the markup. These are then being used inside
the RenderContents method. LogoPath is used to assign an tag’s src attribute set
to the logo’s path. CompanyName is used to set text on the line that follows the image.

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 363

FigURE 7-6 The LogoControl inside the Visual Studio page designer.

When this control is rendered, a <div/> tag is sent to the browser from the call to
RenderBeginTag. The RenderContent method sends an tag and company name
within the <div/> tag. The following shows the markup as sent to a browser.

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title></title></head>
<body style="font-family: Verdana">
<form method="post" action="Default3.aspx" id="form1">

 <div class="aspNetHidden">
 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="/wEPDwUKMTEzOTYwMzMxMGRk+C8ZqFrvNTacdRCm30XWc6KmAgUUjwIAf5zk3FGVKvc=" />
 </div>

 <div>
 <div>

Contoso

 </div>
 </div>

</form>
</body>
</html>

 364	 ChAPTER 7	 Creating Custom Web Controls

Adding Toolbox Support for a Custom Web Server Control
Developers are used to working with controls that originate from the Visual Studio Toolbox
and provide design-time, declarative markup support. As a web server control developer, you
should strongly consider providing this functionality to your users (other developers).

The primary requirement that allows a custom web control to be added to the Toolbox is
that the web control be placed into a separate DLL file. This typically means that the control
must be created in a stand-alone ASP.NET Server Control project. To accomplish this, you can
either set a project-based reference to the control (if it is in the same solution as your website)
or you can right-click the Toolbox and select Choose Items. The latter option will let you browse
to the user control’s DLL file to add the control or controls that are contained in the file to the
Toolbox.

To demonstrate, suppose that the custom server controls in the examples earlier in this
lesson are in their own class library, MyUserControls.dll. You can set a reference to this DLL
file to add the DLL to the Bin folder of your website. You can then use the Choose Toolbox
Items dialog box to select any controls within the library and add them to the Toolbox. After
they have been added, you can drag these controls from the Toolbox to a webpage to set their
properties declaratively.

Figure 7-7 shows an example. Notice that the controls are defined in their own grouping
at the top of the Toolbox. When you drag a control to the page, the control will automatically
be registered; this markup is shown at the top of the page. The bottom of the page shows the
control defined declaratively (including custom properties). Finally, notice on the right side of
the figure that the control’s DLL file is placed inside the Bin folder for the website.

User Controls

User
Control’s
files

User Control
Registration

User Control
Declaration

FigURE 7-7 Externalizing controls as separate DLL files to allow for Toolbox support in Visual Studio.

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 365

Defining a Custom Icon for Your Control
As shown earlier in Figure 7-6, the example control uses a default icon. You can add your own
custom icon by using an attribute called ToolboxBitmap, which is contained in the System.Drawing
namespace. You apply this attribute to your server control class. The attribute uses a custom
bitmap that is 16 × 16 pixels in size to set a custom image in the Toolbox.

The attribute allows you to specify a path to the icon as an absolute path with a drive letter
specified. It also allows you to reference an embedded bitmap in your control’s assembly. Clearly
the second option is more practical, because it allows you to deploy your control as a single file,
and you do not need to worry about where an image file might be on a user’s drive.

To embed your image, you first add it to your project. You then select the file in Solution
Explorer and view the Properties window. From the Properties window, you set the Build Action
property to Embedded Resource. This tells the compiler to embed the image as part of the DLL
file. After that, all you need to do is reference the embedded image by using the ToolboxBitmap
attribute class.

As an example, suppose you want to create a custom icon for the LabeledTextBox web server
control shown previously in Figure 7-5. You should first use the Import directive (in Visual Basic)
or the using directive (in C#) to qualify use of the System.Drawing namespace to your class. You
then add a 16 × 16 bitmap to the root of your project and set its Build Action to Embedded
Resource. Finally, you set the ToolBoxBitmap class to point to the embedded resource, as shown
in the following code.

Sample of Visual Basic Code

<ToolboxBitmap(GetType(LabeledTextBox), _
 "LabeledTbControlIcon.bmp")> _
Public Class LabeledTextBox
 Inherits TextBox
...

Sample of C# Code

[ToolboxBitmap(typeof(LabeledTextBox),
 "LabeledTbControlIcon.bmp")]
public class LabeledTextBox : TextBox
{
...

Figure 7-8 shows the results in the Toolbox. You can see that the web server control,
LabeledTextBox, has a custom icon.

 366	 ChAPTER 7	 Creating Custom Web Controls

FigURE 7-8 Custom icons for web server controls can be defined by using the ToolboxBitmap attribute.

Providing a Default Property for Your Custom Web Server Control
You can specify a default property of your control to be focused in the Properties window
when the user selects the property in the Visual Studio designer. This is useful if your control
has a key property to which you want to draw the developer’s attention.

You indicate this property for your control by using the DefaultProperty attribute class in
the System.ComponentModel namespace. Note that this should not be confused with a default
property in Visual Basic or C# that takes a parameter and is often used for the Item property
of a collection class. Rather, it simply signifies the property to be focused when the user selects
your control in the designer.

You apply this attribute at the class level, and simply pass the name of one of your properties
to this attribute. The following code shows an example of setting the PromptText property as
the default for the LabeledTextBox control.

Sample of Visual Basic Code

<DefaultProperty("PromptText")> _
Public Class LabeledTextBox
 Inherits TextBox

Sample of C# Code

[DefaultProperty("PromptText")]
public class LabeledTextBox : TextBox

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 367

Figure 7-9 shows the resulting design-time experience for a developer. Notice that the custom
web server control is selected and its PromptText property is focused in the Properties pane.

FigURE 7-9 The DefaultProperty attribute class is used to indicate a property of your control to be high-
lighted in the Properties window when a user selects the control in the designer.

Defining Attributes for Your Control Properties
There are several attribute classes you can apply to the properties of your control to change how
those properties are managed by Visual Studio. Table 7-2 lists some of these key attribute classes.

TAbLE 7-2 Attributes Typically Applied to Control Properties

ATTRibUTE DEsCRiPTiOn

Bindable You use the Bindable property to indicate whether a control’s property
should be bound to data. If you set this value to Bindable(true), the prop-
erty will be displayed in the DataBindings section of the property grid in
Visual Studio. By default, properties are assumed to be Bindable(false).

Category You use the Category attribute to indicate the category (or group)
in which the property should be displayed in the Properties window
grid when a developer changes the Properties view to Categorized. By
default, your properties will show up in the Misc category. For example,
you can set Category(“Appearance”) to indicate that your property should
be shown in the Appearance category in the Properties window grid.

(continued)

 368	 ChAPTER 7	 Creating Custom Web Controls

ATTRibUTE DEsCRiPTiOn

Description You use the Description attribute to provide a brief description of your
property’s usage. This description is shown at the bottom of the Properties
pane in Visual Studio when the property is selected.

DefaultValue You use the DefaultValue attribute to set a default value for your property.

Localizable You use the Localizable attribute to indicate whether your property
should (or can) be localized. Setting Localizable(true) indicates that the
property should be serialized as a localized resource.

The following code shows an example of applying some of these properties to the PromptText
property of the LabledTextBox control.

Sample of Visual Basic Code

<Bindable(True), _
Category("Appearance"), _
Description("Text that describes the purpose of the TextBox."), _
Localizable(True)> _
Public Property PromptText() As String

Sample of C# Code

[Bindable(true),
Category("Appearance"),
Description("Text that describes the purpose of the TextBox."),
Localizable(true)]
public string PromptText { get; set; }

This code indicates that the property can be bound to data and can be localized. It also
indicates that the property should be displayed in the Appearance category of the Properties
window and provides a description when the user selects the property in the Properties win-
dow. Figure 7-10 shows the newly decorated property inside the Properties window.

FigURE 7-10 The PromptText property shown in its category and with its description.

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 369

Controlling the Markup Generated for Your Custom Web Server Control
You can further change the way your custom server control behaves when it is dropped onto
the webpage by setting the ToolboxData attribute in your control class. This attribute is used
to change the markup that is generated by Visual Studio. A common scenario is to set default
values for properties on the control inside the generated markup.

The following code shows an implementation of the ToolboxData attribute for the
LabeledTextBox control.

Sample of Visual Basic Code

<ToolboxData(_
 "<{0}:LabeledTextBox runat=""server"" PromptText="""" PromptWidth=""100"" />")> _
 Public Class LabeledTextBox
 Inherits TextBox

Sample of C# Code

[ToolboxData(
 @"<{0}:LabeledTextBox runat=""server"" PromptText="""" PromptWidth=""100"" />")]
 public class LabeledTextBox : TextBox

In this example, the {0} placeholder contains the namespace prefix as defined by the webpage
designer. Notice that the PromptText and PromptWidth attributes are inserted automatically.
PromptWidth is assigned the default value of 100. When the control is added to a page, the
following markup is generated.

<cc1:LabeledTextBox ID="LabeledTextBox1" runat="server" PromptText="" PromptWidth="100">
</cc1:LabeledTextBox>

You can also provide the namespace prefix that is assigned to your control by the webpage
designer by assigning the TagPrefixAttribute of the System.Web.UI namespace to the assembly
that contains your custom control. (Visual Studio will assign a default value such as “uc1” if you
do not.) To do so, you add the following attribute declaration to the AssemblyInfo class file in
your control (you might have to create this class file for Visual Basic projects). The following
code shows the namespace prefix being changed to “muc” (my user controls) from cc1 for
the controls in the MyUserControls project.

Sample of Visual Basic Code

Imports System.Web.UI
<Assembly: TagPrefix("MyUserControls", "muc")>

Sample of C# Code

using System.Web.UI;
[assembly: TagPrefix("MyUserControls", "muc")]

With the previous change to the LabeledTextBox control, the @ Register directive will
change as follows when a user drags the control onto a page.

<%@ Register Assembly="MyUserControls" Namespace="MyUserControls" TagPrefix="muc" %>

The control will also change to use the new prefix, as displayed here.

<muc:LabeledTextBox ID="LabeledTextBox1" runat="server" PromptText="" PromptWidth="100">
</muc:LabeledTextBox>

 370	 ChAPTER 7	 Creating Custom Web Controls

Creating a Custom Designer for a Custom Web Server
Control
Controls added from the Toolbox already have design-time support; that is, you can see them in
the Design view of the page and work with their properties in the Properties window. However,
you might want to alter the default rendering of the control in design mode. In addition, some
controls might not be visible because they contain code that must be run to populate specific
properties. In these cases, you can specify a custom designer for your control.

To do so, you start by adding a reference to the System.Design.dll assembly in your
custom server control. You then create a new class in your user control that inherits from
the ControlDesigner class. This class will override the GetDesignTimeHtml method of the
ControlDesigner class to render separate design-time HTML that can be set based on the prop-
erty settings of the control instance. You then apply the Designer attribute to your control. To
this, you pass an instance of your ControlDesigner class.

For example, suppose you want to customize the design-time view of the LabelTextBox
control. You might set the control to display a reminder to users when they have not yet set
the PromptText property. To get started, you add a new class to your control and make sure
it inherits from ControlDesigner and overrides the GetDesignTimeHtml method. This override
should get an instance of the control and check it to see whether the PromptText value has
been set. If not, it should display an alternate view. The following code shows an example.
(This code requires a project reference to System.Design.)

Sample of Visual Basic Code

Imports System.Web.UI.Design
Imports System.ComponentModel

Public Class LabeledTextBoxDesigner
 Inherits ControlDesigner

 Private _labeledTextBoxControl As LabeledTextBox

 Public Overrides Function GetDesignTimeHtml() As String

 _labeledTextBoxControl = CType(Component, LabeledTextBox)
 If (_labeledTextBoxControl.PromptText.Length = 0) Then
 Return "<div style='color: Gray'>[Define PromptText]</div>"
 Else
 Return MyBase.GetDesignTimeHtml()
 End If

 End Function

End Class

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 371

Sample of C# Code

using System.Web.UI.Design;
using System.ComponentModel;

namespace MyUserControlsCs
{
 class LabeledTextBoxDesigner : ControlDesigner
 {
 private LabeledTextBox _labeledTextBoxControl;

 public override string GetDesignTimeHtml()
 {
 if (_labeledTextBoxControl.PromptText.Trim().Length == 0)
 return "<div style='color: Gray'>[Define PromptText]</div>";
 else
 return base.GetDesignTimeHtml();
 }

 public override void Initialize(IComponent component)
 {
 _labeledTextBoxControl = (LabeledTextBox)component;
 base.Initialize(component);
 return;
 }
 }
}

After the class is created, you can assign the DesignerAttribute to the user control class, as
shown in the following code.

Sample of Visual Basic Code

<Designer("MyUserControls.LabeledTextBoxDesigner, MyUserControls")> _
Public Class LabeledTextBox
 Inherits TextBox

Sample of C# Code

[Designer("MyUserControls.LabeledTextBoxDesigner, MyUserControls")]
public class LabeledTextBox : TextBox

Now when the control is dragged onto a webpage, the designer code executes and
determines the layout (custom or base). If the PromptText property is not set, the control is
displayed as shown in Figure 7-11. When the property is set, the control displays as before.

 372	 ChAPTER 7	 Creating Custom Web Controls

FigURE 7-11 Creating a class derived from ControlDesigner creates a custom designer for custom web
server controls.

Creating a Composite Control
A composite control is a custom web control that contains other web server controls. This
sounds a lot like a user control. However, a composite control doesn’t provide an ASCX file or a
designer that lets you drag controls on it at design time. Instead, a composite control is a custom
web server control that inherits from the CompositeControl class. You then add constituent con-
trols to this control. The composite control handles events raised by its child controls.

A composite control is rendered as a tree of constituent controls, each having its own
life cycle. Together, these constituent controls form a new control. Because each of the child
controls handles its own ViewState and postback data, you don’t need to write extra code
to deal with this.

To create a composite control, you start by creating a class that inherits from the
CompositeControl class and overrides the CreateChildControls method. The CreateChildControls
method contains the code to instantiate the child controls and set their properties.

If you want to be able to assign styles to the composite control, you should create an instance
of the Panel class to provide a container that can have attributes assigned to it. In this case,
you add the container to the Controls collection of your composite control, and then add your
controls to the Panel control.

As an example, suppose you want to create a composite control that includes controls
for prompting a user for a user name and password. You might also include a submit button
with a click event that can be subscribed to. You start by defining a class that inherits from

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 373

CompositeControl and implements the INamingContainer interface. The following code
shows the implementation of this control.

Sample of Visual Basic Code

Imports System.Web.UI
Imports System.Web.UI.WebControls

Public Class UserPasswordControl
 Inherits CompositeControl
 Implements INamingContainer

 Public Event Submitted As System.EventHandler

 Public Property UserName() As String
 Get
 Dim txt As TextBox
 txt = CType(Me.FindControl("UserName"), TextBox)
 Return txt.Text
 End Get
 Set(ByVal Value As String)
 Dim txt As TextBox
 txt = CType(Me.FindControl("UserName"), TextBox)
 txt.Text = Value
 End Set
 End Property

 Public Property Password() As String
 Get
 Dim txt As TextBox
 txt = CType(Me.FindControl("Password"), TextBox)
 Return txt.Text
 End Get
 Set(ByVal Value As String)
 Dim txt As TextBox
 txt = CType(Me.FindControl("Password"), TextBox)
 txt.Text = Value
 End Set
 End Property

 Protected Overrides Sub CreateChildControls()
 Dim pnl As New Panel()
 Dim txtUserName As New TextBox()
 Dim txtPassword As New TextBox()
 Dim btnSubmit As New Button()
 AddHandler btnSubmit.Click, AddressOf btnSubmit_Click

 'start control buildup
 Controls.Add(pnl)
 'add user name row
 pnl.Controls.Add(New LiteralControl("<table><tr><td>"))
 pnl.Controls.Add(New LiteralControl("User Name:"))
 pnl.Controls.Add(New LiteralControl("</td><td>"))
 pnl.Controls.Add(txtUserName)
 pnl.Controls.Add(New LiteralControl("</td></tr>"))

 374	 ChAPTER 7	 Creating Custom Web Controls

 'add password row
 pnl.Controls.Add(New LiteralControl("<tr><td>"))
 pnl.Controls.Add(New LiteralControl("Password:"))
 pnl.Controls.Add(New LiteralControl("</td><td>"))
 pnl.Controls.Add(txtPassword)
 pnl.Controls.Add(New LiteralControl("</td></tr>"))
 'add submit button row
 pnl.Controls.Add(New LiteralControl(_
 "<tr><td colspan=""2"" align=""center"" >"))
 pnl.Controls.Add(btnSubmit)
 pnl.Controls.Add(New LiteralControl("</td></tr></table>"))

 'set up control properties
 pnl.Style.Add("background-color", "silver")
 pnl.Style.Add("width", "275px")
 txtUserName.ID = "UserName"
 txtUserName.Style.Add("width", "170px")
 txtPassword.ID = "Password"
 txtPassword.TextMode = TextBoxMode.Password
 txtPassword.Style.Add("width", "170px")
 btnSubmit.Text = "Submit"

 End Sub

 Public Sub btnSubmit_Click(ByVal sender As Object, ByVal e As EventArgs)
 RaiseEvent Submitted(Me, e)
 End Sub

End Class

Sample of C# Code

using System;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Drawing;

public class UserPasswordControl : CompositeControl
{

 public event System.EventHandler Submitted;

 public string UserName
 {
 get
 {
 TextBox txt = (TextBox)FindControl("UserName");
 return txt.Text;
 }
 set
 {
 TextBox txt = (TextBox)FindControl("UserName");
 txt.Text = value;
 }
 }

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 375

 public string Password
 {
 get
 {
 TextBox pwd = (TextBox)FindControl("Password");
 return pwd.Text;
 }
 set
 {
 TextBox pwd = (TextBox)FindControl("Password");
 pwd.Text = value;
 }
 }

 protected override void CreateChildControls()
 {
 Panel pnl = new Panel();
 TextBox txtUserName = new TextBox();
 TextBox txtPassword = new TextBox();
 Button btnSubmit = new Button();
 btnSubmit.Click += new EventHandler(btnSubmit_Click);

 //start control buildup
 Controls.Add(pnl);
 //add user name row
 pnl.Controls.Add(new LiteralControl("<table><tr><td>"));
 pnl.Controls.Add(new LiteralControl("User Name:"));
 pnl.Controls.Add(new LiteralControl("</td><td>"));
 pnl.Controls.Add(txtUserName);
 pnl.Controls.Add(new LiteralControl("</td></tr>"));
 //add password row
 pnl.Controls.Add(new LiteralControl("<tr><td>"));
 pnl.Controls.Add(new LiteralControl("Password:"));
 pnl.Controls.Add(new LiteralControl("</td><td>"));
 pnl.Controls.Add(txtPassword);
 pnl.Controls.Add(new LiteralControl("</td></tr>"));
 //add submit button row
 pnl.Controls.Add(new LiteralControl(
 @"<tr><td colspan=""2"" align=""center"" >"));
 pnl.Controls.Add(btnSubmit);
 pnl.Controls.Add(new LiteralControl("</td></tr></table>"));

 //set up control properties
 pnl.Style.Add("background-color", "silver");
 pnl.Style.Add("width", "275px");
 txtUserName.ID = "UserName";
 txtUserName.Style.Add("width", "170px");
 txtPassword.ID = "Password";
 txtPassword.TextMode = TextBoxMode.Password;
 txtPassword.Style.Add("width", "170px");
 btnSubmit.Text = "Submit";
 }

 void btnSubmit_Click(object sender, EventArgs e)
 {
 if (Submitted != null) Submitted(this, e);
 }
}

 376	 ChAPTER 7	 Creating Custom Web Controls

In this code, the UserName and Password properties are exposed to give users of the
control access to this data. Notice that these properties use the FindControl method to
expose the properties of the constituent controls. An event called Submitted is also created
so that users of the control can receive notification when the Submit button’s Click event
fires. The CreateChildControls method performs the work to instantiate the child controls
for this composite control.

This control can be tested by adding it to a webpage. You use the same techniques described
for the other custom web controls to do so. In the following markup, you can see the control
added to a page. Notice that the control’s Submitted event is bound to a handler in the code-
behind for the page.

<%@ Page Title="" Language="VB" MasterPageFile="~/Site.master"
 AutoEventWireup="false" CodeFile="UserPassControlTest.aspx.vb"
 Inherits="UserPassControlTest" %>

<%@ Register Assembly="MyUserControls" Namespace="MyUserControls"
 TagPrefix="muc" %>

<asp:Content ID="Content1" ContentPlaceHolderID="HeadContent" Runat="Server">
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" Runat="Server">

 <muc:UserPasswordControl ID="UserPasswordControl1" runat="server"
 OnSubmitted="UserPasswordControl1_Submitted" />

</asp:Content>

When this test webpage is run, the UserPasswordControl is displayed. After typing a user
name and password, you can click the Submit button to execute the event handler in the
code-behind page. Figure 7-12 shows the control running in a browser.

FigURE 7-12 A composite custom web server control created by using the CompositeControl class.

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 377

Quick Check
	 1. You want to create a new, custom web server control that does not rely on any

existing ASP.NET control. From what class should you inherit?

	 2. You want to create a control that can be distributed as a DLL. The control contains
several TextBox, Label, and Button controls, and you want to be able to add the
control to the Toolbox. What is the best choice of control to create?

	 3. You want to create a new, custom control that extends from the CheckBox control.
From which class should you inherit?

Quick Check Answers
	 1. Inherit from the WebControl class.

	 2. Create a composite control.

	 3. You should inherit directly from the CheckBox class.

Creating a Templated Custom Web Server Control
A templated custom web control provides separation of control data from its presentation.
This means that a templated control does not provide a default UI. For example, if you know
that you need to display product data, but you don’t know how the developer who intends
to use your control wants to format the product data, you could create a templated control
called ProductControl that allows the page designer to supply the format for the product
data as a template.

A templated control must provide a naming container and a class with properties and
methods that are accessible to the host page. The template contains the UI for the templated
web server control and is supplied by the page developer at design time. The templates can
contain controls and markup. You can create a templated control by following these steps:

	 1. Create a ClassLibrary (DLL) project for your templated control.

	 2. Add a reference to the System.Web.dll library.

	 3. Add a container class to your project. The class should have public properties for the
data that you want to be able to access via the Container object in your template.

	 4. In the container class file, add an Imports directive (a using directive in C#) for the
System.Web.UI namespace.

	 5. Code your container class to inherit from the System.Web.UI.Control class and implement
the INamingContainer interface.

	 6. Add a class to the project for your templated control.

	 7. In the class file, add an Imports directive (a using directive in C#) for the System.Web.UI
namespace.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 378	 ChAPTER 7	 Creating Custom Web Controls

	 8. Code your templated control to inherit from the System.Web.UI.Control class and
implement the INamingContainer interface.

	 9. Add the ParseChildren(true) attribute to the class. This attribute provides direction to
the page parser to indicate that the nested content contained within the server control
is parsed as a control and not used to set properties of the templated control.

	 10. Create one or more properties in the templated control class with the data type of
ITemplate. These properties will be used by the page developer to define the actual
layout of the control. These properties must have the TemplateContainer attribute
set to the data type of the container, which might be the templated control. Alter-
natively, you can create a subcontainer if you have repeating items to display in the
template. Also, these properties must have the PersistenceMode attribute set to
PersistenceMode.InnerProperty, which allows page designers to add inner HTML
elements to the HTML source of the templated control.

	 11. Add the properties you want to the template container so that they will be accessible
by the template.

	 12. The DataBind method must be overridden to call the EnsureChildControls method
on the base Control class.

	 13. The CreateChildControls method must be overridden to provide the code to instantiate
the template by using the InstantiateIn method of the ITemplate interface. Code should
also be provided for a default implementation if no template is provided.

As you can see, many of the steps to create a templated custom web server control are
similar to those for creating a templated user control (see Lesson 1). The primary differences
are in how you actually create the custom web server control versus creating a user control.

Registering Your Controls in Web.config
Each time you add a custom control (or even a user control) to a webpage, Visual Studio
generates the @ Register directive to ensure that the control is registered for the page.
However, you can register controls globally to your site by using the Web.config file. This
allows you to use them on pages much as you would any other ASP.NET control (without
the @ Register directive).

The following code shows the Web.config markup required to register a custom control
as a DLL (MyUserControls) and a user control stored in an ASCX file (AddressControl.ascx).
Adding this code to the Web.config file eliminates the need to call @ Register on pages
that use these controls.

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 379

<system.web>
 <pages>
 <controls>
 <add assembly="MyUserControls"
 namespace="MyUserControls"
 tagPrefix="muc" />
 <add src="~/Controls/AddressUserControl.ascx"
 tagName="AddressUserControl"
 tagPrefix="uc1" />
 </controls>
 </pages>
</system.web>

PrActIcE	 Working with Custom Web server Controls

In this practice, you create a custom web server control called StateListControl that displays
a list of states in the United States. Of course, you can repurpose this control to display a
static list of almost anything.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Creating the Visual Studio Projects and Defining the Custom Web Server
Control

In this exercise, you create the projects used by this practice. You also write the code for the
custom server control.

	 1. Open Visual Studio and create a new website called CustomControlLab by using your
preferred programming language. This website will serve to host the custom control
on a page.

	 2. Add an ASP.NET Server Control project to your solution. Name this project
myCustomControls.

	 3. Rename ServerControl1 to stateListControl by right-clicking the file in Solution
Explorer and choosing Rename. When asked if you would like to rename the class
and reference, select Yes.

	 4. Open the StateListControl class file. Delete the Text property and the RenderContents
method.

 380	 ChAPTER 7	 Creating Custom Web Controls

	 5. Change the StateListControl class to inherit from DropDownList. Also, remove the
DefaultProperty attribute from the class declaration and change the ToolboxData
attribute to use the text StateListControl for the tags instead of ServerControl1.
Also, add the ID property to the generated markup for the control.

	 6. Add code to the constructor of the StateListControl class to create a ListItem for each
state. Add the ListItems to the Items collection of the DropDownList. The ListItem for
each state displays the full name of the state, but the posted value is the two-character
state abbreviation. The following is an example.

Sample of Visual Basic Code

Imports System.Web.UI
Imports System.Web.UI.WebControls

<ToolboxData(
"<{0}:StateListControl ID=""StateListControl1""
 runat=""server""></{0}:StateListControl>")> _
 Public Class StateListControl
 Inherits DropDownList

 Public Sub New()
 Me.Items.Add(New ListItem("Alabama", "AL"))
 Me.Items.Add(New ListItem("Alaska", "AK"))
 Me.Items.Add(New ListItem("Arizona", "AZ"))
 Me.Items.Add(New ListItem("Arkansas", "AR"))
 Me.Items.Add(New ListItem("California", "CA"))
 'and more ...
 End Sub

End Class

Sample of C# Code

using System.Web.UI;
using System.Web.UI.WebControls;

namespace MyCustomControls
{
 [ToolboxData(
 @"<{0}:StateListControl ID=""StateListControl1""
 runat=""server""></{0}:StateListControl>")]
 public class StateListControl : DropDownList
 {
 public StateListControl()
 {
 this.Items.Add(new ListItem("Alabama", "AL"));
 this.Items.Add(new ListItem("Alaska", "AK"));
 this.Items.Add(new ListItem("Arizona", "AZ"));
 this.Items.Add(new ListItem("Arkansas", "AR"));
 this.Items.Add(new ListItem("California", "CA"));
 //and more ...
 }
 }
}

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 381

	 7. Build the MyCustomControls project. Also, note that you do not need to expose the
Items property or manage its ViewState. That is taken care of already by the base class
(DropDownList). Users can add and remove items from the default list of states that
the control exposes. You will see that in the next exercise.

ExErcIsE	2	 Adding the Custom Web Server Control to a Webpage

In this exercise, you add the StateListControl created in the prior exercise to a webpage.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you
can open the completed Lesson 2, Exercise 1 project from the sample files installed
from the CD and begin from there.

	 2. Inside the website, add the StateListControl to the Toolbox. You can do this one of two
ways. One way is to add a reference to MyCustomControls by right-clicking the website,
selecting Add Reference, choosing the Projects tab, and selecting MyCustomControls.
Alternatively, you could right-click the Toolbox and select Choose Items. You would then
browse and locate the MyCustomControls.dll assembly. Whichever approach you use,
the StateListControl should be displayed in the Toolbox when you have a webpage
open in the designer.

Note that if you chose the Add Reference option, you might have to rebuild the solution
to get the control to show in the Toolbox. You might also have to switch the page from
Source view to Design view.

	 3. Open the Default.aspx page. Delete the contents already inside the BodyContent
content control.

	 4. Drag a StateListControl from the Toolbox onto the page. This will register the control
with the page and add it to the markup.

	 5. Add a Button control and a Label control to the page to demonstrate adding to the
StateListControl, handling postback, and displaying the user’s selection. Your markup
inside the BodyContent for the page should look as follows:

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <cc1:StateListControl ID="StatListControl1" runat="server">
 </cc1:StateListControl>

 <asp:Button ID="ButtonSubmit" runat="server" Text="Submit" />

 <asp:Label ID="LabelSelected" runat="server" Text=""></asp:Label>

</asp:Content>

	 6. Switch to Design view for the page, and double-click the Submit button. This should
take you to the code-behind file for the page and generate an event handler for the
button’s click event. Add code to this event to render the selected text and value of
the StateListControl to the LabelSelected control.

 382	 ChAPTER 7	 Creating Custom Web Controls

	 7. Add a Page_Load event to the page (in C# it should already be there). Add code to this
event to add an item to the StateListControl if the request is not a postback.

The following shows what your code-behind file should look like.

Sample of Visual Basic Code

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Not IsPostBack Then
 StateListControl1.Items.Add(New ListItem("Michigan", "MI"))
 End If

 End Sub

 Protected Sub ButtonSubmit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonSubmit.Click

 LabelSelected.Text = StateListControl1.SelectedItem.Text & ", " _
 & StateListControl1.SelectedItem.Value

 End Sub

End Class

Sample of C# Code

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 StateListControl1.Items.Add(new ListItem("Michigan", "MI"));
 }
 }
 protected void ButtonSubmit_Click(object sender, EventArgs e)
 {
 LabelSelected.Text = StateListControl1.SelectedItem.Text + ", "
 + StateListControl1.SelectedItem.Value;
 }
}

	 8. Make sure the website is set as the startup project. (Right-click the project in Solution
Explorer and choose Set As StartUp Project.) Run the website. You should be able to test
the control in a browser. Figure 7-13 shows an example.

 Lesson 2: Creating Custom Web Server Controls ChAPTER 7 383

FigURE 7-13 The StateListControl running in a browser.

Lesson Summary
■ You can build a custom web control by inheriting from the WebControl class or through

inheriting directly from an existing ASP.NET control's class, if you want to extend the
features of that control.

■ You can create a composite web control when you need to base your control on multiple
ASP.NET controls. You do so by inheriting from the CompositeControl class.

■ You can add Toolbox support to your custom control to control the icon, the generated
markup, and the display of the control in the designer.

■ You can control how Visual Studio manages the properties of your control by using the
Category, Bindable, Description, DefaultValue, and Localizable attribute classes.

■ You can create a templated custom web server control to allow users to define the
layout of the control at design time.

■ You can register your controls for your entire website inside the Web.config file.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Creating Custom Web Server Controls.” The questions are also available on the companion
CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or incor-
rect are located in the “Answers” section at the end of the book.

 384	 ChAPTER 7	 Creating Custom Web Controls

	 1. You are creating a custom web server control that extends the features of the ASP.NET
Button control. Which steps should you take? (Choose all that apply.)

	 A. Ensure that your control inherits from the WebControl class and exposes the base
Button control as a property of the class.

	 B. Ensure that your control inherits directly from the Button control.

	 c. Override the Render method of your control and be sure to call base.Render (C#)
or MyBase.Render (Visual Basic).

	 D. Override the RenderChildren method of your control and be sure to call
base.RenderChildren (C#) or MyBase.RenderChildren (Visual Basic).

	 2. You want to define a custom image to be displayed in the Toolbox for your custom
web server control. Which actions do you take? (Choose all that apply.)

	 A. Set a reference to the System.Design namespace.

	 B. Set a reference to the System.Drawing namespace.

	 c. Add the ToolboxData attribute to the class.

	 D. Add the ToolboxBitmap attribute to the class.

	 3. You are going to create a custom web server control that inherits directly from the
WebControl class. Which method do you need to override to get your control to
display in the browser window?

	 A. OnInit

	 B. Finalize

	 c. ToString

	 D. Render

	 4. You are creating a composite control. You create a class that inherits from the
CompositeControl class. What method must be overridden so you can provide
code to instantiate the child controls and set their properties?

	 A. CreateChildControls

	 B. DataBindChildren

	 c. CreateControlStyle

	 D. BuildProfileTree

Case scenarios

In the following case scenarios, you apply what you’ve learned in this chapter. If you have
difficulty completing this work, review the material in this chapter before beginning the
next chapter. You can find answers to these questions in the “Answers” section at the end
of this book.

 Suggested Practices ChAPTER 7 385

Case Scenario 1: Sharing Controls Between Applications
You are a developer working for the Contoso corporation. You have reviewed the requirements
for a new website and realize that on multiple pages a user has to review, update, and enter the
same group of information. You propose grouping this functionality into a control for easier
use. When you do, an architect on the team indicates that the same functionally is actually
required by other websites in the corporation. You both agree that you should standardize
the layout and behavior of collecting this data.

Answer the following questions related to how you will develop the control.

	 1. What type of control should you create?

	 2. Based on your answer to question 1, why have you excluded other types of controls?

Case Scenario 2: Providing Layout Flexibility
You are a web developer at Contoso Ltd., a pharmaceutical company. As you are working on
an existing website, you notice that there are several areas in which customer information is
displayed throughout the site. After additional investigation, you notice that the customer
information needs to be rendered uniquely in many of the areas in which it is defined. You
want to provide a common control that can be used within this site to display this customer
information.

Answer the following questions related to how you will develop the control.

	 1. Should you create a custom web server control or a user control?

	 2. How should you lay out the control?

	 3. From what class should your control inherit?

suggested Practices

To successfully master the exam objectives presented in this chapter, complete the following
tasks.

Create a New User Control
For this task, you should complete both practices.

■ Practice 1 Consider a common feature of some of the sites you’ve developed. Take
that feature and create a user control. The user control should contain other ASP.NET
controls and expose them as properties. Practice adding the user control to several
webpages, and write code to access the properties of the user control.

■ Practice 2 Add one or more custom events to the user control. Subscribe to these
events from the hosting page.

 386	 ChAPTER 7	 Creating Custom Web Controls

Create a New Custom Web Server Control
For this task, you should complete Practice 1 to get an overview of creating controls that inherit
from WebControl. Practices 2 and 3 extend Practice 1 and help you develop additional skills.

■ Practice 1 Consider a feature that is common across different sites you’ve developed;
try to think of a feature that does not involve a specific, existing control. Use this feature
to develop a new custom web server control that inherits from the WebControl class.

■ Practice 2 Create a custom bitmap for the control you created in Practice 1. Add the
file to your project. Embed the bitmap as a resource to the project, and apply it to
the class. Compile the application and use it on a webpage. Be sure to add the
control to the Toolbox.

■ Practice 3 Return to your control. Add a custom designer layout to be displayed
when the control is in a certain state.

Create a New Composite Web Server Control
For this task, you should complete both practices.

■ Practice 1 Create a class library project that contains a new class that inherits from the
System.Web.UI.CompositeControl class. Implement code to add constituent controls to
your composite control and add properties to the composite control. Compile and add
the custom web control to the ToolBox.

■ Practice 2 Practice adding the composite control to several webpages, and write code
to access the composite control properties.

Create a New Templated Control
For this task, you should complete both practices.

■ Practice 1 Return to the LabeledTextbox control created earlier in this chapter. Convert
this control to a custom web server control with a layout that is based on templates.

■ Practice 2 Practice adding the templated control to several webpages and defining
different layouts.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you
can look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 8 387

C h A P T E R 8

Debugging and Deploying
A large part of the development process involves removing bugs and resolving other issues

 in your application. Microsoft Visual Studio and Microsoft ASP.NET provide several tools
to support these tasks. These tools allow you to set breakpoints in code, step through your
code by using the Integrated Development Environment (IDE), view variable values in watch
windows and DataTips, execute code in the command window, and more. These debugging
tools work for all the applications you create with Visual Studio, not just websites. Websites
do, however, present their own set of challenges. A website runs in a distributed environment
in which the network, database, and client are all running on separate processes. This can
make it difficult just to get debugging set up and to get the right troubleshooting information
from your application and its environment.

After you’ve developed and tested your application, it’s time to deploy it to a production
environment. In most real-world scenarios, deployment involves moving an application from
a staged area, where users have reviewed and tested its functionality, to one or more produc-
tion servers. The deployment process can be automated with tools and scripts, managed and
governed by IT departments, or deployed directly by developers through Visual Studio. The
method you will use to build, verify, and deploy your application really depends on your
scenarios, the type of application, and the environment.

This chapter explores how you debug, monitor, troubleshoot, and deploy websites. The
first lesson covers setting up debugging, creating custom error pages, debugging on a
remote server, and debugging client script. The second lesson is about troubleshooting
and monitoring a running ASP.NET site. The third lesson explores those tools and features
of Visual Studio that make deploying websites easier.

Exam objectives in this chapter:
■	 Configuring and Extending a Web Application

■ Debug a Web application.

■ Deploy a Web application.

Lessons in this chapter:
■	 Lesson 1: Debugging Websites 389
■	 Lesson 2: Troubleshooting Websites 402
■	 Lesson 3: Deploying Websites 418

 Contents

 ChAPTER 8 387

 Debugging and Deploying 387
Before You Begin . 388

Lesson 1: Debugging Websites . 389

Configuring ASP.NET for Debugging 389

Defining Custom Error Pages 392

Debugging Remotely 394

Debugging Client-Side Script 396

Lesson Summary 400

Lesson Review 401

Lesson 2: Troubleshooting Websites . 402

Implementing Tracing 402

Monitoring a Running Web Application 412

Lesson Summary 416

Lesson Review 416

Lesson 3: Deploying Websites . 418

Publishing Web Applications 419

Web Deployment Projects 425

Web Setup Projects 427

Deploying Web Applications by Using the Copy Web Tool 439

Precompiling and Publishing ASP.NET Websites 441

Installing ASP.NET 4 on IIS 442

Lesson Summary 446

Lesson Review 447

Case Scenarios .448

Case Scenario 1: Debugging 448

Case Scenario 2: Troubleshooting 448

Case Scenario 3: Deploying a Website 449

Suggested Practices . 449

Debug a Website 449

Troubleshoot a Website 450

Publish a Web Application 450

Use a Web Setup Project 450

Use the Copy Web Tool 451

Precompile and Publish a Web Application 451

Take a Practice Test . 451

 388	 ChAPTER 8	 Debugging and Deploying

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
with Visual Studio by using Microsoft Visual Basic or Microsoft Visual C#. In addition, you
should be comfortable with all of the following:

■ The Visual Studio 2010 IDE

■ Debugging Windows applications

■ Using Hypertext Markup Language (HTML) and client-side scripting

■ Creating ASP.NET websites and forms

real World

Tony Northrup

If you’re like me and you hate debugging, give this chapter extra attention. After
you learn how to use the ASP.NET and Visual Studio 2010 debugging tools, you’ll

be able to diagnose and fix bugs faster than ever.

I prefer to debug an ASP.NET website the same way I debug a traditional Windows
application. I run the website on my local computer, and I make use of breakpoints,
watch lists, and DataTips to examine the inner workings of the website. Those tech-
nologies are all discussed in the first lesson. I only resort to tracing, as discussed in
the second lesson, when a website is running on a remote server and I can’t set up a
remote debugger.

For more complex problems, I make use of troubleshooting tools that I don’t
describe in this book. Microsoft Network Monitor (or any sniffer) allows you to see
the communications sent between browsers and web servers. For troubleshooting
communications between the web server and the database, I use the Microsoft SQL
Server Profiler. For troubleshooting performance issues, I use Page Speed (available
at http://code.google.com/speed/page-speed/) when I can reproduce the problem
locally, and WebPagetest (available at http://webpagetest.org) when I need to
analyze requests sent across the Internet.

 Lesson 1: Debugging Websites ChAPTER 8 389

Lesson 1: Debugging Websites

Debugging websites is more complex than debugging Windows applications because web
requests are very short-lived, the client and server are typically running on different com-
puters, and client browsers have widely varying capabilities. In addition, the state that the
application uses is also distributed among database, web server, cache, session, cookie, and so
on. Fortunately, Visual Studio and ASP.NET have several tools that allow you to get debugging
information from your site during development.

This lesson covers the setup and configuration of the ASP.NET debugging features. Coverage
includes remote debugging and client-side script debugging.

Note sCOPE OF ChAPTER COnTEnT

This lesson covers the configuration and setup of debugging with ASP.NET and Visual Studio.
It does not cover the basics of using the Visual Studio debugger, such as how to set break-
points and how to view variables in watch windows. Rather, it focuses on managing the
debugging of an ASP.NET website.

After this lesson, you will be able to:
■	 Configure a website for debugging with Visual Studio.
■	 Set up remote debugging between a development machine and a server.
■	 Redirect users to a default error page or custom error pages based on Hypertext

Transfer Protocol (HTTP) status codes.
■	 Debug client-side script.

Estimated lesson time: 30 minutes

Configuring ASP.NET for Debugging
You can debug an ASP.NET application by using the standard features of the Visual Studio
debugger, such as breakpoints, watch windows, code step-through, and error information.
To do so, you must first configure ASP.NET for debugging. There are two areas where you set
this information: the project’s property page and the Web.config file.

 390	 ChAPTER 8	 Debugging and Deploying

Activating the ASP.NET Debugger
The first step is to configure the ASP.NET debugger settings in your project’s Property
Pages dialog box, including those that determine whether or not to allow Visual Studio
to run the debugger. When installed, Visual Studio enables ASP.NET debugging and
establishes default debugger settings. However, if you need to set or modify this setting,
you can do so by following these steps:

	 1. Right-click the website in Solution Explorer and then click Property Pages. This will
open the Property Pages dialog box for the website, as shown in Figure 8-1.

	 2. Select Start Options from the left side of the dialog box.

	 3. In the Debuggers section, at the bottom of the dialog box, select (or clear) the ASP.NET
check box to enable (or disable) the ASP.NET debugger for Visual Studio.

FigURE 8-1 The project Property Pages dialog box for an ASP.NET website.

Configuring Debugging
Assuming that you allow Visual Studio to run the ASP.NET debugger, the second step is
to enable debugging either for your entire site or on a page-by-page basis. Even though
ASP.NET debugging in general might be enabled from a Visual Studio perspective, individual
sites can disable debugging for security reasons. By default, websites that Visual Studio creates
individually disable the debugger for just this reason. Enabling debugging for your site will add
debug symbols into the compiled code. Visual Studio uses these symbols to provide debugging
support. However, this can slow the performance of your website. In addition, turning on
debugging will transmit error information to the web browser when you run the page outside
of Visual Studio. This can present a security risk, because error information provides potential
attackers with a lot of information about how your site works. For these reasons, you should
only turn debugging on during development.

 Lesson 1: Debugging Websites ChAPTER 8 391

You enable debugging for your entire site by editing a setting in the Web.config file. In
Web.config, you set the debug attribute of the compilation element to true. If you use Visual
Studio to start debugging, Visual Studio will prompt you to automatically enable this setting. The
following markup shows an example that includes the nesting level of the compilation element.

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.0"/>
 <system.web>
</configuration>

You might not always want to turn on debugging for your entire site. In these cases, you
can switch debugging on and off at the individual page level. This will ensure that only the
designated pages will be compiled with the debug symbols. The rest of the site will be compiled
without debugging. To enable page-level debugging, set the Debug attribute of the @ Page
directive (found at the top of the markup for an ASPX page). The following shows an example.

<%@ Page Debug="true" ... %>

After you have debugging enabled, you can use the many features of the Visual Studio
debugger. When you run your application, Visual Studio automatically attaches to the run-
ning ASP.NET web server process (unless you are developing remotely, which is discussed
later in this lesson). You can then set breakpoints in your code, step through line by line,
and view variable values in the watch window. In addition, if debugging is enabled, you
can get error information sent to the browser window even when you are not running
your application through Visual Studio.

New Debugging Features in Visual Studio 2010
This book assumes that you have some familiarity with the Visual Studio development
environment and does not explain the details of setting breakpoints and monitoring values.
It is assumed that you know that you can set a breakpoint to pause a running webpage at a
specific line and then examine the values of different variables.

In Visual Studio 2010, you can export and import a set of breakpoints by using the Debug
window. First, display the window by clicking the Debug menu, selecting Windows, and then
selecting Breakpoints. On the Breakpoints toolbar, click the Export button to save the current
set of breakpoints to a file. Later, use the Import button to read them back in. This allows you
to quickly set up debugging for a recurring problem.

While debugging, you can point to a variable to view its current value in a DataTip. With
Visual Studio 2010, you can click the pushpin icon on the DataTip, as shown in Figure 8-2. The
value will then always appear in the debugger, and you can add comments that you can view
later. After you stop debugging, Visual Studio displays a pushpin icon in the left margin. Point
to the pushpin to view the DataTip’s value from the last debugging session. You can import
and export pinned DataTips by using the Debug menu.

 392	 ChAPTER 8	 Debugging and Deploying

FigURE 8-2 Pinning a value in Visual Studio 2010.

There are many other useful debugging improvements. For detailed information, see
“VS 2010 Debugger Improvements” at http://weblogs.asp.net/scottgu/archive/2010/04/21
/vs-2010-debugger-improvements-breakpoints-datatips-import-export.aspx.

Defining Custom Error Pages
In your production environment, it is likely that you do not want to show users the default
ASP.NET error page if your site breaks. This holds true for the default Internet Information
Services (IIS) error pages as well. Rather, you most likely want users to see a page that tells
them how to contact support to resolve the problem. You can also configure your site to
display a generic error page if users encounter an unhandled error. You can set this page
at the site level. You can also set individual pages for specific error types.

Configuring a Custom Site-Level Error Page
You configure custom errors inside the Web.config file by using the <customErrors> element
nested inside <system.web>. This element has the mode and defaultRedirect attributes. The
mode attribute can be set to on to turn custom errors on, off to turn them off, or RemoteOnly
to turn custom errors on for remote clients only. With RemoteOnly, if the user (typically an
administrator) is on the server, he or she will not get the custom error, but instead will get
the real error message.

The defaultRedirect attribute is used to indicate the path to a default error page. This
page will be displayed when an unhandled exception occurs on the site. The only time
this will not happen is when a specific custom error page is added to the <error> child
elements of <customErrors> (as discussed in the next section). The following example
shows markup for a custom error definition inside Web.config.

<configuration>
 <system.web>
 <customErrors defaultRedirect="SiteErrorPage.aspx" mode="RemoteOnly">
 </customErrors>
 <system.web>
</configuration>

Notice that in this markup, the page is set to an ASPX page. You can set this to an HTM
page, an ASPX page, or another resource to which the web server can redirect.

 Lesson 1: Debugging Websites ChAPTER 8 393

On redirection, the server passes the path of the page that caused the error. This path is
provided as part of the query string by using the named parameter aspxErrorPath; you can use
this information to track errors on your site. For example, the following shows the browser’s URL
when the SiteErrorPage.aspx page is displayed based on an error thrown on Default.aspx:

http://localhost/examples/SiteErrorPage.aspx?aspxerrorpath=/examples/Default.aspx

Configuring Error-Specific Error Pages
It is also possible to define specific pages for various HTTP status codes. This allows you to
provide more specific information to users when a configured status code is returned. For
example, if users do not have access to a requested page or resource, their request results
in an HTTP 403 return code. This status code indicates that they are denied access to the
resource. You can then write a custom page that explains the process for requesting access
to the page. Use the <error> element to redirect to that custom page. The following markup
shows an example.

<configuration>
 <system.web>
 <customErrors defaultRedirect="SiteErrorPage.aspx" mode="RemoteOnly">
 <error statusCode="403" redirect="RestrictedAccess.aspx" />
 </customErrors>
 <system.web>
</configuration>

There are many HTTP status codes. Errors fall in the range from 400 to 600. Codes with
numbers 400 to 499 are reserved for request errors and codes 500 to 599 are set aside for
server errors. Table 8-1 lists some common HTTP status codes for errors. For a complete list,
see http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.

TAbLE 8-1 Common HTTP Status Codes

CODE DEsCRiPTiOn

400 The request is not understood (unintelligible).

403 The user does not have access to the requested resource.

404 The file is not found at the requested URL.

405 The request method is not supported.

406 The requested Multipurpose Internet Mail Extensions (MIME) type is not accepted.

408 The request has timed out.

500 An internal server error has occurred.

503 The capacity of the server has been reached.

 394	 ChAPTER 8	 Debugging and Deploying

More INfo iis 7 hTTP sTATUs CODEs

The HTTP status codes in IIS 7 have been extended to provide some additional information—
they now include decimal point values. For example, the 403 code indicating that access
is forbidden includes 403.1 to 403.19, to provide details on why access was forbidden. For
more information, see “The HTTP status codes in IIS 7.0” (which also applies to IIS 7.5) in
the MSDN Knowledge Base at http://support.microsoft.com/kb/943891.

Debugging Remotely
In most scenarios, you debug a website by running it locally on your development machine. This
puts the client browser, the development environment (Visual Studio), and the web server on a
single machine. In this case, Visual Studio automatically connects to the running site’s process
and allows you to debug your website. However, there might be occasions when you need
to debug an issue against a remote server—when an error appears after a website has been
deployed to the production environment, for example. In these scenarios, you will need to
enable remote debugging.

Some of the details of enabling remote debugging are specific to the environment.
There are slight modifications to the process depending on your domain, credentials,
and the operating systems in use by the developer and the server. However, the process
of enabling remote debugging is made easier with the Visual Studio Remote Debugging
Monitor (msvsmon.exe). You run this tool on the server you intend to debug. The tool can
be found inside your 32-bit development environment installation folder (for example,
Program Files\Microsoft Visual Studio 10.0\Common7\IDE\Remote Debugger\). If you have
installed a 64-bit version of Visual Studio, it will be installed within the Program Files (x86)
folder. You can copy the file to a file share or over to the server. You can also install the tool
from the Visual Studio DVD set.

When you run the tool, it first determines whether Windows Firewall is configured to allow
remote debugging, and prompts you to open the remote debugging port if necessary. You can
find a detailed walkthrough of manual configuration of the firewall in the MSDN documenta-
tion (see “How to: Manually Configure the Windows Vista Firewall for Remote Debugging,” at
http://msdn.microsoft.com/library/bb385831.aspx). When it is running, the remote debugger
(as shown in Figure 8-3) displays debugging events.

FigURE 8-3 The Remote Debugging Monitor user interface.

 Lesson 1: Debugging Websites ChAPTER 8 395

You can use the Remote Debugging Monitor tool to set remote debugging security options
on the server. To do so, from the Tools menu, select Options. This opens the Options dialog
box, as shown in Figure 8-4. Here you set the server name to a user and a server. Each instance
of the remote debugger running on a server has a unique server name. You typically run an
instance of the remote debugger for each developer who is doing remote debugging on the
server. The Options dialog box also allows you to set the user authentication mode and per-
missions. Typically this is set to Windows Authentication. You then give the appropriate user
in the Active Directory repository access rights to remotely debug.

FigURE 8-4 The Options dialog box for the Remote Debugging Monitor.

You begin a remote debugging session by opening Visual Studio and a solution that
includes the code you intend to debug. You can then attach to the server that is running
the Remote Debugging Monitor application by selecting Attach To Process from the Debug
menu. This opens the Attach To Process dialog box shown in Figure 8-5.

FigURE 8-5 The Attach To Process dialog box in Visual Studio.

 396	 ChAPTER 8	 Debugging and Deploying

In this dialog box, you set the qualifier to the name of the server running the Remote
Debugging Monitor. Recall that this is the server name you set in the Options dialog box
for the Remote Debugging Monitor and typically is defined as User@Server. You will then
see a list of running processes on the server. Select the ASP.NET web server process, and
click Attach to start remote debugging. You can then access the server through a browser
to cause a breakpoint to fire or an error to occur. Doing so will send you into debug mode
in Visual Studio.

exaM tIp

For the exam, and for real life, know how to configure ASP.NET debugging for a remote
Web server running IIS. Be sure you understand the permissions you need and how to
attach to a remote process.

For information on debugging an ASP.NET application running on a Server Core installation
of Windows Server 2008 R2, see “How to Get Started with ASP.NET Applications on Server Core”
at http://code.msdn.microsoft.com/R2CoreASPNET.

Debugging Client-Side Script
Visual Studio also allows you to debug client script running in a browser. This is useful if you
write a lot of JavaScript and need to walk through the code line by line and use the other
features of the debugging toolset.

To get started, you need to enable script debugging support in the browser. To do so,
open Windows Internet Explorer and select Tools | Internet Options. Click the Advanced tab
of the Internet Options dialog box, as shown in Figure 8-6. Find the Browsing node in the
Settings tree and clear the Disable Script Debugging (Internet Explorer) check box.

You can then begin debugging client script. You can get started by setting a breakpoint in
your client script and running the site through Visual Studio. You can also manually attach to
code running in a browser. You do this by first opening the source code in Visual Studio and
then using the Attach To Process dialog box discussed in the previous section to attach to the
browser’s process. Any error will give you the option to debug.

Note DEbUgging AjAX

For more information on debugging client script that uses the Microsoft Asynchronous
JavaScript and XML (AJAX) Library, see “Tracing AJAX Applications” in Lesson 2 of this
chapter.

 Lesson 1: Debugging Websites ChAPTER 8 397

FigURE 8-6 Using the Internet Options dialog box to enable script debugging for Internet Explorer.

Quick Check
	 1. In which dialog box do you enable the ASP.NET debugger for a project?

	 2. What is the name of the element in the Web.config file that you use to define
the debug attribute to turn on debugging for your site?

Quick Check Answers
	 1. You can enable the ASP.NET debugger from your project’s Property Pages

dialog box.

	 2. You can turn on debugging by using the debug attribute of the compilation
element.

 398	 ChAPTER 8	 Debugging and Deploying

PrActIcE	 Configuring Debugging in AsP.nET

In this practice, you configure a website to support debugging and custom error pages. You
also set up Internet Explorer to support script debugging.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Configuring a Website for Debugging

In this exercise, you create a website and configure it for debugging.

	 1. Open Visual Studio. Create a new, file-based website.

	 2. Open the Web.config file and navigate to the compilation node. Change the default
<compilation debug /> setting from false to true.

	 3. Create a new web form named Default2.aspx without a master page. Inside the
Page.Load event handler (which you will need to add if you are using Visual Basic),
throw an exception. The following code shows an example.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Throw New ApplicationException("Example exception.")

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 throw new ApplicationException("Example exception.");
}

	 4. Run the Default2.aspx page in a browser by right-clicking the page in Solution
Explorer and choosing View In Browser. This displays the debugging error infor-
mation, as shown in the example in Figure 8-7.

 Lesson 1: Debugging Websites ChAPTER 8 399

FigURE 8-7 The ASP.NET debugging error information in a web browser.

ExErcIsE	2	 Adding a Custom Error Page

In this exercise, you create a custom error page and configure your site to redirect to it for a
specific HTTP status code.

	 1. Open the project you created in the previous exercise. Alternatively, you can open the
completed Lesson 1, Exercise 1 project in the samples installed from the CD.

	 2. Add a new web form to the site. Name this form ResourcenotFound.aspx. Add text
to the body of this page to display a custom error message to users when they try to
access a resource that is not on the web server. You can use the aspxerrorpath query
string parameter to display the path of the requested resource in the message.

	 3. Open the Web.config file again. Add the customErrors section and turn on custom
errors. Add an error element for HTTP status code 404 (resource not found). The
following markup shows an example.

<customErrors mode="On">
 <error statusCode="404" redirect="ResourceNotFound.aspx" />
</customErrors>

 400	 ChAPTER 8	 Debugging and Deploying

	 4. View Default.aspx in a browser again. Notice that the debugging error message is no
longer shown. This is because the on setting in the customErrors node indicates that the
site should only display custom errors. Next, change the URL in your browser to request
fakepage.aspx (which should not exist in your site). This will redirect the browser to the
ResourceNotFound.aspx page.

ExErcIsE	3	 Enabling Script Debugging

In this exercise, you enable client script debugging for a website.

	 1. Open the project you created in the previous exercise. Alternatively, you can open the
completed Lesson 1, Exercise 2 project in the samples installed from the CD.

	 2. Add a new web form to your site. Name the page scriptDebug.aspx.

	 3. Add a JavaScript function to the markup. This can be a simple script, as follows.

<script language="javascript" type="text/jscript">
 function buttonClick() {
 alert('Button clicked.');
 }
</script>

	 4. Add an HTML button to the page. Set the OnClick event to call the JavaScript function,
as follows.

<input id="Button1" type="button" value="button" onclick="buttonClick()" />

	 5. Open Internet Explorer and select Tools | Internet Options. Click the Advanced tab and
clear the Disable Script Debugging (Internet Explorer) check box. If Internet Explorer
is not currently your default browser, configure it as the default to allow client script
debugging from Visual Studio. To make it the default browser, click the Make Default
button on the Programs tab. Click OK.

	 6. Return to Visual Studio. Set a breakpoint on the buttonClick function in the markup.
You can do so by clicking the margin area in the code editor (on the left side).

	 7. Run the application from Visual Studio by choosing Start Debugging from the Debug
menu (or by simply pressing F5). Navigate to the ScriptDebug.aspx page. Click the button
to break into the script debugger.

Lesson Summary
■ You turn on debugging for your website in the Web.config file by setting the debug

attribute of the compilation element to true. You can also turn on debugging at the
individual page level by using the Debug attribute of the @ Page directive.

■ You can set a custom error page for your entire site by setting the defaultRedirect
attribute of the customErrors element. You can also map specific pages to HTTP
status codes by using the errors child element.

 Lesson 1: Debugging Websites ChAPTER 8 401

■ The Remote Debugging Monitor (msvsmon.exe) allows you to configure debugging
on a remote server. After it is configured, you need to attach to your site’s ASP.NET
process from Visual Studio.

■ You can set an option in Internet Explorer to allow you to debug client script from
Visual Studio. This allows you to use the debugging features of Visual Studio with
client-side JavaScript.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Debugging Websites.” The questions are also available on the companion CD as a practice
test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You are debugging an application on a test server. You have an issue on a particular
page and need to get the error details. You do not want to turn on debugging for the
entire site. What actions should you take? (Choose all that apply.)

	 A. In the Web.config file, set the debug attribute of the compilation element to true.
	 B. In the Web.config file, set the debug attribute of the compilation element to false.
	 c. On the page that throws the error, set the debug attribute of the @ Page directive

to true.
	 D. On the page that throws the error, set the debug attribute of the @ Page directive

to false.

 2. You are deploying your application to a production environment. You want to redirect
users to a default error page if they encounter any unhandled exceptions or HTTP errors
within the site. You also want to indicate the user’s requested resource on the error page
to help with support calls. What actions should you take? (Choose all that apply.)

	 A. Set the redirect attribute of the error element to an error page within your site.
	 B. Set the defaultRedirect attribute of the customErrors element to an error page

within your site.
	 c. Use the statusCode query string parameter to retrieve the requested resource to

display on the error page.
	 D. Use the aspxerrorpath query string parameter to retrieve the requested resource

to display on the error page.

 402	 ChAPTER 8	 Debugging and Deploying

	 3. You are investigating an error that only occurs when the application is deployed to the
development or test server. You need to debug this error remotely. What actions should
you take? (Choose all that apply.)

	 A. Run the Remote Debugging Monitor (Msvsmon.exe) on the development computer
that is doing the debugging. Use the tool to define connection rights to the server
you want to debug.

	 B. Run the Remote Debugging Monitor (Msvsmon.exe) on the server you want to debug.
Use the tool to define connection rights for the developer doing the debugging.

	 c. In Visual Studio, use the Attach To Process dialog box to attach to the ASP.NET
process on the server you want to debug.

	 D. In Visual Studio, use the Attach To Process dialog box to attach to the browser
process that is running the application you want to debug.

Lesson 2: Troubleshooting Websites

Not all issues can be found by using Visual Studio. Therefore, ASP.NET provides tools with which
you can trace and monitor your code as it executes in a test or production environment. These
facilities of ASP.NET can be used to troubleshoot and diagnose problems that might otherwise
prove impossible to recreate. In addition, these features allow you to examine statistics and
usage on your website.

This lesson first covers enabling and configuring tracing in ASP.NET. It then explores how
you can monitor a running website.

After this lesson, you will be able to:
■	 Enable and configure ASP.NET tracing.
■	 Understand the data that is available through ASP.NET tracing.
■	 Work with monitoring tools to evaluate a running ASP.NET site.

Estimated lesson time: 20 minutes

Implementing Tracing
Tracing is the process of emitting data about a running application. In ASP.NET, this data
is logged to a trace log file that you can access through a web browser. The data provides
important information about your site, such as who accessed the site, what the results were,
what the HTTP data looked like, and much more. You can also inject your own tracing calls
into your code. This data will be emitted alongside the ASP.NET data.

You enable tracing through the Web.config file. You can edit this file manually, or you can
use the ASP.NET Web Site Administration Tool (WSAT) to provide an administrator-friendly
interface to enable and configure tracing.

 Lesson 2: Troubleshooting Websites ChAPTER 8 403

Enabling Tracing by Using the WSAT
The following steps show how to enable and configure the trace facility by using the WSAT:

	 1. Open the WSAT by selecting Website | ASP.NET Configuration from the Visual
Studio menu.

	 2. On the home page, click the Application tab of the WSAT. This will bring up settings
for your application.

	 3. On the Application tab, click Configure Debugging And Tracing (in the lower-right
corner). This will display the configuration options for debugging and tracing, as
shown in Figure 8-8.

FigURE 8-8 The debugging and tracing options in the WSAT.

	 4. Select the Capture Tracing Information check box. This enables the tracing features to
be changed as necessary.

 404	 ChAPTER 8	 Debugging and Deploying

As you can see from Figure 8-8, there are many options you can configure with respect
to tracing. These options also map to Web.config settings (because that is what the WSAT
administers). Table 8-2 describes each of the options, from the perspective of both the
WSAT and Web.config.

TAbLE 8-2 ASP.NET Trace Settings

WsAT sETTing
WEb.COnFig
sETTing DEsCRiPTiOn

Capture Tracing
Information

enabled Enables tracing for your application. When this is
set to true, the other trace options are also made
available.

Display Tracing
Information On
Individual Pages

pageOutput Displays the trace information directly on the web-
page that is being traced. Depending on the page
content, the trace information displays either at
the bottom of the webpage or behind the regular
webpage content.

Display Trace
Output For

localOnly Designates whether you intend to display tracing
just for local requests or for all requests. When set
to Local Requests Only, the trace facility operates
only with requests from the computer on which
the web server is running. The All Requests setting
enables tracing for all requests from any computer
to the website.

Select The Sort
Order For Trace
Results

traceMode Enables sorting of the trace output either by time
or by category.

Number Of Trace
Requests To Cache

requestLimit Sets the number of records to hold in the cache
(or trace log).

Select Which Trace
Results To Cache

mostRecent Designates whether to store the most recent trace
result or the oldest trace results. When set to Most
Recent Trace Results, the cache continues to update,
holding only the latest results. When set to Oldest
Trace Results, as soon as the number of requests
has been met, the cache no longer updates until
after the website is restarted or the log is cleared.

 Lesson 2: Troubleshooting Websites ChAPTER 8 405

Enabling Tracing by Using the Web.config File
You can enable tracing manually by editing the Web.config file of an ASP.NET site. You
do so by editing attributes (as listed in Table 8-2 in the previous section) of the <trace>
element. This element is nested under <configuration><system.web>. The following
markup shows an example.

<configuration>
 <system.web>
 <trace enabled="true"
 requestLimit="100"
 pageOutput="false"
 traceMode="SortByTime"
 localOnly="false"
 mostRecent="true" />
 <system.web>
</configuration>

In the preceding markup, tracing is enabled (enabled="true") for all requests to the server
(localOnly="false"). The trace log will cache the most recent 100 requests (requestLimit="100"
and mostRecent="true"). The trace log will be sorted by time (raceMode="SortByTime").
The data will only be viewable through the trace log and not on each individual page
(pageOutput="false").

Enabling Tracing at the Page Level
You can also enable tracing for specific pages only. This is useful if you do not want to turn
on tracing at the site level, but instead enable it only on a page that you are troubleshooting.
You enable tracing at the page level by setting the trace attribute of the @ Page directive to
true. This attribute is found at the top of the page’s markup. The following shows an example.

<@Page trace="true" ... />

Viewing Trace Data
After ASP.NET trace data has been configured and turned on, you can view the data on each
webpage (Trace="true") or view the trace output by navigating to the Trace.axd page on the
current website (http://server/application/trace.axd). When viewed on the same page, the
trace information is appended to the bottom of the page (for pages that use flow layout).
Figure 8-9 shows an example.

 406	 ChAPTER 8	 Debugging and Deploying

FigURE 8-9 Trace information displayed on an ASP.NET page.

To view your entire log, you navigate to the Trace.axd page for your site. This page
will show a log event if pageOutput is set to true. The first page of the log is a summary
page. This page contains a list of trace results that are in the cache. Figure 8-10 shows an
example.

 Lesson 2: Troubleshooting Websites ChAPTER 8 407

FigURE 8-10 The Trace.axd page.

You can click one of the cached results to view the details of the trace record for a single
page request. These details are similar to the information that is shown on each webpage (as
shown previously, in Figure 8-9).

SeCurIty alert

If you opt to display the trace information on individual pages, the trace information can be
displayed on any browser that makes a request. This is a potential security threat, because
sensitive information such as server variables will be displayed. Be sure to disable page tracing
on production web servers.

The trace result page is separated into sections, as described in Table 8-3. The information
in these sections can be very useful when you are trying to identify performance issues and
resource usage.

 408	 ChAPTER 8	 Debugging and Deploying

TAbLE 8-3 Trace Result Sections

TRACE REsULT
sECTiOn DEsCRiPTiOn

Request Details Provides general details about the page request.

Trace Information Displays performance information related to the webpage’s life-
cycle events. The From First(s) column displays the running time
from when the page request started. The From Last(s) column
shows the time elapsed since the previous event.

Control Tree Displays information about each control on the webpage, such as
the size of the rendered controls.

Session State Displays all session variables and their values.

Application State Displays all application variables and their states.

Request Cookies
Collection

Displays the list of cookies that are passed to the server as part of
the request.

Response Cookies
Collection

Displays the list of cookies that are passed to the browser as part of
the response.

Headers Collection Displays the list of HTTP headers that are sent to the web server as
part of the request.

Form Collection Displays the list of values that are posted back to the web server.

QueryString
Collection

Displays the list of values that are included in the query string.

Server Variables Displays all server variables.

Emitting Custom Trace Data
You can use the Trace class in the System.Diagnostics namespace to add your own trace messages
to the data that is displayed by ASP.NET tracing. This class is exposed as a member of the Page
object. This allows you to call Page.Trace (or just Trace). You use the Write method of this object to
write a message to the trace log. When doing so, you can provide a category and the message.

The following shows an example of writing to the trace log. Here a message is added to the
log when the page is loaded and when a user clicks the button on the page. The category of
the message is set to Custom Category. This category allows you to find your message easily.
Custom messages are embedded in the Trace Information section of the trace details.

 Lesson 2: Troubleshooting Websites ChAPTER 8 409

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Trace.Write("Custom Category", "Page_Load called")

End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Trace.Write("Custom Category", "Button1_Click called")

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 Trace.Write("Custom Category", "Page_Load called");
}

protected void Button1_Click(object sender, EventArgs e)
{
 Trace.Write("Custom Category", "Button1_Click called");
}

Tracing AJAX Applications
Debugging an AJAX application presents its own issues. You do not have a server process on
which to rely. Instead, you have to try to debug the code as it executes in the browser. In the
previous section, you saw how to do this. However, AJAX-enabled applications tend to have a
lot of client code, so they might present more issues when they are being debugged. For this
reason, the Microsoft AJAX Library provides the Sys.Debug client-side namespace.

The tracing you enable on the server is not fired for AJAX partial-page requests. Therefore,
you will see nothing in the Trace.axd log for these types of requests. Instead, you must use the
features of Sys.Debug to write out trace messages. The Debug class includes the assert, trace,
clearTrace, traceDump, and fail methods. These methods can be used to display and manage
messages to a trace log based on your needs.

As an example, suppose you write out a message by using Sys.Debug.trace. Of course, your
page must include the Microsoft AJAX Library JavaScript file. You make this happen by adding a
ScriptManager control to your page. (See Chapter 9, “Working with Client-Side Scripting, AJAX,
and jQuery,” for more details on working with AJAX.) The following markup shows part of an
ASPX page that includes a ScriptManager control and a JavaScript function named button1_
onclick. When this function is fired (when the user clicks button1), the trace method is called.

 410	 ChAPTER 8	 Debugging and Deploying

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>AJAX Trace Example</title>

 <script language="javascript" type="text/javascript">
 function button1_onclick() {
 Sys.Debug.trace("Button1 clicked");
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>

 <input id="Button1" type="button" value="button"
 onclick="button1_onclick()" />

 </div>
 </form>
</body>
</html>

real World

Tony Northrup

V isual Studio 2010 is definitely the best tool for writing and debugging ASP.NET
code. When it comes to debugging complex problems in client-side JavaScript,

however, you can do better. Visual Studio almost always gives you broad errors that
make it difficult to isolate the real problem, and it often highlights code within a
library, rather than in your JavaScript.

The most efficient tool I’ve found for debugging JavaScript is the free Firebug plug-in
for the Firefox browser. It provides excellent warnings about inconsistencies in your
code (such as a missing quote or bracket), and it gives genuinely useful feedback
about problems.

You can view the trace messages displayed by the Microsoft AJAX Library in the Visual
Studio Output window. This works if you are using Internet Explorer and Visual Studio, and
if you are debugging on the same machine on which the website is running. However, you
can also create a TextArea control on the page that includes your JavaScript. If you set the
TextArea control’s ID to TraceConsole. this tells the Microsoft AJAX Library to display its trace
messages to this TextArea for you to view. If the browser you are using for debugging has

 Lesson 2: Troubleshooting Websites ChAPTER 8 411

a debugging console (as the Apple Safari and Opera browsers do), that console can also be
used to view the trace messages. Figure 8-11 shows the result of the preceding markup as
displayed to the Visual Studio Output window (at the bottom of the screen).

FigURE 8-11 The Sys.Debug.trace message in the Output window.

Quick Check
	 1. How can you make trace data display on your webpage?

	 2. What is the name of the virtual page that you can request to view trace data
when the trace data is not displayed on its corresponding webpage?

Quick Check Answers
	 1. Set Trace="true".

	 2. The virtual page is called Trace.axd.

 412	 ChAPTER 8	 Debugging and Deploying

Monitoring a Running Web Application
Tracing provides diagnostic information about a page. This can be very useful for trouble-
shooting problems with pages in a test environment. However, you often need information
about the overall health of your application. You should be able to monitor the application and
be notified of various events such as error conditions, security issues, and request failures. You
can do so by using the features of ASP.NET health monitoring.

ASP.NET health monitoring provides a set of classes in the System.Web.Management
namespace for tracking the health of your application. You can use these classes to create
your own events and your own custom event listeners (and viewers). You can also use the
default features exposed by these classes to monitor most aspects of any running website.
This section focuses on the latter option.

The Health Monitoring Classes
The health monitoring system works by raising and logging ASP.NET events based on your
configuration. You enable these events based on what you want to monitor with respect to
your application’s performance and health. The monitoring occurs in a deployed environ-
ment. You can use the features of health monitoring to receive email messages about
important activities, log information to the event log, and log information to SQL Server.

The first step in health monitoring is to determine which events to listen for. These events
are defined as classes. The classes are based on a class hierarchy that defines the data that is
logged with the event. For example, a web health monitoring event class might contain infor-
mation about the process that is executing your code, the HTTP request, the HTTP response,
and error conditions.

You can also use the base web event classes in the System.Web.Management namespace
to write your own web events for health monitoring purposes. Table 8-4 lists the key web
event classes and their basic use.

TAbLE 8-4 The Web Event Classes in ASP.NET

CLAss nAmE DEsCRiPTiOn

WebBaseEvent The base class for creating your own web events

WebManagement-
Event

The base class for creating web events that contain application
process information

WebHeartbeatEvent Serves as a periodic event that raises information about your
application at set intervals

WebRequestEvent The base class that contains web request information

WebApplication-
LifetimeEvent

Raised when a significant application event occurs, such as
application start or shutdown

WebBaseErrorEvent The base class for creating error-based events

WebErrorEvent Used to provide information about an error when it occurs in
your application

 Lesson 2: Troubleshooting Websites ChAPTER 8 413

CLAss nAmE DEsCRiPTiOn

WebRequestErrorEvent Contains request data for request errors

WebAuditEvent The base class for creating audit (security) events

WebSuccessAuditEvent Raised when a successful security operation occurs for your
application

WebAuthentication-
SuccessAuditEvent

Used to provide information when a successful user authentication
occurs on the site

WebFailureAuditEvent Raised when a failed security operation occurs

WebAuthentication-
FailureAuditEvent

Used to provide information when a failed attempt at user
authentication occurs on the site

WebViewStateFailure-
AuditEvent

Raised when the view state fails to load (typically as a result of
tampering)

When you know which events to listen for, the second step is to enable a listener (or log). The
ASP.NET health monitoring system defines a set of providers (or listeners) that are used to col-
lect the web event information. These listeners consume the web health events and typically
log the event details. You can use the default listeners or write your own by extending the
existing WebEventProvider class. The default providers include EventLogWebEventProvider,
WmiWebEventProvider, and SqlWebEventProvider. You configure web events and web pro-
viders in ASP.NET configuration files, which are discussed next.

Configuring Health Monitoring
To configure health monitoring, you turn on web events and connect them to listeners
in the Web.config file. You do so by configuring the <healthMonitoring> element of the
<system.web> section of the Web.config file. The <healthMonitoring> element contains
the enabled attribute, which you set to true to enable health monitoring. It also contains the
heartbeatInterval attribute, which you can set to the number of seconds to wait between
raising the WebHeartbeatEvent events. The individual events themselves also contain the
minInterval attribute, which works in a similar fashion.

The process of configuring a web event and provider is as follows:

	 1. Add an eventMappings child element to healthMonitoring. You use the add element
to add the web event class you want to use.

	 2. Add a providers child element to healthMonitoring. This indicates your health monitoring
listener(s).

	 3. Finally, add a rules element to healthMonitoring. You use the add child element of rules
to indicate an association between a registered web event and a registered listener.

Fortunately, you do not need to register the default web events and providers. These are
already registered for you by the overall configuration file on your server. Therefore, you need
only add rules to your Web.config file to turn these events on. As an example, the following

 414	 ChAPTER 8	 Debugging and Deploying

configuration turns on the heartbeat and application lifetime events. These events are written
to the EventLogProvider.

<configuration>
 <system.web>
 <healthMonitoring enabled="true" heartbeatInterval="1">

 <rules>
 <add name="Heart Beat"
 eventName="Heartbeats"
 provider="EventLogProvider"
 profile="Default"/>
 <add name="App Lifetime"
 eventName="Application Lifetime Events"
 provider="EventLogProvider"
 profile="Default"
 minInstances="1" minInterval=""
 maxLimit="Infinite"/>
 </rules>

 </healthMonitoring>
 <system.web>
<configuration>

Notice that this configuration requires you to know the configured name of the event class
and the provider. You can look up these names in your root configuration file. You can also find
them on MSDN in the “healthMonitoring Element (ASP.NET Settings Schema)” article. The default
configuration markup is listed there.

Figure 8-12 shows a logged event in Event Viewer. Notice that this event fired when the
application unexpectedly shut down. This was the result of the firing of the application lifetime
event (WebApplicationLifetimeEvent).

FigURE 8-12 The web event data displayed in the Event Viewer.

 Lesson 2: Troubleshooting Websites ChAPTER 8 415

PrActIcE	 Using the AsP.nET Trace Facility

In this practice, you create a basic website and enable ASP.NET tracing. You then execute the
site and view the trace details both at the page level and by using the ASP.NET trace listener.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Enabling ASP.NET Tracing

In this exercise, you work with ASP.NET tracing to view details about a running page in your site.

	 1. Open Visual Studio. Create a new, file-based website called TracingCode.

	 2. Open the WSAT from the Visual Studio menu by selecting Website | ASP.NET Configuration.

	 3. Click the Application tab to display the application settings. Click Configure Debugging
And Tracing.

	 4. Select the Capture Tracing Information check box. This enables tracing for your site.
Make the following additional changes on this page:
■ Ensure that the Display Tracing Information On Individual Pages check box is cleared.
■ Set the Display Trace Output For option to Local Requests Only.
■ Set the Select The Sort Order For Trace Results option to By Time.
■ Set Number Of Trace Requests To Cache to 50.
■ Set the Select Which Trace Results To Cache option to Most Recent Trace Results.
■ Close the WSAT when finished.

	 5. Open the Web.config file. Navigate to the trace element. The trace element should
look as follows (notice that the defaults are not listed; only the items that had to be
overridden must be specified).

<trace
 enabled="true"
 mostRecent="true"
 requestLimit="50" />

	 6. Run the website. Refresh the webpage a few times to write more results to the trace log.

	 7. In the Address bar of the browser, change the URL to access Trace.axd for the site. This
will bring up the trace log. You should see an entry for each time you requested the page.
Click one of the View Details links to open a record. Notice that the Trace Information sec-
tion contains the timings for the events in the webpage life cycle. Close the web browser.

	 8. Open Default.aspx in Visual Studio. Add the Trace="true" attribute to the @ Page directive
at the top of the page. Run the site again; notice that the page now includes the trace
information written out. Close the web browser.

 416	 ChAPTER 8	 Debugging and Deploying

	 9. Open the code-behind file for Default.aspx in Visual Studio. Add an event handler for
the Page_Load event, the handler for which will already exist in the code-behind file if
you are using C#. In the event handler, use Page.Trace to write out a tracing message.
Your code should look as follows.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Trace.Write("Custom Category", "Page.Load called")

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 Trace.Write("Custom Category", "Page.Load called");
}

	 10. Run the application again. Notice your custom tracing message in the Trace Information
section of the page’s trace output.

Lesson Summary
■ You can use ASP.NET tracing to troubleshoot and diagnose problems with a page in your

website. It displays information about the request, the response, and the environment.

■ You can use the trace method to display custom trace messages to the trace log.

■ An AJAX-enabled page can use the client-side Sys.Debug.trace method to render
tracing information to a webpage (by using a TextArea control), to the Visual Studio
Output window, or to a browser’s debug console.

■ ASP.NET provides health monitoring tools (which you’ll find in the System.Web.
Management namespace) to enable you to monitor a running website. You can con-
figure web events with listeners by using rule child elements of the <healthMonitoring>
element inside Web.config.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Troubleshooting Websites.” The questions are also available on the companion CD as a
practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

 Lesson 2: Troubleshooting Websites ChAPTER 8 417

	 1. You want to identify which event in the webpage life cycle takes the longest time to
execute. How can you accomplish this?

	 A. Turn on ASP.NET tracing and run the website. After that, review the trace results.

	 B. To each of the life-cycle events, add a line of code that will print the current time.

	 c. In the Web.config file, add the monitorTimings attribute and set it to true.

	 D. In the website properties, turn on the performance monitor and run the website.
After that, open the performance monitor to see the timings.

	 2. You want to run a trace continuously to enable you to quickly look at the 10 most recent
traces from anyone using your website, but you are concerned about filling your hard
drive with excessive data. Which of the following settings will accomplish your objective?

	 A. <trace

 enabled="false"

 requestLimit="10"

 pageOutput="false"

 traceMode="SortByTime"

 localOnly="true"

 mostRecent="true"

/>

	 B. <trace

 enabled="true"

 requestLimit="10"

 pageOutput="true"

 traceMode="SortByTime"

 localOnly="true"

 mostRecent="true"

/>

	 c. <trace

 enabled="true"

 requestLimit="10"

 pageOutput="false"

 traceMode="SortByTime"

 localOnly="true"

 mostRecent="false"

/>

	 D. <trace

 enabled="true"

 requestLimit="10"

 pageOutput="false"

 traceMode="SortByTime"

 localOnly="false"

 mostRecent="true"

/>

 418	 ChAPTER 8	 Debugging and Deploying

	 3. You are interested in examining the data that is posted to the web server. What trace
result section can you use to see this information?

	 A. The Control Tree section

	 B. The Headers Collection section

	 c. The Form Collection section

	 D. The Server Variables section

	 4. You want to configure ASP.NET health monitoring to log information every time a user
fails to log on to the server. Which web event class should you use?

	 A. WebRequestEvent

	 B. WebAuditEvent

	 c. WebApplicationLifetimeEvent

	 D. WebAuthenticationSuccessAuditEvent

Lesson 3: Deploying Websites

With Windows applications, you have no choice but to consider deployment; typically, the
client needs to be installed on every user’s computer. With websites, deployment tends to be
an afterthought, because users already have their web browsers installed.

However, developers often need to deploy code to staging and production servers on a
regular basis, which can be tedious. In addition, many websites are deployed to multiple web
servers simultaneously to provide high availability and performance. Finally, many web devel-
opers must release their applications commercially; this means that other people need to be
able to deploy them in environments that the developer knows nothing about.

For each of these scenarios, the developer must create a plan to deploy the application
and any updates that need to be released in the future. This lesson describes the different
techniques available for deploying websites: manually copying files, publishing web applica-
tions, creating a Web Deployment Project, creating a Web Setup Project, using the Copy
Web tool, and publishing websites.

After this lesson, you will be able to:
■	 Create a Web Setup Project and use the resulting files to deploy your application.
■	 Update and deploy websites in environments with multiple developers and servers

by using the Copy Web tool.
■	 Precompile websites by using the Publish Web Site tool.

Estimated lesson time: 60 minutes

 Lesson 3: Deploying Websites ChAPTER 8 419

Publishing Web Applications
Depending on the scenario, a Microsoft .NET Framework website can be extremely easy
to deploy. Websites, by default, are entirely file based. This means that the source code
is usually deployed to the server. The server then compiles that code when pages are
requested. In this scenario, you can deploy a website to a web server by simply copying
the files to the correct directory on the server.

Even if you are deploying a new version of your site, in most cases you can simply overwrite
the old files with the new ones. In addition, if you are creating a website that works on a single
server and is file based, there is often no real need to run any type of setup process, edit the
registry, or add items to the start menu. Configuration settings are defined with the Web.config
file, and application code is contained entirely within the website folder structure. This means
that you can deploy the entire website by using the simple xcopy shell command; no special
deployment software is required.

This simplicity provides a great deal of flexibility in other scenarios, too. If your website is
to be deployed to an array of web servers (in which multiple web servers host the same web-
site for scalability and availability), you can use any file-synchronization tool to copy the files
between the servers. This allows you to deploy to a master server and have the deployment
synchronized across the web farm.

If your website has a database, requires special web server configuration, or needs different
configuration settings in a release environment, simply copying files will be insufficient. In these
cases, publishing a website typically involves:

■ Configuring an application in IIS.

■ Copying website files to the web server.

■ Setting up a database.

■ Configuring the website with the production database connection.

■ Modifying other configuration settings, such as disabling detailed error messages.

Visual Studio 2010 includes a new Publish Web dialog box that allows you to configure
each of these settings once, and then publish a website to one or more web servers with a
single click. This section describes this tool in more detail.

Web.config Transformations
Applications that have different debugging, staging, and release environments typically have
different application settings as well. For example, during debugging, an application might
use a local file system database. However, in the production environment, the application
might connect to a central database running Microsoft SQL Server.

 420	 ChAPTER 8	 Debugging and Deploying

Web.config transformations allow you to create separate Web.config files for different
release types. Therefore, you can create debugging, staging, and release versions of the
Web.config file with settings specific to each release type. To simplify management, you
only need to specify settings that must be added, changed, or removed from the base
Web.config file.

By default, Visual Studio adds Web.config transformations for the Debug and Release
configurations for new ASP.NET Web Application projects. You can view and edit the transfor-
mations from Solution Explorer by expanding the Web.Config node and then double-clicking
either Web.Debug.Config or Web.Release.Config. If you add more configurations (such as a
staging configuration), you can add an associated transformation by right-clicking Web.config
in Solution Explorer and then clicking Add Config Transformations.

The sections that follow describe the syntax for adding, replacing, and removing settings. For
detailed information about more complex transformations, read “Web.config Transformation
Syntax for Web Application Project Deployment” at http://msdn.microsoft.com/en-us/library
/dd465326.aspx.

ADDING A SETTING
Web.config transformations contain only those settings that should be different from the
standard Web.config file. To add a new setting to a Web.config file that is generated when
publishing a web application, simply add the setting to the Web.config transformation file.
For example, defining the following Web.Release.Config file will add the connection string
to the Web.config file when you publish the web application by using the Release setting:

<configuration>
 <connectionStrings>
 <add name="MyDatabase"
 connectionString="data source=.\SQLEXPRESS;Integrated
 Security=SSPI;AttachDBFilename=|DataDirectory|\mydb.mdf;User Instance=true"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
</configuration>

REPLACING A SETTING
If you need to define different settings for the same value in your base Web.config file and in
a Web.config transformation, add the element to the Web.config transformation and specify
the xdt:Transform="Replace" property. Any settings defined within the element will replace
those in the base Web.config file when your web application is published.

For example, to replace the settings for custom errors so that the release version of your
web application does not display detailed error information to remote users, you could add
the following code to the Web.Release.Config file. Notice the xdt:Transform property in bold.

 Lesson 3: Deploying Websites ChAPTER 8 421

<configuration>
 <system.web>
 <customErrors defaultRedirect="GenericError.htm"
 mode="RemoteOnly" xdt:Transform="Replace">
 <error statusCode="500" redirect="InternalError.htm"/>
 </customErrors>
 </system.web>
</configuration>

You can use the xdt:Locator property to selectively replace settings when a property matches
a specified value. Set the value of xdt:Locator to a conditional method call. For example, to verify
that one of the properties you specify must match the property in the base Web.config file, use
the Match method. The following example would replace an <add> connection string element
only if the name property matched exactly.

<configuration>
 <connectionStrings>
 <add name="MyDB"
 connectionString="Data Source=ReleaseSQLServer;
 Initial Catalog=MyReleaseDB;Integrated Security=True"
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/>
 </connectionStrings>
</configuration>

If you were to remove the xdt:Locator property, the Web.config transformation would
replace all connection strings.

REMOVING A SETTING
You can remove an attribute by using the RemoveAttributes() method and specifying the
name of the attribute to remove as the parameter. For example, to remove the <debug>
attribute from the <compilation> section, you would add the following code to your
Web.Release.Config file:

<configuration>
 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
 </system.web>
</configuration>

Configuring Deployment
You can deploy databases along with your web application. To configure the database to
be deployed, right-click the project in Solution Explorer and then click Package/Publish
Settings. Then click Package/Publish SQL. The Package/Publish SQL tab appears, as shown
in Figure 8-13.

 422	 ChAPTER 8	 Debugging and Deploying

FigURE 8-13  The Package/Publish SQL tab.

From this tab, click Import From Web.config to automatically configure any databases you
have added to the <connectionStrings> section. For databases not in the Web.config file, click
the Add button to configure a database to be deployed, and then type a connection string or
click the ellipses to connect to the database.

If the database does not yet exist on the server to which you are deploying your web applica-
tion, select the Pull Data And/Or Schema From An Existing Database check box to have Visual
Studio create a database schema and optionally populate the database with data. Then config-
ure the connection string for the source database from which Visual Studio will create the new
database. Click the Database Scripting Options list to select whether to deploy the schema,
the data, or both. Finally, you can add SQL scripts to perform additional, custom database
configuration.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 3: Deploying Websites ChAPTER 8 423

After you have configured the database, you can configure additional deployment settings
by selecting the Package/Publish Web tab (as shown in Figure 8-14).

FigURE 8-14  The Package/Publish Web tab.

If you configured databases for deployment, select the Include All Databases Configured
In Package/Publish SQL Tab check box. If your application requires settings configured in IIS
manager (but not defined in Web.config), select the Include All IIS Settings As Configured
In IIS Manager check box. This setting also enables you to specify the Physical Path Of Web
Application On Destination Server check box. The remaining settings define whether Visual
Studio will create a .zip file containing all of your project files and where it will be stored.

 424	 ChAPTER 8	 Debugging and Deploying

Publishing a Website
After you have configured the publishing settings, you can publish a web application by right-
clicking the project in Solution Explorer and then clicking Publish. Visual Studio displays the
Publish Web dialog box, as shown in Figure 8-15.

FigURE 8-15  The Publish Web dialog box.

You can use the Publish Web dialog box to define the publication settings and save them
as a publish profile by defining the profile name. The individual settings are:

■ Publish method This is the communications protocol that Visual Studio will use to con-
nect to the web server. Web Deploy uses HTTPS (HTTP Secure), FTP uses unencrypted File
Transfer Protocol (FTP) communications, FPSE uses encrypted FTP communications, and
File System uses standard network file sharing. Any of the settings allows you to deploy
files. If you choose Web Deploy, you can publish IIS web server settings, database schema
and data, database scripts, security settings, and more.

■ service URL This is the URL of the remote server’s web service, which the web server’s
systems administrator will provide for you. If the hosting provider supports the Windows
Management Service, the path will include MsDeploy.axd.

■ site/Application This is the name of the IIS website, which can include a virtual
directory.

 Lesson 3: Deploying Websites ChAPTER 8 425

■ mark As iis Application On Destination Select this check box if your website is the
root of an IIS website or if the virtual directory should act as a separate application
from the parent folder.

■ Leave Extra Files On Destination Clear this check box to delete existing files in the
web server virtual directory.

■ Credentials This allows you to provide credentials to connect to the web server.

After you have defined the settings, click the Save button to save the profile. Click Publish
to deploy the web application to the remote server.

After saving profile settings, you can publish the website by using the Web One-Click Publish
toolbar; simply select the profile and then click the Publish Web button on the toolbar.

Deployment Packages
If you will not be deploying the website directly, you can package it (along with the data-
base and settings) into a .zip file that a systems administrator can install. After configuring
publishing for the project, right-click the project in Solution Explorer and then click Build
Deployment Package. Visual Studio generates several files in the folder you specified in the
Location Where Package Will Be Created box in the Package/Publish Web dialog box:

■ <Application>.zip Your web application’s files, database, and settings.

■ <Application>.deploy.cmd The script that the IIS systems administrator will run,
with administrative credentials, on the web server. The web server must have Web
Deploy (MSDeploy.exe) installed. For more information about Web Deploy, go to
http://go.microsoft.com/?linkid=9278654.

■ <Application>.deploy-readme.txt The traditional “readme” file that administrators
refer to before installing. You can edit this just like any text file to provide customized
instructions.

■ <Application>.sourcemanifest.xml Contains settings to be added to the IIS manifest.
You or the administrator can edit this prior to deployment.

■ <Application>.setParameters.xml Contains IIS parameters to be added during
installation. You or the administrator can edit this prior to deployment.

You must provide all of the files to the administrator, who must keep them in the same
folder. You cannot deploy the .zip file alone.

Web Deployment Projects
After the release of Visual Studio 2010, Microsoft released the Web Deployment Projects tool to
extend Visual Studio 2010 by adding a user interface to manage build configurations, merging,
and using pre-build and post-build tasks. Web Deployment Projects work with both ASP.NET
web applications and websites.

 426	 ChAPTER 8	 Debugging and Deploying

Web Deployment Projects provide several capabilities not provided by other deployment
technologies:

■ The ability to precompile websites.

■ The ability to merge all files into a single assembly, merge folders into individual
assemblies, or create separate assemblies for each page and control. If you merge
content into assemblies, users with access to the web server will not be able to
directly access your source code.

■ Strong naming and delayed signing of assemblies.

As with publishing websites, Web Deployment Projects allow you to change the Web.config
file for the release environment and create IIS virtual directories.

To download the Web Deployment Projects tool, search the Microsoft Download Center
for “Web Deployment Projects RTW” or go to http://www.microsoft.com/downloads/en
/details.aspx?FamilyID=89f2c4f5-5d3a-49b6-bcad-f776c6edfa63. After you have the tool
installed, you can add a Web Deployment Project to a website or web application by click-
ing the solution in Solution Explorer and then clicking Add Web Deployment Project. Then
double-click the Web Deployment Project to edit its properties, as shown in Figure 8-16.

FigURE 8-16 Web Deployment Project properties.

After configuring the Web Deployment Project, right-click it in Solution Explorer and then
click Build to generate the assembly or assemblies.

exaM tIp

For the real world, know that you need to use Web Deployment Projects when you do not
want to store the source code on the web server or when management requires signed
assemblies. Because it is an add-on for Visual Studio 2010, you probably will not see any
questions about it on the exam, however.

 Lesson 3: Deploying Websites ChAPTER 8 427

Web Setup Projects
Publishing websites gives you a great deal of control over the website configuration while still
providing a high level of automation. However, it requires administrators to have specially con-
figured the web server to allow you to publish the website. Even if you create a package for the
administrators to perform the installation, administrators will not be able to easily take advan-
tage of a software distribution infrastructure that requires Microsoft Windows Installer (MSI)
packages. Finally, Visual Studio does not precompile published websites.

The sections that follow describe how to create a Web Setup Project, which provides the
highest level of flexibility for deploying a website. Although Web Setup Projects are more
complex for the developer, they allow you to generate an MSI package, precompile a website,
and perform virtually any setup task that your application might require. This section describes
how to configure deployment properties, how to configure deployment conditions, and how to
deploy websites that meet the requirements of the aforementioned scenarios.

Creating a Web Setup Project
Web Setup Projects are very similar to the standard setup projects used for Windows Forms
applications; however, Web Setup Projects provide specialized capabilities that are required
by websites. To add a Web Setup Project to a website, follow these steps:

	 1. Open your website in Visual Studio.

	 2. From the File menu (or by right-clicking your solution in Solution Explorer), select Add,
and then select New Project to launch the Add New Project dialog box.

	 3. Under Installed Templates, expand Other Project Types, expand Setup And Deployment,
and then select Visual Studio Installer. From the list of available templates, select Web
Setup Project. In the Name text box, type a name for your project. An example of the
Add New Project dialog box is shown in Figure 8-17.

FigURE 8-17  Adding a new project to a website to create a Web Setup Project.

 428	 ChAPTER 8	 Debugging and Deploying

	 4. After you have created a new Web Setup Project, Visual Studio adds the project to
your solution and displays the File System editor. The typical next step is to create
a project output group by right-clicking the Web Application Folder, selecting Add,
and then selecting Project Output. In the Add Project Output Group dialog box, you
select the project to deploy, the Content Files option, and the configuration (which
is Active by default). This ensures that your setup project will deploy the contents of
the selected project.

After you have created a Web Setup Project, you can add more folders, files, assemblies,
and configuration settings that are not part of your project output to the Web Setup Project.
This might be necessary if, for example, you have a separate folder containing images that
you have not added to your website project, or if you need to define registry values.

Building a Web Setup Project
Web Setup Projects are not automatically built when you build or run your website. You must
manually select the Web Setup Project in Solution Explorer and choose Build. You can do so
by right-clicking the project or by using the Build menu.

When you build the setup project, Visual Studio validates your code in the website. It then
builds an MSI file and packages each element of your site in the MSI. You can follow the build
process in Visual Studio in the Output window (View | Output). The script in the Output win-
dows shows you each step and where the MSI file is generated. By default, the file is placed
in the folder that contains your solution file. Figure 8-18 shows an example of a process as
shown in the Output window.

FigURE 8-18  An MSI build in the Output window of Visual Studio.

Many websites do not require custom configuration. In these cases, you can simply build
your MSI file and be ready to deploy. However, more complex scenarios include dependen-
cies (such as particular operating system versions or service packs), custom registry entries,
or administrator configuration. Web Setup Projects allow you to deploy websites that meet
these requirements. The sections that follow help you with each of these specific scenarios.

 Lesson 3: Deploying Websites ChAPTER 8 429

Creating Launch Conditions
A launch condition is used to define the server requirements for your application installation.
For example, you can check for specific versions of Windows or verify that specific service packs
are present before you allow an installation. The web setup template includes the IIS launch
condition. This searches for the presence of the correct version of IIS and displays an error
message to users if this version is not present, as shown in Figure 8-19.

FigURE 8-19  The Launch Conditions error message.

To create and manage launch conditions, you use the Launch Conditions editor in Visual
Studio. You can access this tool by selecting your project in Visual Studio and then clicking the
View menu. You will see an Editor submenu that contains several setup editors, including those
for Registry, File System, File Types, User Interface, Custom Actions, and Launch Conditions.

Selecting the Launch Conditions submenu opens the Launch Conditions editor, as shown in
Figure 8-20. Notice that you right-click the Launch Conditions folder to add a new condition
(this is discussed more fully in the next section).

FigURE 8-20 Using the Launch Conditions editor to configure requirements for a target computer.

 430	 ChAPTER 8	 Debugging and Deploying

There are two main branches of the Launch Conditions editor: Search Target Machine and
Launch Conditions. Each is described here:

■ search Target machine This branch allows you to define the criteria to search for prior
to installation. By default, this node contains nodes for searching for major and minor ver-
sions of IIS. You can add file, registry, and Windows Installer search conditions. Typically,
you pair a search condition that determines whether a change is necessary with a launch
condition that performs the change.

■ Launch Conditions This branch allows you to create new launch conditions that
define conditions that must be met prior to installation. These conditions can be
based on search conditions or other criteria (such as the operating system version). A
launch condition can provide a useful message to the user if a requirement is missing.
It can then automatically retrieve a webpage. By default, Web Setup Projects include
conditions for ensuring the presence of the correct version of IIS (later than version 7,
for example).

Typically, you must add an item to each of these two nodes to require a single component
as part of your installation. For example, if you want to verify that a specific DLL is present, you
must create a search condition under Search Target Machine and store the result of the search
in a property. You then create a launch condition that uses the search condition’s property.
If the required condition is not met (if the file is missing), you specify an error message to be
displayed to the user. You can also choose to add a URL that directs the user to the required
component for download.

ADDING A SIMPLE SEARCH CONDITION
You can add both search and launch conditions manually by right-clicking the appropriate folder
and choosing an item to add. This allows you to create both search and launch conditions at a
granular level and decide how to connect them.

To add a basic search condition, start by right-clicking the Search Target Machine node in
the Launch Conditions editor. You will have three search condition types to choose from: Add
File Search, Add Registry Search, and Add Windows Installer Search. Each is a different search
type. Depending on your selection, different property values must be set. The following pro-
vides an overview of each search type’s options.

■ File search This search type allows you to define a search for a file. You set FileName
to the name of the file you are searching for, Folder to the name of the folder in which to
search, and Property to a variable name to be used for tracking the results of the search.

■ Registry search This search type allows you to specify a registry search. You set the
Root property to a place to start looking in the registry, RegKey to a registry key to
search for, and the Value property to a value you expect to be set for the specified key.
You store the results of your search in the Property property as a variable name that
can be used in a related launch condition.

 Lesson 3: Deploying Websites ChAPTER 8 431

■ Windows installer search This search type allows you to search for a registered com-
ponent. You set the ComponentId property to the globally unique identifier (GUID) of
the component for which you are searching. You set the Property property to a vari-
able that indicates the results of your search.

You can also rename your search and launch conditions to something that makes sense to
your specific scenario.

ADDING A SIMPLE LAUNCH CONDITION
You can manually add a launch condition that must be met before your website can be installed.
To do so, you right-click the Launch Conditions folder, and then select Add Launch Condition.

With the new launch condition selected, you access the Properties window to configure your
launch condition. You can set the Condition property to match the Property value of a search
condition or to specify a different condition entirely. To allow the user to download software to
resolve the launch condition, provide a URL in the InstallUrl property. In the Message property,
type a message to be displayed to the person installing your website if a condition is not met.

You can configure launch conditions to require specific operating system versions, specific ser-
vice pack levels, and other criteria by setting the Condition property to an environment variable or
keyword and using both an operand and a value. Table 8-5 lists some common launch conditions.

TAbLE 8-5 Windows Installer Launch Conditions

COnDiTiOn DEsCRiPTiOn

VersionNT The version number for operating systems based on Windows NT,
including Windows 2000, Windows XP, and Windows Server 2003

Version9X The version number for early Windows consumer operating
systems, including Windows 95, Windows 98, and Windows
Millennium Edition

ServicePackLevel The version number of the operating system service pack

WindowsBuild The build number of the operating system

SystemLanguageID The default language identifier for the system

AdminUser The tool that determines whether the user has administrative privileges

PhysicalMemory The size of the installed RAM in megabytes

IISMAJORVERSION The major version of IIS, if installed

IISMINORVERSION The minor version of IIS, if installed

To evaluate environment variables, preface the variable name with a % symbol, as this
example illustrates.

%HOMEDRIVE = "C:" (verify that the home drive is C)

 432	 ChAPTER 8	 Debugging and Deploying

To simply check a property for a specific value, you can use the = operator, as the following
example shows.

IISVERSION = "#6" (check for IIS 6.0)
VersionNT = 500 (check for Windows 2000)

You can also check for ranges.

IISVERSION >= "#7" (check for IIS 4.0 or later)
Version9X <= 490 (check for Windows Me or earlier)

You can also check for multiple conditions by using Boolean operators: Not, And (which returns
true if both values are true), Or (which returns true if either value is true), Xor (which returns true
if exactly one value is true), Eqv (which returns true if both values are the same), and Imp (which
returns true if the left term is false or the right term is true). The following example demonstrates
a Boolean operator.

WindowsBuild=2600 AND ServicePackLevel=1 (check for Windows XP with Service Pack 1)

CREATING PREGROUPED LAUNCH CONDITIONS
You can also create pregrouped search and launch condition sets for common scenarios. Do-
ing so simply creates both a search and a launch condition, with both items preconfigured to
work together. You simply need to adjust their properties according to your needs. To create
a grouped launch condition, you right-click the root node in the Launch Conditions editor
(Requirements On Target Machine) and select one of the following:

■ Add File Launch Condition
■ Add Registry Launch Condition
■ Add Windows Installer Launch Condition
■ Add .NET Framework Launch Condition
■ Add Internet Information Services Launch Condition

As an example, adding file-based conditions (such as DLL conditions) is a common practice.
The following steps walk through the creation of a file-based, pregrouped launch condition:
	 1. In the Launch Conditions editor, right-click the Requirements On Target Machine root

node. Select Add File Launch Condition to get started.
The Launch Conditions editor adds a search condition (Search For File1) to the Search Target
Machine node and a launch condition (Condition1) to the Launch Conditions node. The new
search condition’s Property property value has a default name of FILEEXISTS1. This value
links it to the Condition property of the launch condition.

	 2. You can rename both the new search condition and the new launch condition so that
the names indicate the file you are searching for.
Figure 8-21 shows an example of both conditions added to the Launch Conditions editor.
Notice that the Search For File1 condition is selected and its Properties window is dis-
played. Notice that the Property property is set to FILEEXISTS1.

 Lesson 3: Deploying Websites ChAPTER 8 433

FigURE 8-21  The file search criterion and related condition.

	 3. In Figure 8-21, notice that there are several search condition properties in the Properties
window. For a file search, you typically configure these properties as described in Table 8-6.

TAbLE 8-6  File Search Condition Properties

PROPERTy DEsCRiPTiOn

FileName The name of the file to look for. Just specify the file name with
its extension, not the folder.

Folder The folder in which to search for the file. Here you can select a
special folder such as [CommonFilesFolder] or [WindowsFolder].
You can also hardcode a direct path to the file. You can search
subfolders by specifying the Depth field.

Depth The number of nested folders within the specified folder to
search.

MinDate,
MaxDate

The minimum and maximum last modified date of the file.

MinSize, MaxSize The minimum and maximum size of the file.

MinVersion,
MaxVersion

The minimum and maximum version of the file.

Property The name of the property that stores the results of this search.
You specify this property name in the corresponding launch
condition.

 434	 ChAPTER 8	 Debugging and Deploying

	 4. Next, you select the new launch condition and view its Properties window. The properties
are typically configured as described in Table 8-7.

TAbLE 8-7  Launch Condition Properties

PROPERTy DEsCRiPTiOn

Condition The condition that must evaluate to true for installation to continue. By
default, this is the name of a property assigned to a search condition,
and if the search finds the required file or other object, the launch con-
dition is fulfilled. You can specify more complex conditions to check for
operating system version, service pack levels, and other criteria.

InstallUrl The URL to be retrieved by the setup project if the launch condition
is not met. The user can access this resource to install the required
component. This is an optional setting.

Message The message that is displayed to the user if the launch condition is
not met.

In this example, the setup project would look for the dependent file as configured in the
search condition. The launch condition would then execute and throw an error if the file is
not found.

Writing to the Registry as Part of Deployment
Storing information in the registry used to be the preferred way to store application settings.
With the .NET Framework, the best practice for configuring .NET Framework applications is to
store settings in configuration files. However, there might still be times when you need to add
registry entries during setup (although such situations are rare). For example, you might need
to configure an aspect of the operating system or another application.

To configure a Web Setup Project to add a registry entry during setup, follow these steps:

	 1. In Solution Explorer, select your setup project.

	 2. From the View menu, select Editor, and then select Registry. The Registry editor opens.

	 3. The core folders of the registry are shown by default. To add a registry setting in a
nested key, you need to add each nested key to the editor. For example, to add a set-
ting to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ASP.NET\, you need to add
the SOFTWARE, Microsoft, and ASP.NET keys to the HKEY_LOCAL_MACHINE hive in the
Registry Settings editor.

	 4. Right-click the key to which you want to add a setting, select New, and then select String
Value, Environment String Value, Binary Value, or DWORD Value. Type the name of the
value, and then press Enter.

	 5. To define the value, select the registry value, view the Properties window, and set the
Value property. To make the installation of the value conditional, define the Condition
property.

 Lesson 3: Deploying Websites ChAPTER 8 435

Figure 8-22 shows an example of the Registry editor in Visual Studio.

FigURE 8-22  Adding a registry entry to the deployment process.

By default, registry keys are not removed when an application is uninstalled. To automatically
remove a registry key during uninstallation, select the key and view the Properties window. Then
set the DeleteAtUninstall property to true.

Adding a Custom Setup Page
Administrators responsible for deploying and managing your websites can customize settings
by editing your Web.config file. To enable simpler configuration at setup time, you can add
custom setup wizard pages. With these pages, you can prompt users to custom-configure
information and then provide that information as parameters for custom actions. When
combined, custom setup wizard pages and custom actions enable you to perform the fol-
lowing types of tasks at setup time:

■ Display a license agreement The Web Setup Project template provides a dialog box
template for requiring the user to accept a license agreement.

■ modify settings in the Web.config file You can use user input to modify configura-
tion settings without requiring administrators to know how to configure an Extensible
Markup Language (XML) file.

■ Perform custom configuration You can use a custom configuration to prompt the
user for information that will be stored in the registry or in another unusual location.

■ Activate or register your application You can prompt the user for a product key or
registration information. Prompts can specify either required or optional responses.

 436	 ChAPTER 8	 Debugging and Deploying

To add a custom setup wizard page to your Web Setup Project, you use the User Interface
editor (View | Editor | User Interface). The User Interface editor displays the different setup
phases for both standard and administrative installations of your application. Figure 8-23
shows the default view of the User Interface editor.

FigURE 8-23 Using the User Interface editor to add pages to a setup wizard.

To add a custom setup page, you right-click the setup phase to which you want to add,
and then select Add Dialog. Normally you add dialog boxes to the Start phase under the
Install node. The Add Dialog window, shown in Figure 8-24, shows you the dialog boxes that
can be added to the selected installation setup.

FigURE 8-24  The Add Dialog setup pages.

 Lesson 3: Deploying Websites ChAPTER 8 437

The Administrative Install node is more restrictive. There you can add only a splash page, a
license agreement page, or a readme page.

Each dialog box template allows you to collect a different type of information during
setup. You can customize these dialog boxes only by hiding some controls and displaying
different labels.

You customize these controls through the Properties window. There you can configure all
aspects of a dialog box; Visual Studio does not provide a designer. To control the information
for which a dialog box prompts the user, edit the labels and property names for the dialog box.
For the text box and radio button types of dialog boxes, you can configure the label for each
field (for example, Edit1Label or Button1Label), the name in which the value is to be stored (for
example, Edit1Property or ButtonProperty), and the default value (for example, Edit1Value or
DefaultValue). The License Agreement template allows you to specify a license agreement file,
and the Splash template allows you to display a bitmap file.

You can also control the order in which your dialog boxes are shown to a user during setup.
To do so, right-click a dialog box node in the editor, and then click Move Up or Move Down.
You can delete a step in the process by right-clicking the step and then selecting Delete.

When you run the Web Setup Project, your custom dialog boxes appear as setup wizard
pages. If you configured pages to collect custom information from users, you can reference
that data in custom actions, as described in the next section.

Adding Custom Actions to Your Deployment
Web Setup Projects provide a great deal of flexibility and can meet most setup requirements.
If you have more demanding requirements, such as submitting registration information to a
web service or validating a product key, you can add custom actions to your setup project.
Custom actions can run in any of the four phases of setup:

■ install This phase performs the bulk of the work done during setup by adding the
files and creating the configuration settings that are required to run your application.

■ Commit After the Install phase is complete and all of the changes that are required to
run your application have been made, the Commit phase finalizes these changes. After
the Commit phase is complete, setup cannot be rolled back, and the application must
be uninstalled with Add Or Remove Programs if removal is required.

■ Rollback The Rollback phase runs only if setup fails or is cancelled. In such a case, the
Rollback phase occurs instead of the Commit phase and removes any new files or settings.

■ Uninstall This phase removes files and settings from the computer when the applica-
tion is removed with Add Or Remove Programs. Often, uninstall routines leave settings
and databases in place so that they can be restored if the application is later reinstalled.

You add a custom action to your setup project through the Custom Actions editor. You can
access this editor by first selecting your setup project in Solution Explorer and then selecting
View | Editor | Custom Actions.

 438	 ChAPTER 8	 Debugging and Deploying

The Custom Actions editor displays the four setup phases. You can right-click the phase to
which you want to add a custom action. You then select Add Custom Action. Doing so launches
the Select Item In Project dialog box. From here you can choose to add a custom .exe or script
file that will execute at the appropriate phase of deployment. If you add more than one custom
action to a single phase, you can rearrange the custom actions by right-clicking an action and
then clicking Move Up or Move Down.

Deploying Web Applications by Using a Web Setup Project
After you configure your Web Setup Project and build it with Visual Studio, you are ready to
deploy it to an application server. To do so, you need to use the files generated as part of the
build process. There are typically two generated to the target build directory for Web Setup
Projects: an .exe file and an MSI file. These files are described in more detail here:

■ setup.exe This is an executable file that installs the files and settings you added to
your Web Setup Project. When the file is being run, the setup wizard guides the user
through the installation process and prompts for any required configuration settings,
such as the website, virtual directory, and application pool (or process). Figure 8-25
shows an example.

FigURE 8-25 Web Setup Projects use a setup wizard to install a website.

■ <WebSetupProjectName>.msi This is the Windows Installer file that contains any
files you added to your Web Setup Project. The user can install this file by double-
clicking it and launching the setup wizard. This is equivalent to running the Setup.exe
file. Alternatively, network administrators can distribute the MSI file by using Active
Directory software distribution.

Although most users are probably more familiar with using Setup.exe to install an appli-
cation, the Windows Installer file is smaller, far more versatile, and familiar to most systems
administrators.

 Lesson 3: Deploying Websites ChAPTER 8 439

Deploying Web Applications by Using the Copy Web Tool
Web Setup Projects are useful if you are providing a website to many users or to an adminis-
trative team. However, if you are responsible for updating the website, it might be impractical
to log on to the web server, copy over an installation, and run the Windows Installer package
each time you make an update to the site. This is especially true if you frequently deploy to a
development or test server.

For some development scenarios, you might be able to edit the website directly on the web
server. However, changes you make are immediately implemented on that server. Of course, this
includes any bugs that might be lurking in the new code.

There are many scenarios in which you simply need to copy changes between two servers.
These might be changes from your development environment up to staging, or even from
staging to production, in some limited scenarios. In these cases, you can use the Copy Web
tool to publish changes between any two web servers.

The Copy Web tool can copy individual files or an entire website. You can select a source
and a remote site and move files between them. You can also use the tool to synchronize files.
This involves copying only changed files and detecting possible versioning conflicts in which the
same file on both the source and the remote site have been separately edited. The Copy Web
tool, however, does not merge changes within a single file; it only does complete file copies.

You launch the Copy Web tool from Visual Studio. To do so, you typically open the web-
site you intend to use as the source (from which to copy). You can then right-click the site in
Solution Explorer and choose Copy Web Site. This launches the Copy Web tool, as shown
in Figure 8-26.

FigURE 8-26 Using the Copy Web tool to synchronize two websites.

 440	 ChAPTER 8	 Debugging and Deploying

The Copy Web tool displays two panes: Source Web Site and Remote Web Site. The source
website is the site from which you want to copy. The remote website is the copy-to site or
destination. To set up a remote website, you must create a connection by clicking Connect at
the top of the tool. This launches the Open Web Site dialog box, which allows you to find a
website. There are four options for navigating to a remote website:

■ File system This option provides a destination website on a local hard drive or a
shared folder. A network drive connected to a shared folder on the remote web
server is the fastest way to transfer a website to a server on your intranet. You must
have previously configured the website on the server and shared the website folder.
This technique transfers your source code across the network in clear text unless
you have network-layer encryption, such as that provided by Internet Protocol
security (IPsec).

■ Local iis This provides a destination website running within IIS on your local computer.
You can use this interface to create a new website on your local server.

■ FTP site This provides a destination remote website for which the server is configured
to run an FTP server and allow uploads and downloads to the website folder. You must
have previously configured the website on the server and shared the website folder. This
technique transfers your user credentials and your source code across the network in
clear text, and therefore is not recommended.

■ Remote site This provides an interface with which you can transfer files to and from
a remote website by using HTTP, if you have configured the web server to allow this
type of update. You can use this interface to create a new website on your server. To
prevent your source code from being sent across the network in clear text, configure
the website with a Secure Sockets Layer (SSL) certificate and select the Connect Using
Secure Sockets Layer check box in the Open Web Site dialog box.

Visual Studio will save configured connections for future use. After the connection has been
established, you can copy or synchronize files between the source and the remote website in
several different ways:

■ Copy individual files Select files in either the source or the remote website, and then
click the directional Copy Selected Files buttons.

■ Copy the entire site Right-click the Source Web Site pane, and then select Copy Site
To Remote. To copy the Remote Web Site to the source website, right-click the Remote
Web Site pane, and then select Copy Site To Source.

■ synchronize individual files Select files in either the source or the remote website,
and then click Synchronize Selected Files.

■ synchronize the entire site Right-click the Source Web Site pane, and then select
Synchronize Site.

 Lesson 3: Deploying Websites ChAPTER 8 441

When you are copying or synchronizing files, versioning conflicts might arise if another
developer modifies the remote copy of a file that you edited. Visual Studio doesn’t have the
capability to merge or analyze these changes. Therefore, the Copy Web tool simply notifies
you of the conflict and lets you choose whether to overwrite the remote file with your local file,
overwrite your local file, or not overwrite either file. Unless you know exactly what changed
on a file, you should never overwrite it. Instead, you should analyze the file, determine what
changed, and attempt to manually merge the changes. Otherwise, you might overwrite a
coworker’s development effort.

Precompiling and Publishing ASP.NET Websites
Projects created with the ASP.NET Web Site template are compiled by the web server the first
time a user requests a page from a new or updated website. Compiling doesn’t usually take
long (often less than a second or two), but the first few webpage requests are delayed while
the website is compiled. To avoid this delay, you can precompile your website before you
publish it to a server.

Note PRECOmPiLing WEb APPLiCATiOns

This section applies to ASP.NET websites, but not to ASP.NET web applications. Projects
created with the ASP.NET Web Application template are always precompiled.

To precompile and publish a website, follow these steps:

	 1. Open the website you want to precompile and publish. Next, right-click your website
in Solution Explorer and select Publish Web Site. Alternatively, you can select the Build
menu and then choose Publish Web Site.

	 2. In the Publish Web Site dialog box, specify a location to which to publish. If you click
the ellipsis button (…), you can browse the file system, local IIS, an FTP site, or a remote
site, exactly as you would if you were using the Copy Web tool.

	 3. In the Publish Web Site dialog box, select your options:
■ Allow This Precompiled site To be Updatable  This check box, when selected,

specifies that the content of ASPX pages are not compiled into an assembly; instead,
the markup is left as is, allowing you to change HTML and client-side functionality
after precompiling the website. Selecting this check box is equivalent to adding the
-u option to the aspnet_compiler.exe command.

■ Use Fixed naming And single Page Assemblies  This option specifies that batch
builds are turned off during precompilation to generate assemblies with fixed names.
Themes and skin files continue to be compiled to a single assembly. This option is not
available for in-place compilation.

 442	 ChAPTER 8	 Debugging and Deploying

■ Emit Debug information Select this check box if you might need to debug the site
after you publish it.

■ Enable strong naming On Precompiled Assemblies  This check box, when selected,
specifies that the generated assemblies are strongly named by using a key file or key
container to encode the assemblies and to ensure that they have not been tampered
with. After you select this check box, you can do the following:
■ Specify the location of a key file to use to sign the assemblies. If you use a key

file, you can select Delay Signing, which signs the assembly in two stages: first
with the public key file, and then with a private key file that is specified later
during a call to the aspnet_compiler.exe command.

■ Specify the location of a key container from the system’s cryptographic service
provider (CSP) to use to name the assemblies.

■ Specify whether to mark the assembly with the AllowPartiallyTrustedCallers
property, which allows strongly named assemblies to be called by partially
trusted code. If you do not specify this declaration, only fully trusted code
can use such assemblies.

	 4. Click OK to compile and publish the website.

Publishing a website can be an easy way to move a website from a development server to
a staging or production server.

Installing ASP.NET 4 on IIS
The .NET Framework 4 was released after Windows 7 and Windows Server 2008 R2 were
released. Therefore, as of the time of this writing, no operating system has built-in support
to run ASP.NET 4 applications. Before you can run an ASP.NET 4 application on a server,
you will need to install the .NET Framework 4. Naturally, Visual Studio 2010 installs the
.NET Framework 4 automatically, so your development computer will run your websites
correctly with no additional software.

Microsoft released an optional Windows Update package to install the .NET Framework 4
on computers with Windows XP, Windows Vista, Windows 7, Windows Server 2003, Windows
Server 2008, and Windows Server 2008 R2 operating systems. Therefore, systems admin-
istrators might have already installed the necessary components. If not, have the systems
administrators install the update.

After the .NET Framework 4 is installed, you need to configure IIS to run ASP.NET 4 appli-
cations by using the aspnet_regiis.exe command-line tool. The tool is located in the .NET
Framework directory, which is typically %windir%\Microsoft.NET\Framework\v4.0.30319
\aspnet_regiis.exe (for 32-bit systems) or %windir%\Microsoft.NET\Framework64\v4.0.30319
(for 64-bit systems).

 Lesson 3: Deploying Websites ChAPTER 8 443

Usually you will only need to use the following options:

■ -i This installs ASP.NET 4 and updates both the IIS Classic mode and IIS Integrated
mode handlers and script mappings. When you use this option, aspnet_regiis.exe
updates the standard DefaultAppPool and Classic .NETAppPool application pools to
use the .NET Framework 4 version of the Common Language Runtime. This will not
usually cause compatibility problems. However, because it changes the configuration
of all existing ASP.NET websites, you should thoroughly test your applications with the
newer version of the CLR prior to using this option. This option also interrupts running
applications, causing active users to be logged out (when you are using forms-based
logons) and ViewState to be lost. For those reasons, avoid using this option on pro-
duction servers.

■ -ir Like -i, this installs ASP.NET 4. This option does not change the existing application
pools, however, reducing potential application compatibility problems.

■ -iru This performs a -i installation if ASP.NET is not currently registered. If ASP.NET is
currently registered, this performs a -ir installation.

■ -enable This enables the ASP.NET Internet Server Application Programming Interface
(ISAPI) extension for IIS 6.0 or IIS 7.0 in Classic mode.

■ -s path This option updates scriptmaps and application-pool assignments for the
specified path and all subdirectories to ASP.NET 4. If the server is running IIS 6.0, aspnet_
regiis.exe updates the scriptmaps. If the server is running IIS 7.0, aspnet_regiis.exe maps
the application to a new ASP.NET 4 application pool. Specify the metabase path, which
might resemble W3SVC/1/ROOT/myapp or W3SVC/1634748923. To find the path for
IIS 6.0, search the metabase.xml file in the %windir%\system32\inetsrv\ folder for the
name of your website.

■ -sn path This updates scriptmaps and application-pool assignments for the specified
path to ASP.NET 4. Unlike –s, -sn does not apply to subdirectories.

■ -lv This option displays the installation path of all versions of ASP.NET.

For a description of all available options, see “ASP.NET IIS Registration Tool” at
http://msdn.microsoft.com/en-us/library/k6h9cz8h.aspx.

Quick Check
	 1. What launch condition does a Web Setup Project include by default?

	 2. What are the four phases of a Web Setup Project deployment?

Quick Check Answers
	 1. By default, a Web Setup Project checks for an IIS version later than 4.0.

	 2. Install, Commit, Rollback, and Uninstall are the four phases of Web Setup Project
deployment.

 444	 ChAPTER 8	 Debugging and Deploying

PrActIcE	 Deploying Web Applications

In this practice, you deploy applications by using two techniques: a Web Setup Project and
the Copy Web tool.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Creating a Web Setup Project

In this exercise, you create a new ASP.NET website and a related Web Setup Project.

	 1. Open Visual Studio and create a new website by using the language of your preference.
This site will serve as the basis for your setup project.

	 2. Add some simple pages to the site. This will give you something to set up and deploy.
These pages could include order.aspx, product.aspx, customer.aspx, and vendor.aspx.

	 3. Add a Web Setup Project to your solution. To do so, from the File menu, select Add, and
then select New Project. Under Project Types, expand Other Project Types, expand Setup
And Deployment, and then select Visual Studio Installer. Under Templates (on the right
side), select Web Setup Project. Name the project myWebsetup, and click OK.

You should see a new project in Visual Studio Solution Explorer. You should also see
the File System editor for the setup project.

	 4. Next, you need to connect the setup project to your website. Within the left pane of the
editor, right-click Web Application Folder, select Add, and then select Project Output. In
the Add Project Output Group dialog box, select Content Files, and click OK.

If you were to build and install your project at this point, it would copy the site pages
and code-behind files to the location specified by a user during setup.

	 5. In the File System editor, expand the Web Application Folder. Notice that there is a Bin
directory. This is where you would embed any DLL files that might need to be included
by your solution. You would embed these files by right-clicking Bin and selecting Add
to add a file. For this practice, there are no dependent DLL files, so you can skip this.

	 6. Next, add a folder and a file that should be included with the build. To do so, right-click
the Web Application Folder in the File System editor. Select Add, and then select Web
Folder. Name the folder images.

	 7. Right-click the Images folder, select Add, and then select File. Navigate to the Pictures
folder on your computer. Select a few sample pictures, and click Open.

 Lesson 3: Deploying Websites ChAPTER 8 445

	 8. Now add a launch condition. From the View menu, select Editor, and then select
Launch Conditions. In the Launch Conditions editor, right-click Requirements On
Target Machine, and then select Add File Launch Condition. Rename the new search
condition (currently named Search For File1) to search for browscap. Select the new
search condition and view the Properties window.

■ Set the FileName property to nothing.ini. (This file doesn’t exist, but you’ll fix the
error later.)

■ Set the Folder property to [WindowsFolder] and set the Depth property to 4. This
tells setup to search the system folder and all subfolders four levels deep for a file
named Nothing.ini. Note that the Property value is set to FILEEXISTS1.

	 9. Rename the new launch condition (currently named Condition1) to browscap Condition.
Select the new launch condition and view the Properties window.

■ Set the InstallUrl property to http://blogs.iis.net/dmnelson/archive/2009/05/14
/updating-browscap-ini-for-internet-explorer-8.aspx, which contains informa-
tion about the Browscap.ini file. In the real world, you would provide a link with
instructions on how to fulfill the requirement.

■ Set the Message property to you must have a browscap.ini file to complete
installation. Would you like more information?. Notice that the Condition property
is already set to FILEEXISTS1, which corresponds to the search condition Property value.

	 10. Build the Web Setup Project. Right-click your setup project in Solution Explorer and then
select Build. In the Output window, make note of the folder containing the output files.
Open the output folder in Windows Explorer and examine the files that are present. You
should see both an MSI and a setup.exe file.

	 11. Open the folder that contains the MSI file. Double-click the MSI file to launch setup.
After a few seconds, you should see an error message indicating that the Browscap.ini
file does not exist, as shown in Figure 8-27.

FigURE 8-27  The MSI file error message.

Recall that we added this condition in step 9. We also set the FileName property of the
search condition to Nothing.ini in step 8, which is why this error is being thrown.

	 12. Click Yes. You will be taken to the InstallUrl set as part of the condition.

	 13. Return to Visual Studio. Open the Launch Conditions editor for the Web Setup Project.

 446	 ChAPTER 8	 Debugging and Deploying

	 14. Select Search For Browscap under Search Target Machine. View the Properties window.
Change the FileName property to look for the file browscap.ini.

	 15. Rebuild the Web Setup Project (right-click and select Rebuild).

	 16. Return to the directory in which the MSI file exists. Rerun the MSI file. This time, the
computer should meet the setup requirements because the Browscap.ini file exists in
the Windows folder.

Note  insTALLATiOn issUEs

Depending on your environment, you might run into additional issues. If, for example,
you are running Windows Vista and IIS 7.0, you need an IIS 6-compatible metabase for
the IIS condition to validate. You can tweak the condition or add the IIS 6 metabase to
IIS 7.0 from Control Panel (classic view) | Programs And Features | Turn Windows Feature
On Or Off | Internet Information Services | Web Management Tools | IIS 6 Management
Compatibility. Another issue is security in Windows Vista and Windows 7. You might have
to run the Setup.exe file (and not the MSI file) by right-clicking Setup.exe and selecting
Run As Administrator.

	 17. On the Select Installation Address page, notice that you have the opportunity to select
the website, virtual directory, and application pool. Choose a unique virtual directory
name and make note of it. Click Next.

	 18. Finish walking through the installation steps.

	 19. Open the Internet Information Services console (Control Panel | Administrative Tools
| Internet Information Services [IIS] Manager). Find the virtual directory in which you
installed the website. Verify that the pages, code-behind files, and images exist.

As you can see, deploying a website can be as easy as installing a Windows Forms applica-
tion. Although this process takes you through a manual installation of a Windows Installer
package, you can also deploy the MSI file in an automated manner.

Lesson Summary
■ Web Setup Projects allow you to create executable Setup.exe files and Windows Installer

packages (MSI files) that administrators can use to easily deploy your applications to a
web server.

■ The Copy Web tool can synchronize a website between a remote server and your local
computer. This is useful if you want to do deployment and testing on your local computer
and then upload the website to a remote web server. The Copy Web tool can also be use-
ful in environments with multiple developers because it detects versioning conflicts.

■ Precompiling a website removes the delay that occurs when ASP.NET compiles an
application after the first user request. To precompile a website, use the Publish
Web Site tool.

 Lesson 3: Deploying Websites ChAPTER 8 447

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Deploying Websites.” The questions are also available on the companion CD in a practice
test, if you prefer to review them in electronic form.

Note  AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You need to add a registry entry to make your application function. In which phase of
the Web Setup Project should you add the registry entry?

	 A. Install

	 B. Commit

	 c. Rollback

	 D. Uninstall

	 2. You need to make a change to an operating system–related registry entry to make your
application function. You want to ensure that you remove this change if setup is cancelled
or the application is removed from the computer. In which phases should you undo your
registry modification? (Choose all that apply.)

	 A. Install

	 B. Commit

	 c. Rollback

	 D. Uninstall

	 3. Which of the following deployment tools enables multiple developers to work on a site
simultaneously while detecting potential versioning conflicts?

	 A. A setup project

	 B. A Web Setup Project

	 c. The Copy Web tool

	 D. The Publish Web Site tool

	 4. Which of the following deployment tools has the potential to improve responsiveness
of the website to end users?

	 A. A setup project

	 B. A Web Setup Project

	 c. The Copy Web tool

	 D. The Publish Web Site tool

 448	 ChAPTER 8	 Debugging and Deploying

Case scenarios

In the following case scenarios, you apply what you’ve learned in this chapter. If you have diffi-
culty completing this work, review the material in this chapter before beginning the next chapter.
You can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Debugging
You are an application developer for Fabrikam, Inc., a financial services company. You have been
told that users are receiving errors on certain pages in the site. You need to turn off the detailed
errors in production and direct users to a default error page. However, administrators executing
code directly on the server should still be able to see the errors.

You also need to debug these errors. You cannot reproduce them on your machine.
Therefore, you need to debug them against the staging server.

Answer the following questions based on the scenario just defined.

	 1. How will you disable transmitting error detail to users of the site?

	 2. How will you implement a default error page for users?

	 3. How will you ensure that errors are still available for administrators to view?

	 4. How can you debug against the staging environment?

	 5. How can you apply these settings when you publish the web application in the future,
while keeping the current settings for use in your development environment?

Case Scenario 2: Troubleshooting
You are an application developer for Fabrikam, Inc., a financial services company. The configura-
tion changes you made to your application in the previous scenario have been very successful.
However, you still have one persistent issue that you cannot seem to solve in development or
staging. Therefore, you want to turn tracing on for the specific page and view the results by
accessing the page from the server. In addition, your manager has asked you to begin moni-
toring key events in the system to verify the application’s health.

Answer the following questions based on the scenario just defined.

	 1. How should you configure tracing for the issue?

	 2. How should you enable health monitoring for your application?

 Suggested Practices ChAPTER 8 449

Case Scenario 3: Deploying a Website
You are a developer for Contoso, Ltd, a video streaming company. You are the sole developer
of the company’s external website, which allows customers to rent and view videos online. The
reliability of the application is critical, so the quality assurance team must test any changes you
make on a staging server before you make changes to the production web server.

You frequently work from your home. Unfortunately, Contoso’s virtual private network (VPN)
is unreliable, so you must do your development on your laptop computer. You can only access
the staging and production web servers from the internal network or the VPN, but that’s not a
problem because you don’t need to make updates to those servers very frequently. Additionally,
your Internet connection is a low-bandwidth cellular link, so you need to avoid sending large
updates across the connection.

Answer the following questions.

	 1. Which tool would you use to update the staging server?

	 2. Which tool should the quality assurance people use to update the production server?

suggested Practices

To successfully master the exam objectives presented in this chapter, complete the
following tasks.

Debug a Website
For this task, you should complete the first practice to gain experience working with remote
debugging. Practice 2 helps with client script debugging.

■ Practice 1 Find some ASP.NET code that matches code deployed on a development
server. Deploy the remote debugging tool to the development server. Run the remote
debugging tool from the server. Use Visual Studio to open the code, attach to the
running server process, and step into code based on a request.

■ Practice 2 Find (or write) some code that contains client-side JavaScript. You can find
appropriate code on this book’s CD (in the samples for Chapters 7 and 8. Open the code
in Visual Studio. Run the webpage in a browser. Configure Internet Explorer to allow
script debugging. Use Visual Studio to connect to the browser’s process and step into
the client-side code.

 450	 ChAPTER 8	 Debugging and Deploying

Troubleshoot a Website
For this task, you should complete the first item for practice with tracing. The second practice
should help with health monitoring.

■ Practice 1 Turn on tracing for one of your existing websites. Be sure to do so only in a
test environment. Review the trace data about your pages. Look carefully and determine
whether there are unexpected results.

■ Practice 2 Turn on health monitoring for one of your existing websites. Again, be sure
to do so only in a test environment. Review the data logged over a few days and assess
the results.

Publish a Web Application
For this task, complete at least Practices 1 and 2. If you want experience publishing to a public
hosting provider, complete Practice 3 as well.

■ Practice 1 Complete the one-click publishing walkthroughs listed at
http://msdn.microsoft.com/en-us/library/dd394698.aspx.

■ Practice 2 Configure an IIS Web server to support one-click publishing. For detailed
instructions, read “Configuring MSDeploy in IIS 7” at http://william.jerla.me/post
/2010/03/20/Configuring-MSDeploy-in-IIS-7.aspx.

■ Practice 3 Publish a database-driven web application to a public hosting provider
that supports one-click publishing. Although none of them are free, Microsoft
provides a list of hosting providers at http://www.asp.net/find-a-hoster.

Use a Web Setup Project
For this task, you should complete at least Practices 1 and 2 to get a solid understanding of
how to use Web Setup Projects. If you want a better understanding of how applications are
distributed in enterprises and you have sufficient lab equipment, complete Practice 3 as well.

■ Practice 1 Create a Web Setup Project that prompts the user to provide database
connection information, and then stores the connection information as part of a con-
nection string in the Web.config file.

■ Practice 2 Using the most recent real-world application you created or one of the
applications you created for an exercise in this book, create a Web Setup Project.
Deploy the Web Setup Project to different operating systems, including Windows
2000, Windows XP, Windows Server 2003, and Windows Server 2008. Verify that the
deployed application works on all platforms. If it does not work, modify your Web
Setup Project to make it work properly. Make note of how the Web Setup Project
handles computers that lack the .NET Framework 4.

■ Practice 3 Create a Web Setup Project and generate a Windows Installer file. If you
have sufficient lab equipment, use Active Directory software distribution to distribute
the website automatically to multiple servers.

 Take a Practice Test ChAPTER 8 451

Use the Copy Web Tool
For this task, you should complete both practices to gain experience with using the Copy
Web tool.

■ Practice 1 Use the Copy Web tool to create a local copy of your most recent real-world
website. With your computer disconnected from the network, make an update to the web-
site. Then use the Copy Web tool to update that single file on the remote web server.

■ Practice 2 Using a local copy of a website, make an update to different files on both
your local copy and the remote website. Then use the Copy Web tool to synchronize
the local and remote websites.

Precompile and Publish a Web Application
For this task, you should complete the practice to gain an understanding of the performance
benefits that can be realized by precompiling an application.

■ Enable tracing in a website. Then modify the Web.config file and save it to force the
application to restart. Open a page several times, and then view the Trace.axd file to
determine how long the first and subsequent requests took. Next, use the Publish Web
Site tool to precompile the application. Open a page several times, and then view the
Trace.axd file to determine how long the first and subsequent requests took with the
precompiled application.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just the lesson review questions in this chapter, or you can test yourself on all the
70-515 certification exam objectives. You can set up the test so it closely simulates the experi-
ence of taking a certification exam, or you can set it up in study mode so you can look at the
correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 9 453

C h A P T E R 9

Working with Client-Side
Scripting, AJAX, and jQuery
Rich Internet applications (RIAs) are becoming the norm on the web. Users expect a high

degree of interactivity when working with modern websites—the same interactivity that
was once only expected of applications running on the desktop. This includes functionality
such as modal dialog boxes and pop-up windows, partial screen (or page) updates, con-
trols that dynamically collapse or resize on a page, application progress indicators, and
much more.

Microsoft ASP.NET includes tools for building web applications that provide this level of
richness. These tools include controls for handling client-based interactivity, an extensive library
for working with client-side JavaScript, a programming model for creating your own JavaScript–
enabled controls, and newly added support for the jQuery library. This chapter covers these
scenarios and shows you how to enrich your users’ experiences with your websites.

Exam objectives in this chapter:
■	 Implementing Client-Side Scripting and AJAX

■ Implement ASP.NET AJAX.
■ Add dynamic features to a page by using JavaScript.
■ Handle JavaScript events.
■ Alter a page dynamically by manipulating the DOM.
■ Implement AJAX by using jQuery.

Lessons in this chapter:
■	 Lesson 1: Creating AJAX-Enabled Web Forms 455
■	 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library 471
■	 Lesson 3: Implementing jQuery 520

 Contents

 ChAPTER 9 453

 Working with Client-side scripting, AjAX, and jQuery 453
Before You Begin . 454

Lesson 1: Creating AJAX-Enabled Web Forms . 455

Introducing ASP.NET AJAX 456

The AJAX Server Controls 457

Lesson Summary 469

Lesson Review 470

Lesson 2: Creating Client Scripts with the Microsoft AJAX Library 471

Creating Your Own Client Scripts 472

Creating Your Own Client Callbacks 480

Working with the Microsoft AJAX Library 483

Building Client Capabilities with AJAX 494

Lesson Summary 518

Lesson Review 518

Lesson 3: Implementing jQuery . 520

Introducing the jQuery Library 521

Selecting and Traversing the DOM 524

Handling Client-Side Events 530

Adding Effects and Animations to a Page 533

Implementing AJAX with jQuery 534

Lesson Summary 545

Lesson Review 546

Case Scenarios . 547

Case Scenario 1: Using the ASP.NET AJAX Extensions 548

Case Scenario 2: Using the Microsoft AJAX Library 548

Case Scenario 3: Using jQuery 549

Suggested Practices . 549

Add Partial-Page Update Support to a Page 549

Create Client Code by Using the Microsoft AJAX Library 550

Write Interactive Client Code with jQuery 550

Take a Practice Test . 550

 454	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
with Microsoft Visual Studio 2010 by using Microsoft Visual Basic or Microsoft Visual C#. In
addition, you should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Using Hypertext Markup Language (HTML) and client-side scripting

■ Creating ASP.NET websites and forms

■ Adding web server controls to a webpage

real World

Mike Snell

I am fortunate enough to have been around when building web applications first
took off. The early applications we built were nothing more than hyperlinked HTML

and some images. Soon we added server-side script and database connectivity to
enable more meaningful scenarios.

The power of having a server-based, near-zero–deployment, ubiquitous, cross-
platform application environment has been (and still is) the driving force that
pushes us to build web applications. There has always been, however, a major gap
in the richness of the user interface (UI) between a desktop application accessing
the web and a web browser. We’ve seen many attempts to close this gap, including
Java, Microsoft ActiveX, ActiveX Documents, Dynamic Hypertext Markup Language
(DHTML), and others.

It remains to be seen whether this gap will ever really be closed. However,
Asynchronous JavaScript and XML (AJAX) and jQuery both provide a nice com-
promise between a rich client and a web-only application. These technologies
extend what is capable on the client without breaking the paradigm of a web
application. AJAX is rooted in the web and, like its counterparts HTML and DHTML,
it is standards driven, cross platform, and ubiquitous. This makes it a great choice
for adding client interactivity to applications that must remain true to the concept
of a website.

 Lesson 1: Creating AJAX-Enabled Web Forms ChAPTER 9 455

Lesson 1: Creating AjAX-Enabled Web Forms

Much of what makes Web 2.0 applications so appealing to users is provided by AJAX. This
technology enables increased user interactivity when an application running in a browser
is used, because the application requires fewer page refreshes. The result is a better user
experience on the web.

AJAX is a platform-independent technology that works with web applications running in
Windows Internet Explorer, Firefox, Safari, and other browsers. It is an ECMAScript-compliant
technology. (ECMAScript is the foundational language from which JavaScript and JScript are
derived—see http://en.wikipedia.org/wiki/ECMAScript.) This makes AJAX a logical choice for
providing a richer UI for browser-based, cross-platform web applications.

You can add AJAX to any web application. Like other web standards such as HTML, it is
not specific to ASP.NET. However, ASP.NET does provide many tools that make building AJAX-
enabled webpages easier. These include controls to manage partial-page updates, a code library
that enables object-oriented development on the client with JavaScript, the ability to call web
services from client code, the ability to create your own AJAX-enabled controls, and more.

This lesson covers building interactive web forms by using the AJAX controls built into
ASP.NET 4. The JavaScript object library and building AJAX-enabled controls are covered in
Lesson 2 of this chapter.

After this lesson, you will be able to:
■	 Understand and use the AJAX Extensions controls built into ASP.NET.
■	 Create a web form that performs partial-page updates to the server (without

a full-page refresh).
■	 Display the progress of a request that is being processed on the server.
■	 Periodically update portions of a webpage based on a time interval.

Estimated lesson time: 40 minutesD
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 456	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Introducing ASP.NET AJAX
ASP.NET includes many components that help to enable AJAX features for developers. These
components have a common goal: to improve the user’s experience by providing developers
with the ability to create more responsive web applications. The tools are many and varied,
and choosing the appropriate approach depends on your specific needs. The following are
the ASP.NET components related to AJAX capabilities:

■ microsoft AjAX Library The Microsoft AJAX Library is a set of JavaScript files that make
programming client-side JavaScript easier. It provides an object-oriented model that
supports AJAX technology when ASP.NET is being used. The library includes support for
classes, namespaces, event handling, data types, and more. It also has support for error
handling, debugging, and globalization.

The library combines JavaScript features and DHTML. Like JavaScript, it works across
browsers and across platforms. This library is used by ASP.NET and the AJAX Control
Toolkit. You can also use this library to extend your own controls with AJAX behaviors.

■ AsP.nET AjAX server controls ASP.NET ships with a set of AJAX server controls that
can be embedded in your webpages to enable partial-page updates, communicate with
a server process to indicate progress, and periodically update portions of a page.

■ jQuery jQuery is a code library that makes it easier to write client-side scripts and AJAX
applications. It is actually an open source library (see http://jquery.com/). ASP.NET
includes the scripts for jQuery and jQuery IntelliSense support within the Visual Studio
IDE. Lesson 3 of this chapter covers implementing jQuery in ASP.NET.

■ AjAX Control Toolkit The AJAX Control Toolkit is a set of community-created and
supported controls that show off the power of AJAX. You can use these controls in your
webpages to enable many client-side features typically found only in applications run-
ning on the desktop, controls such as masked edit boxes, slider controls, filtered text
boxes, modal pop-up windows, and much more.

Note  ThE AjAX COnTROL TOOLkiT

The AJAX Control Toolkit is an extension of Visual Studio and ASP.NET. It is therefore not
covered in this book or on the exam. There is a new version that works with ASP.NET 4.
You can learn more by going to http://www.asp.net/ajax/.

■ Client-side web service support ASP.NET and AJAX provide support for calling
web services asynchronously from the client by using JavaScript Object Notation
(JSON) serialization and XML. This functionality is covered in Chapter 10, “Writing
and Working with HTTP Modules and Web Services.”

■ AsP.nET standard controls The controls that ship with ASP.NET also make use of
JavaScript on the client. It is easy to forget about this because you are not required
to write any JavaScript to get this interactivity. Examples of ASP.NET controls that use
JavaScript include the validation controls, the Web Part controls, the menu control,
the TreeView control, and the Calendar control.

 Lesson 1: Creating AJAX-Enabled Web Forms ChAPTER 9 457

Uses and Benefits of ASP.NET AJAX
The features built into ASP.NET AJAX allow you to provide users with a richer experience than
that of a standard, all-server-side web application. The following lists some of the key usage
scenarios and related benefits of building web applications with ASP.NET AJAX:

■ Partial-page updates This feature allows you to define an area of a webpage to post
back and update independently from the rest of the page. Only the updated content
will be refreshed when the request completes. This ensures that the user stays within
his or her current context. It also gives users the feeling that they are interacting with
the application (and not a server).

■ Client-side processing This interactivity provides immediate feedback and responsive-
ness to users. With client script, you can enable functionality such as collapsible areas of
a page, tabs on a webpage, data sorting on the client, and much more.

■ Desktop-like Ui With AJAX, you can provide users with controls such as modal dialog
boxes, progress indicators, masked edit boxes, tooltips, and more. This helps make the
user experience between web and rich desktop applications much more similar.

■ Progress indication This allows you to track the progress of a server-side process and
continuously update the user. This gives users the feeling that they are in control and
assures them that the application is still processing (as with a desktop application).

■ improved performance and higher scale You can achieve increased performance and
scale by processing portions of a page on just the client. You then take advantage of
the user’s machine, which takes the load off the server. This results in real and perceived
performance and scalability increases.

■ Web service calls from the client This allows you to call back to the server directly
from client script running in a browser and then show the results to the user (often by
using partial-page updates).

■ Cross-browser, cross-platform support JavaScript, AJAX, and jQuery are all supported
on multiple browsers and multiple platforms. This allows you to write interactive applica-
tions that run in more client environments than the average desktop application.

The AJAX Server Controls
The controls that ship with ASP.NET are meant to provide two basic AJAX features: partial-
page updates and server-to-client progress updates. You work with these controls much as
you do with other ASP.NET controls. You can drag them onto your page from the Toolbox,
manipulate their properties, and code against them. Figure 9-1 shows a model of the AJAX
Extensions controls in ASP.NET.

 458	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

FigURE 9-1 The AJAX Extensions controls in ASP.NET provide partial-page update and server progress
updates.

Each of these controls inherits from the System.Web.UI.Control class. This ensures that they
work in a similar manner as other ASP.NET web controls. The sections that follow cover each
of these controls in detail.

The ScriptManager and ScriptManagerProxy Controls
Each page you write that uses ASP.NET AJAX requires one (and only one) instance of a
ScriptManager control. The ScriptManager control is responsible for pushing the Microsoft
AJAX Library down to the client when your page is requested. It also manages partial-page
updates, progress indicators, and more.

You add the ScriptManager control to your page source. It does not have a visual repre-
sentation. It is simply a control used to manage AJAX processing. The basic page markup
for a ScriptManager control in Source view looks as follows.

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

By default, the ScriptManager control’s EnablePartialRending property is set to true. This
indicates that the page supports partial-page updates. You can use this property to turn this
feature off if needed.

The ScriptManager control is also used to register custom scripts with the Microsoft AJAX
Library. In this way, if you write a script, it can be registered and managed with the Microsoft
AJAX Library. This is covered in Lesson 2 of this chapter. Similarly, you can use the ScriptManager
control to register web service method calls from the client. This is covered in Chapter 10.

 Lesson 1: Creating AJAX-Enabled Web Forms ChAPTER 9 459

USING AJAX WITH MASTER PAGES AND USER CONTROLS
You will often need to support AJAX in a user control you write or directly in the master page of
a site. This presents an issue, because a page can contain only a single ScriptManager control.
Having one inside your user control and another inside the page that consumes the user control,
for example, would be a problem. To overcome this issue, you can use the ScriptManagerProxy
control.

The ScriptManagerProxy control can be used either by child pages that use a master page
that already defines a ScriptManager control or by user and custom controls that you write. You
use it much the same way you would a ScriptManager control. You can register scripts that are
specific to the child page or control that you are writing. ASP.NET takes care of the rest.

The UpdatePanel Control
The UpdatePanel control allows you to define areas of a page that should post back to the server
independent of the rest of the page. This allows the client to work more independently. Rather than
the entire page being requested and thus refreshed on return, with partial-page updates, you can
post portions of a page to the server and receive updates to only those portions. In this way, the
user does not see a full-screen refresh and does not lose context where he or she is on the page.

It is important to note that partial-page updates give the illusion of running on the client
side. However, they do not actually run on the client side. Rather, they are smaller, asynchronous
postbacks to the server. The ScriptManager control manages the communication between this
call and its return message.

The UpdatePanel control is a container for other controls. The controls you put inside the
UpdatePanel control that cause a postback to the server will be managed as partial-page updates.

As an example, consider a GridView control that allows users to page through data. By
default, each time the user selects another page of data, the entire webpage is refreshed and
redisplayed. If you embed the GridView control inside an UpdatePanel, you can still process the
data paging on the server. However, you now eliminate the full-page updates on the client.
The following shows the markup of an UpdatePanel that includes a GridView control.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
 DataKeyNames="SupplierID" DataSourceID="SqlDataSourceNwd" Width="600"
 AllowPaging="True">
 <Columns>
 <asp:BoundField DataField="SupplierID" HeaderText="ID"
 InsertVisible="False" ReadOnly="True" SortExpression="SupplierID" />
 <asp:BoundField DataField="CompanyName" HeaderText="Company"
 SortExpression="CompanyName" />
 <asp:BoundField DataField="City" HeaderText="City"
 SortExpression="City" />
 <asp:BoundField DataField="Phone" HeaderText="Phone"
 SortExpression="Phone" />
 <asp:BoundField DataField="ContactName" HeaderText="Contact"
 SortExpression="ContactName" />
 </Columns>

 460	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

 </asp:GridView>
 <asp:SqlDataSource ID="SqlDataSourceNwd" runat="server"
 ConnectionString="<%$ ConnectionStrings:NwdConnectionString %>"
 SelectCommand="SELECT [SupplierID], [CompanyName], [City], [Phone],
 [ContactName] FROM [Suppliers]">
 </asp:SqlDataSource>
 </ContentTemplate>
</asp:UpdatePanel>

CONTROLLING PARTIAL-PAGE UPDATES
You can combine multiple UpdatePanel controls on the same page. Each can update portions
of the page independently or in a coordinated fashion. You might also have controls that
cause standard postbacks on the same page as those that cause asynchronous postbacks. In
each of these cases, you need to be able to control how and when the page elements update.
The UpdatePanel exposes the UpdateMode and ChildrenAsTriggers properties for controlling
when a postback should occur to trigger an update of content contained in an UpdatePanel.

The first property, UpdateMode, has two possible settings: Always and Conditional. The
Always value is used to indicate that the content of an UpdatePanel should be updated on
every postback that originates from the page. This includes other asynchronous updates that
are the result of another UpdatePanel on the page as well as those that are simply standard
postbacks on the page.

The Conditional value of the UpdatePanel.UpdateMode property is more complex. It
indicates that an update to the UpdatePanel is conditional on something else on the page.
For example, consider the case of nested UpdatePanels. If you set the nested UpdatePanel
control’s UpdateMode property to Conditional, it will only be updated when the parent
UpdatePanel causes a postback.

Another way to trigger an update to an UpdatePanel with an UpdateMode set to Conditional
is to explicitly call its Update method from server-side code. This might be done as the result of
another asynchronous update on the page.

If you set the UpdateMode to the Conditional value, by default nested UpdatePanel controls
will not cause an update to their parent. You can change this behavior by setting the outer
UpdatePanel control’s ChildrenAsTriggers property to true. When you do so, any updates
triggered by the nested UpdatePanel will also trigger an update to the parent UpdatePanel.

You can also explicitly define the controls that you want to use to trigger an update to an
UpdatePanel. These controls can be inside or outside the UpdatePanel, and the update will
be triggered for both Conditional mode and Always mode. When you add a trigger to an
UpdatePanel, when a user triggers a postback from the trigger control, the UpdatePanel
content will also post back and be refreshed.

As an example, consider the GridView control discussed previously. This control is inside
an UpdatePanel, as shown in Figure 9-2. It updates itself when a user pages through the data.
Now, notice that the page also supports a search function. The search is triggered by a button
named ButtonSearch (also displayed in Figure 9-2).

 Lesson 1: Creating AJAX-Enabled Web Forms ChAPTER 9 461

FigURE 9-2  An ASPX page with a search button and a GridView control.

You might want the search to also result in a partial-page update to GridView. To make
this happen, you can add a trigger to the UpdatePanel that contains the GridView control. A
trigger can be defined directly in markup (or through the Property window in Design view or
in your code). The following markup shows an example.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="ButtonSearch" EventName="Click" />
 </Triggers>
 <ContentTemplate>

 ... Grid View markup ...

 </ContentTemplate>
</asp:UpdatePanel>

Notice that the trigger is of type AsyncPostBackTrigger. It contains both the ID of the
control that causes the postback and the name of the trigger control’s event that causes the
postback. You can add more than one trigger to the UpdatePanel as well. In this example,
clicking the search button will update the GridView as a partial-page update.

 462	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

PARTIAL-PAGE UPDATES AND ERROR HANDLING
You can handle errors that occur during a partial-page update by writing a handler for the
AsyncPostBackError event of the ScriptManager control. This event is raised on the server when
an asynchronous postback throws an error. You can also set the AsyncPostBackErrrorMessage of
the ScriptManager control to an error message to be displayed to the user when a partial-page
update error occurs.

The UpdateProgress Control
The UpdateProgress control is used to provide information in the form of graphics or text that is
displayed to the user during a partial-page update. For example, you might display an animated
GIF image that shows that the system is processing while the user waits for the partial-page
update to complete.

You can add an UpdateProgress control to an UpdatePanel control by nesting it inside the
UpdatePanel control’s ContentTemplate tag. This effectively associates the UpdateProgress
control with the UpdatePanel. You then define the information you want to display to the user
inside the ProgressTemplate tag of the UpdateProgress control. Content inside this element can
be an image, text, or similar HTML content. The content will be rendered to the browser as a
hidden <div> tag that will be shown when the partial-page update is executed. The following
markup shows an example.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:GridView ID="GridView1" runat="server">
 </asp:GridView>
 <asp:UpdateProgress ID="UpdateProgress1" runat="server">
 <ProgressTemplate>
 <div style="font-size: large">Processing ...</div>
 </ProgressTemplate>
 </asp:UpdateProgress>
 </ContentTemplate>
</asp:UpdatePanel>

The UpdateProgress control can also be associated directly with an UpdatePanel control
through the AssociatedUpdatePanelId property. You set this property to the ID value of the
UpdatePanel control to which you want to associate.

If you do not set the AssociatedUpdatePanelId property of the UpdateProgress control,
any UpdatePanel that causes an asynchronous postback will trigger the UpdateProgress
control. In this way, you can use a single UpdateProgress control for multiple UpdatePanels
on a single webpage.

By default, the UpdateProgress control is displayed a half-second after the partial-page
update starts. You can set the DisplayAfter property to the number of milliseconds to wait
before displaying the UpdateProgress content. This can prevent the control from showing
for very quick operations and show it only for longer operations.

 Lesson 1: Creating AJAX-Enabled Web Forms ChAPTER 9 463

More INfo  CAnCELing An AsynChROnOUs POsTbACk

You might need to allow a user to cancel an asynchronous postback. You could do so by
providing a Cancel button inside the UpdateProgress control. The Microsoft AJAX Library
supports this through the abortPostBack method of the PageRequestManager class. For more
information, see http://msdn.microsoft.com/en-us/library/system.web.ui.updateprogress.aspx.

The Timer Control
The ASP.NET Timer control is an AJAX control that can be used to update portions of a page on
a periodic, timed basis. This is useful if you need to update an image such as an advertisement
on a webpage or perhaps a value such as a stock ticker or a news ticker. The Timer control can
also be used to simply run code on the server on a periodic basis.

You can add a Timer control directly to an UpdatePanel control. The Timer will then auto-
matically trigger a partial-page update of the UpdatePanel based on a time defined by the
Timer control’s Interval property (in milliseconds). The following shows an example of a Timer
control embedded in an UpdatePanel.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Image ID="Image1" runat="server"
 ImageUrl="~/images/contoso.png" />
 <asp:Timer ID="Timer1" runat="server"
 Interval="5000" ontick="Timer1_Tick">
 </asp:Timer>
 </ContentTemplate>
</asp:UpdatePanel>

In this example, the Timer is set to fire every five seconds. When it does, the Timer control’s
Tick event is raised on the server and the content of the UpdatePanel is refreshed. In this case,
the Tick event simply cycles images to be displayed to the user. When you use a Timer with an
UpdatePanel, the Timer starts again after the page has completed its postback to the server.

A Timer can also be used outside of an UpdatePanel control. As with UpdatePanel, the
Timer control requires the ScriptManager control. In this way, you can use the Timer control
to update more than one UpdatePanel on the page or the entire page itself. To associate
a Timer control that is outside an UpdatePanel to an UpdatePanel on the page, you use a
trigger, as discussed earlier.

Note that in the scenario in which the trigger is outside an UpdatePanel, the timed interval
resets as soon as it fires. It does not wait for the postback to complete. This can provide more
exact timing of intervals. However, if a postback is still processing when the Timer fires, the
first postback is canceled.

 464	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Quick Check
	 1. Which of the AJAX Extensions controls allow you to display an update to a portion

of a webpage?

	 2. If you were building a user control that required ASP.NET AJAX functionality,
which control would you add to the user control markup?

	 3. How do you indicate that a control outside an UpdatePanel should trigger a
partial-page update to the UpdatePanel?

Quick Check Answers
	 1. The contents inside an UpdatePanel are updated independently of the rest of the

page when a partial-page update is performed.

	 2. You would have to add a ScriptManagerProxy control to the user control to ensure that
the user control can work with pages that already contain a ScriptManager control.

	 3. To connect a control that is outside an UpdatePanel to an UpdatePanel, you register
it as an AsyncPostBackTrigger in the Triggers section of the UpdatePanel markup.

PrActIcE	 building an AjAX-Enabled Webpage

In this practice, you create a webpage and enable partial-page updates. You also add support
for notifying the user when the application connects to the server. Finally, you add a Timer
control to periodically update a second portion of your page.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Enabling Partial-Page Updates

In this exercise, you create a new ASP.NET website and define support for partial-page updates.

	 1. Open Visual Studio and create a new ASP.NET website named AjaxExample in either
C# or Visual Basic.

	 2. Add the northwnd.mdf database file to the App_Data folder of the site. The database
file can be found in the sample files installed from the CD inside the App_Data folder
for this exercise. This database file is a Microsoft SQL Server Express database that
contains a copy of the Northwind sample database.

 Lesson 1: Creating AJAX-Enabled Web Forms ChAPTER 9 465

	 3. Open Default.aspx in Source view. Delete the contents inside the BodyContent control.

	 4. Add a ScriptManager control to the body of the page from the AJAX Extensions tab of
the Toolbox.

	 5. Add text to the page to serve as a title followed by a horizontal line. Your markup
inside the BodyContent control might look as follows.

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>

 <h2>Suppliers</h2>
 <hr />

</asp:Content>

	 6. Add an AJAX UpdatePanel control to the page from the AJAX Extensions tab of the
Toolbox.

	 7. Switch to Design view and add a GridView control inside the UpdatePanel. Design view
provides UI support for binding the GridView to the database table, which you will do
in the next step.

	 8. Bind the GridView to the vendors stored in the Suppliers table in the northwnd.mdf
database. To start, click the smart tag in the upper-right section of the GridView con-
trol to open the GridView Tasks window. From here, click the ChooseDataSource list
and select New Data Source. This opens the Data Source Configuration Wizard.

	 a. In the first step of the wizard, select Database and enter the ID for the data source
as sqlDatasourcenwd. Click OK to open the Choose Your Data Connection page.

	 b. Next, select northwnd.mdf from the Connection list and click Next. (If the
northwind.mdf option does not appear in the Connection list, select New
Connection and create a connection to the northwnd.mdf file.)

	 c. On the next page, choose to save the connection string and name it
nwdConnectionstring. Click Next to continue.

	 d. Next, configure the SQL statement to access the Suppliers table. Select the following
fields: SupplierID, CompanyName, ContactName, City, and Phone. Sort the query by
the CompanyName field (click ORDER BY and select CompanyName in the Sort By
list). Click Next to continue, and then close the wizard by clicking Finish.

	 9. Again, open the GridView Tasks window by using the smart tag. Select the Enable Paging
check box.

	 10. Run the application and view the Default.aspx page in a browser. Click the data page
numbers to move between data pages. Notice that only the grid is being updated and
not the entire page; this is because the UpdatePanel control wraps requests for data
and replaces the markup for the grid rather than refreshing the entire page.

 466	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

	 11. Next, add a section at the top of the form (outside of the UpdatePanel) that allows the
user to enter a new contact and have it added to the database. Your markup code
might look as follows.

<div style="margin: 20px 0px 20px 40px">
 Company

 <asp:TextBox ID="TextBoxCompany" runat="server" Width="200"></asp:TextBox>

 Contact Name

 <asp:TextBox ID="TextBoxContact" runat="server" Width="200"></asp:TextBox>

 City

 <asp:TextBox ID="TextBoxCity" runat="server" Width="200"></asp:TextBox>

 Phone

 <asp:TextBox ID="TextBoxPhone" runat="server" Width="200"></asp:TextBox>

 <asp:Button ID="ButtonSave" runat="server" Text="add"
 style="margin-top: 15px" onclick="ButtonSave_Click" />
</div>

	 12. Next, define an InsertQuery for the SqlDataSource control. You do so by selecting the
SqlDataSource control from the Default.aspx page in Design view. Then click the ellipsis
button next to the InsertQuery property in the Properties pane. This will launch the
Command And Parameter Editor.

	 a. First, add parameters for company, contact, city, and phone. Set the source for each
of these parameters to a Control, and select the ControlID of the corresponding
TextBox. This will bind the TextBox controls to an insert query.

	 b. Next, use the Query Builder button to define an insert query for the Suppliers table.
Your markup for the SqlDataSource control should look similar to the following.

<asp:SqlDataSource ID="SqlDataSourceNwd" runat="server"
 ConnectionString="<%$ ConnectionStrings:NwdConnectionString %>"
 SelectCommand="SELECT [SupplierID], [CompanyName], [ContactName], [City],
[Phone] FROM [Suppliers] ORDER BY [CompanyName]"
 InsertCommand="INSERT INTO Suppliers(CompanyName, ContactName, City, Phone)
VALUES (@company, @contact, @city, @phone)">
 <InsertParameters>
 <asp:ControlParameter ControlID="TextBoxCompany" Name="company"
 PropertyName="Text" />
 <asp:ControlParameter ControlID="TextBoxContact" Name="contact"
 PropertyName="Text" />
 <asp:ControlParameter ControlID="TextBoxCity" Name="city"
 PropertyName="Text" />
 <asp:ControlParameter ControlID="TextBoxPhone" Name="phone"
 PropertyName="Text" />
 </InsertParameters>
</asp:SqlDataSource>

 Lesson 1: Creating AJAX-Enabled Web Forms ChAPTER 9 467

	 13. Next, add a Click event to the ButtonSave button defined in step 11 (onclick="ButtonSave_
Click"). This Click event will execute the insert query defined in step 12 and result in a new
row being added to the Suppliers table in the database. At the end of this event, rebind
the GridView control. The following code shows an example.

Sample of Visual Basic Code

Protected Sub ButtonSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 SqlDataSourceNwd.Insert()
 GridView1.DataBind()

End Sub

Sample of C# Code

protected void ButtonSave_Click(object sender, EventArgs e)
{
 SqlDataSourceNwd.Insert();
 GridView1.DataBind();
}

Note that this code is very basic. It does not validate the data entered by the user and
is therefore prone to error. It is simply an example.

	 14. Run the application and enter a row in the table. Notice that the entire page refreshes.
Add behavior to the page so that the Add button triggers a partial-page update to the
GridView control. To do so, add a trigger to the UpdatePanel control and connect
the trigger to the ButtonEnter control. The following markup shows an example.

<asp:UpdatePanel ID="UpdatePanelVendors" runat="server">
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="ButtonSave" EventName="Click" />
 </Triggers>
 <ContentTemplate>
 <asp:GridView ...

	 15. Run the application again and notice that now only GridView updates when a new row
is added.

ExErcIsE	2	 Adding a Progress Indicator

In this exercise, you add functionality that provides a notice to the user when the page is
being partially updated on the server.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 1, Exercise 1 project in the sample files installed from the CD.

	 2. Open Default.aspx in Source view. Add an UpdateProgress control to the UpdatePanel.
Add the control to the bottom of the panel just inside the ContentTemplate element.

 468	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

	 3. Add text inside the ProgressTemplate elements of the UpdateProgress control to
notify the user that processing is happening on the server. The following shows a
sample markup.

<asp:UpdateProgress ID="UpdateProgress1" runat="server">
 <ProgressTemplate>
 <div style="margin-top: 20px; font-size: larger; color: Green">
 Processing, please wait ...
 </div>
 </ProgressTemplate>
</asp:UpdateProgress>

	 4. The processing happens pretty fast. Therefore, add a line of code to the end of the
ButtonSave_Click event to pause the server-side processing. You can simply put
the thread to sleep for a few seconds. The following code shows an example.

Sample of Visual Basic code

System.Threading.Thread.Sleep(2000)

Sample of C# code

System.Threading.Thread.Sleep(2000);

	 5. Run the application and notice that the notification is shown to the user when you
enter a new record in the GridView control.

	 6. You might have noticed that when you add a new record, the TextBox controls
do not clear because the full page is not being updated. To fix this, add another
UpdatePanel control to your page and nest the TextBox controls and the ButtonSave
inside it. Inside the ButtonSave_Click event, set the Text property of each TextBox
control to "".

ExErcIsE	3	 Using the Timer Control

In this exercise, you add functionality that uses the Timer control. You will add an area on the
page that displays a series of graphics files by using a timed interval.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 1, Exercise 2 project in the sample files installed from the CD.

	 2. Open the Default.aspx page in Source view.

	 3. Add an UpdatePanel control to the right of the supplier data entry form. (You can
do so by creating a table with two columns.) This control will work like a rotating
advertisement. It will periodically update and show a new image from the server.

	 4. Inside the UpdatePanel control’s ContentTemplate element, add a label with the
text Advertisement. Under this text, add an image control. You can add a couple
of your own images to your project (or copy some from the sample files installed
from the CD).

 Lesson 1: Creating AJAX-Enabled Web Forms ChAPTER 9 469

	 5. Under the image control (and still inside the ContentTemplate element), add a Timer
control from the AJAX Extensions tab of the Toolbox. Set the Timer control’s Interval
attribute to 4,000 milliseconds (4 seconds).

	 6. Add an event handler for the Timer control’s Tick event. Inside this event, add code to
cycle between images (a simple if statement should suffice).

	 7. Run the application and wait until the Timer event fires. Your application should look
similar to the one shown in Figure 9-3.

FigURE 9-3 Using an UpdatePanel control and a Timer control to update portions of a page on a
periodic basis.

Lesson Summary
■ AJAX is a platform-independent, ECMAScript-compliant technology for communicating

between code running on the client and code running on the server.

■ ASP.NET includes both a set of server controls for working with AJAX and a set of client-
side JavaScript files called the Microsoft AJAX Library.

■ The ScriptManager control is required on all pages that work with the AJAX Extensions
for ASP.NET. It manages the JavaScript files sent to the client and the communication
between the server and the client.

 470	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

■ The ScriptManagerProxy control is used on pages that work with a master page that
already defines a ScriptManager control or with user controls that will be used on
pages that include a ScriptManager control.

■ The UpdatePanel control allows you to define an area within your page that can post
back to the server and receive updates independent of the rest of the page.

■ The UpdateProgress control is used to provide notice to the user that the page has
initiated a callback to the server.

■ The Timer control is used to periodically send a partial-page request (by using an
UpdatePanel control) to the server at timed intervals.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Creating AJAX-Enabled Web Forms.” The questions are also available on the companion CD
as a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You are working on a long data-entry webpage. In the middle of the page, you need
to reach out to the server to get information based on a user’s entry for a related field.
However, you do not want the user to lose his or her focus or context within the page.
Therefore, you decide to implement this feature by using the ASP.NET AJAX controls.
Which of these controls must you add to the page to enable this scenario? (Choose all
that apply.)

	 A. UpdatePanel

	 B. AsyncPostBackTrigger

	 c. ScriptManager

	 D. ScriptManagerProxy

	 2. You need to write a control that will be used across multiple pages. This control should
contain updated sales figures. The control should update itself at various intervals if a
containing page is left open. Which controls should you use to enable this scenario?
(Choose all that apply.)

	 A. UpdatePanel

	 B. Timer

	 c. ScriptManager

	 D. ScriptManagerProxy

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 471

	 3. You have an UpdatePanel control defined on a page. You need to indicate that a specified
Button control outside of the UpdatePanel should cause the UpdatePanel to execute an
update. What steps should you take?

	 A. Set the AsyncPostBackTrigger attribute of the UpdatePanel to the ID of the Button
control.

	 B. Set the AsyncPostBackTrigger attribute of the Button control to the ID of the
UpdatePanel.

	 c. Add a Trigger control to the AsyncPostBackTriggers section of the UpdatePanel.
Set the ControlID attribute of the Trigger control to the ID of the Button control.

	 D. Add an AsyncPostBackTrigger control to the Triggers section of the UpdatePanel. Set
the ControlID attribute of the AsyncPostBackTrigger control to the ID of the Button
control.

	 4. You are creating a page that contains an UpdatePanel control for partial-page up-
dates. You want to notify the user that the update is processing only if the update
takes longer than five seconds. Which actions should you take?

	 A. Add a second UpdatePanel to the page. Set it to trigger based on the first Update-
Panel. Set the contents of this UpdatePanel to read “Processing, please wait.”

	 B. Add an UpdateProgress control to the UpdatePanel. Set its DisplayAfter attribute
to 5,000. Set its ProgressTemplate contents to read “Processing, please wait.”

	 c. Add a ProgressBar control to the page. Write code on the server to call back to the
client asynchronously to update the ProgressBar control after five seconds.

	 D. Create a hidden <div> tag on your page that contains the text “Processing, please
wait.” Set the <div> tag’s ID to match that of the UpdatePanel. Set the Update-
Panel control’s Interval property to 5,000.

Lesson 2: Creating Client scripts with the microsoft
AjAX Library

It is important to note that JavaScript is not new. It is also not really Java. It is a C-based
scripting language invented by Netscape to add client scripting capabilities to a browser.
It is now supported as part of every major browser on the market. The actual language is
controlled and managed by a standards body, the European Computer Manufacturers
Association (ECMA). Because it is widely deployed and offers developers the ability to write
code on the client, it has become increasingly popular. This has been especially true in recent
years as features for communicating between the client script and server code via JSON and
XML have become prevalent and controls were created to take advantage of these features.

 472	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

However, the JavaScript language still lacks basic object-oriented concepts found in modern
programming languages. It also lacks a standard framework for developers to program against.
The Microsoft AJAX Library was written (in JavaScript) to provide these constructs. This library,
combined with the AJAX server controls, and the support for Visual Studio IntelliSense for
JavaScript makes building AJAX-enabled applications more approachable.

This lesson covers the basics of client scripting with JavaScript. It then introduces the
Microsoft AJAX Library and shows how you can use this library to add client-side function-
ality to your server controls.

After this lesson, you will be able to:
■	 Add client-side script blocks to your page and call them from client-side events.
■	 Use the ClientScriptManager class to add script to a page dynamically at run time.
■	 Register your client script with a page by using the ScriptManager class.
■	 Understand the capabilities and use of the Microsoft AJAX Library.
■	 Add AJAX support for client components and server controls.

Estimated lesson time: 40 minutes

Creating Your Own Client Scripts
Scripts that execute on the client have been around a lot longer than AJAX. Client scripts add
a client-side, dynamic nature to a web UI. It is AJAX programming, however, that has pushed
a resurgence in JavaScript on the client. You will work with the Microsoft AJAX Library in a
later section in this lesson. First, however, you learn the ways in which you can define client
script on your ASP.NET webpage. There are three basic approaches to doing so:

■ Define a script block on your webpage. This script block might define client-side code
or an include attribute that references a JavaScript (.js) file.

■ Use the ClientScriptManager class to dynamically add JavaScript to a page at run time
based on server-side processing.

■ Use the ScriptManager server control to register JavaScript with your webpage.

These methods represent a more traditional approach to working with client-side script.
Each is covered in the following sections.

Adding Script Blocks to an ASP.NET Webpage
You can add client script to a webpage through a script block that includes code or through an
include attribute that references a JavaScript (.js) file. Adding JavaScript to a webpage has been
done for a long time. This is the traditional method of working with JavaScript on a webpage. It
enables client-side functionality, but it does not necessarily take advantage of the features built
into the Microsoft AJAX Library. The JavaScript elements are not created dynamically in this case,
and they do not require the advanced features provided by the Microsoft AJAX Library. However,
this method can be useful when you need basic JavaScript functionality for your page.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 473

As an example, suppose you want to provide client-side functionality that hides an area of a
webpage when the user toggles an open/close button. This provides the user with control over
what is shown on his or her UI. To enable this scenario, you must first lay out the webpage.

In this example, the webpage might contain a titled area that includes a button for opening
and closing an area on the page. This title area should always be shown so that the user can
reopen the area if required. Next, you need to define an area of the page that contains content
to be shown or hidden. Both of these areas can be defined by <div> tags. The following markup
shows an example inside a content area of a child page that uses a master page.

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div>
 <div style="width: 200px; background-color: Blue; color: White;
 border-style: solid; border-width: thin; border-color: Blue; height: 30px">

 <div style="float: left; vertical-align: middle; margin-top: 3px">
 Element Title
 </div>
 <div style="float: right; vertical-align: middle">
 <input id="ButtonCollapse" type="button" value="Close"
 onclick="Collapse()" />
 </div>

 </div>

 <div id="DivCollapse" style="width: 200px; height: 200px;
 border-style: solid; border-width: thin; border-color: Blue">
 <div style="margin-top: 10px; text-align: center;">
 Content area ...
 </div>
 </div>

 </div>

</asp:Content>

In the preceding markup, the onclick event of the input button is set to call the Collapse
method. This is a JavaScript method that will collapse (hide) the content <div> tag (called
DivCollapse). The next step is to write this function. You can do so inside the head section
of the ASPX markup for a standard ASPX page. If you use a child page based on a master
page, you should add this block to the HeadContent content tag. The following code shows
this latter option (a <script/> block and a function inside the HeadContent area).

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
 <script language="javascript" type="text/javascript">

 function Collapse() {
 if (DivCollapse.style.display == "") {
 DivCollapse.style.display = "none";
 document.forms[0].ButtonCollapse.value = "Open";
 }
 else {
 DivCollapse.style.display = "";

 474	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

 document.forms[0].ButtonCollapse.value = "Close";
 }
 }

 </script>
</asp:Content>

When you run the code, the two areas defined by the <div> tags are shown along with the
toggle button. Clicking this button executes the JavaScript on the client. Figure 9-4 shows an
example of what the page looks like in the browser.

FigURE 9-4  The JavaScript and HTML in the browser window.

Note A bAsiC EXAmPLE

This is a basic example. This type of functionality is also provided by the AJAX Control
Toolkit and Web Parts in ASP.NET.

In this example, the JavaScript code is embedded directly in the page. If your JavaScript
code is to be reused across multiple pages, you might want to externalize it into separate .js
files. This allows both reuse and caching. The JavaScript files will be cached by browsers and
thus the performance of your page will be improved. You provide this functionality by first
creating the .js file and then placing your code inside it. You then reference the file inside a
<script/> tag in the <head/> area of your page. The following code shows an example.

<script type="text/javascript" src="SiteScripts.js"></script>

The preceding example does not use many ASP.NET controls. Instead, it uses the standard
HTML <Input/> tag to define a button. This tag’s onClick event will simply execute a JavaScript
method. However, for an ASP.NET Button control, the onClick attribute is used to declaratively

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 475

connect an ASP.NET Button control to its server-side event. Therefore, to connect an ASP.NET
Button control to a client-side JavaScript method, you can use the onClientClick attribute. In
fact, you can set both the onClick and onClientClick attributes to respond to both a server-side
and a client-side event for the same control. (Note that returning false from onClick negates the
postback, but using onClientClick is preferred for client-side–only event processing.)

The following code shows an example of how you might replace the Input tag in the previous
example with an ASP.NET Button control.

<asp:button id=" ButtonCollapse" runat="server" text="Close"
 onClientClick="Collapse();" />

It is also important to note that you can reference ASP.NET controls inside your client-side
script. You reference them based on their rendering as HTML. Their IDs are set to the same ID
you set in your code. The ASP.NET controls also have the ClientId property for changing the
client ID from that of the server (which by default is set to match the server’s ID).

Adding Script Dynamically to an ASP.NET Page
Sometimes you might need to generate your JavaScript and add it to your page at run time.
This could be because your controls are created at run time or because information that is
added to the page determines the JavaScript that should be defined for the page. In either
case, you can use the ClientScriptManager class to register JavaScript dynamically.

An instance of the ClientScriptManager class is exposed through the Page object’s ClientScript
property. You use this property to add JavaScript to the page at run time, to determine whether a
script has already been registered, and for other related tasks. To add a script, you define it inside
a string or point to its file. You then call the Page.ClientScript.RegisterClientScriptBlock method.
This method takes a type (typically the instance of the page or control), a key that uniquely
identifies the script (to help avoid collisions), the script itself, and a Boolean value indicating
whether you need the registration to generate script tags.

As an example, suppose you have a TextBox that allows the user to enter a password. Suppose
you also want to give the user the ability to check the password’s strength as it is typed. You
might leave this feature turned off by default but allow users to turn it on. When they do so,
you need to dynamically register a client script with the page from your code. The following
code shows the markup for this example page.

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" Runat="Server">

 <div>
 Enter Password

 <asp:TextBox ID="TextBoxPassword" runat="server" Width="250"></asp:TextBox>

 <asp:CheckBox ID="CheckBoxPassStrengthOn" runat="server"
 Text="Turn on password strength checking" AutoPostBack="true"
 oncheckedchanged="CheckBoxPassStrengthOn_CheckedChanged" />
 </div>

</asp:Content>

 476	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Notice that this markup is inside an <asp:Content/> tag, indicating that this page uses a
master page. In the case of master pages, your control IDs are reset by ASP.NET to include the
ContentPlaceholderID content area, followed by an underscore and the control name. There-
fore, to use JavaScript to reference the TextBoxPassword control in this example, you would
use the MainContent_TextBoxPassword as the ID.

This markup also includes a CheckBox control that is set to automatically post back
when the user selects the check box (AutoPostBack=“true”). Therefore, you need to handle
its CheckedChanged event in your code. Here you can check to see if the check box is
selected and if so, register client script to verify the password. The following code listing
shows an example.
Sample of Visual Basic Code

Partial Class PasswordCheckTestVb
 Inherits System.Web.UI.Page

 Protected Sub CheckBoxPassStrengthOn_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CheckBoxPassStrengthOn.CheckedChanged

 If CheckBoxPassStrengthOn.Checked Then

 Dim passFunc As New StringBuilder()
 passFunc.Append("function CheckPassword() {")
 passFunc.Append("var passLen = document.forms[0].MainContent_
 TextBoxPassword.value.length;")
 passFunc.Append(" if (passLen < 4) {")
 passFunc.Append(" document.getElementById(""passwordStrength"").")
 passFunc.Append("innerText = ""weak"";")
 passFunc.Append(" document.getElementById(""passwordStrength"").")
 passFunc.Append("style.color = ""red"";}")
 passFunc.Append(" else if (passLen < 6) {")
 passFunc.Append(" document.getElementById(""passwordStrength"").")
 passFunc.Append("innerText = ""medium"";")
 passFunc.Append(" document.getElementById(""passwordStrength"").")
 passFunc.Append("style.color = ""blue"";}")
 passFunc.Append(" else if (passLen > 9) {")
 passFunc.Append(" document.getElementById(""passwordStrength"").")
 passFunc.Append("innerText = ""strong"";")
 passFunc.Append(" document.getElementById(""passwordStrength"").")
 passFunc.Append("style.color = ""green"";}}")

 'register the script
 Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), _
 "CheckPasswordScript", passFunc.ToString(), True)

 'add an event to the text box to call the script
 TextBoxPassword.Attributes.Add("onkeyup", "CheckPassword()")

 Else
 'remove the event from the text box
 TextBoxPassword.Attributes.Remove("onkeyup")
 End If

 End Sub

End Class

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 477

Sample of C# Code

public partial class PasswordCheckTest : System.Web.UI.Page
{
 protected void CheckBoxPassStrengthOn_CheckedChanged(object sender, EventArgs e)
 {
 if (CheckBoxPassStrengthOn.Checked)
 {

 System.Text.StringBuilder passFunc = new System.Text.StringBuilder();
 passFunc.Append("function CheckPassword() {");
 passFunc.Append(
 @"var passLen = document.forms[0].MainContent_
 TextBoxPassword.value.length;");
 passFunc.Append(@" if (passLen < 4) {");
 passFunc.Append(@" document.getElementById(""passwordStrength"").");
 passFunc.Append(@"innerText = ""weak"";");
 passFunc.Append(@" document.getElementById(""passwordStrength"").");
 passFunc.Append(@"style.color = ""red"";}");
 passFunc.Append(@" else if (passLen < 6) {");
 passFunc.Append(@" document.getElementById(""passwordStrength"").");
 passFunc.Append(@"innerText = ""medium"";");
 passFunc.Append(@" document.getElementById(""passwordStrength"").");
 passFunc.Append(@"style.color = ""blue"";}");
 passFunc.Append(@" else if (passLen > 9) {");
 passFunc.Append(@" document.getElementById(""passwordStrength"").");
 passFunc.Append(@"innerText = ""strong"";");
 passFunc.Append(@" document.getElementById(""passwordStrength"").");
 passFunc.Append(@"style.color = ""green"";}}");

 //register the script
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "CheckPasswordScript", passFunc.ToString(), true);

 //add an event to the text box to call the script
 TextBoxPassword.Attributes.Add("onkeyup", "CheckPassword()");
 }
 else
 {
 //remove the event from the text box
 TextBoxPassword.Attributes.Remove("onkeyup");
 }
 }
}

When you run the page, users have no indication of their password strength. However, if they
select the check box, the page posts to the server and a client script is added to the page as a
response to the postback. Users can now verify their password strength, as shown in Figure 9-5.
Also, notice in the preceding code listing that the event handler is removed from the TextBox
control if the check box is not selected. This is necessary to avoid encountering an error as the
script is removed after a postback (unless it is added back in).

 478	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

FigURE 9-5 Dynamically adding JavaScript to a page by using RegisterClientScriptBlock.

You can also register client scripts to be executed only when the page is submitted. This
allows the application to know when the user has caused a page submission. The page can
then use your script code to validate the submission and cancel it if necessary. To register a
client script to be executed only on page submission, you use the RegisterOnSubmitStatement
method of the ClientScriptManager. This method works in a fashion similar to the operation of
RegisterClientScriptBlock. It takes a type, a key, and the script as parameters.

Registering Client Scripts with the ScriptManager Control
The ScriptManager control, as discussed in the previous lesson, is used by the ASP.NET AJAX
Extensions server controls. It automatically registers the appropriate script files defined by the
Microsoft AJAX Library. If you are using a ScriptManager control, you can also use this library
in your scripts. (This is discussed in greater detail later in the lesson.)

In addition, you can use the ScriptManager control to register your own scripts with the
page. You can do so declaratively or programmatically. To add a script to the ScriptManager
declaratively, you use the <Scripts> collection element of the ScriptManager control. The
following markup shows an example.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="AppScripts.js" />
 </Scripts>
</asp:ScriptManager>

Note that if your JavaScript file is embedded in an assembly, you can add the Assembly
attribute to the ScriptReference tag and point to the DLL file. This is useful when you do not
have full source code files or are working with precompiled objects.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 479

You can also register scripts from your server code. You do so by creating an instance of the
ScriptReference class. You then add this instance to the Scripts collection of the ScriptManager
control, as the following code illustrates.

Sample of Visual Basic Code

Dim sr As New ScriptReference("AppScripts.js")
ScriptManager1.Scripts.Add(sr)

Sample of C# Code

ScriptReference sr = new ScriptReference("AppScripts.js");
ScriptManager1.Scripts.Add(sr);

If you are using a ScriptManager control on your page already, you can use it to register
client scripts. If you are not using AJAX features associated with a ScriptManager control,
you are better off using the ClientScriptManager object (exposed through Page.ClientScript)
mentioned earlier, because it does not have the overhead of the ScriptManager server
control.

IMportaNt  sCRiPT REgisTRATiOn

Only scripts registered with the ScriptManager are available for use in partial-page
update scenarios. If you need your script in these scenarios, you must register it with
the ScriptManager class.

Quick Check
	 1. In JavaScript, how do you reference an ASP.NET control added to a standard

ASPX webpage? How do you reference the same control added to a child ASPX
page that uses a master page?

	 2. Where should you place client script you intend to use across multiple pages of
a site?

	 3. What property and method of the Page object do you use to register client
script dynamically from code?

Quick Check Answers
	 1. In JavaScript, you can reference the ASP.NET control added to a standard ASPX

page by using its ID. If the control is added to a master page, you must use the
ContentPlaceHolderID_ControlId naming convention.

	 2. You should place shared script code in a .js file. This allows you to easily share the
code between pages. It also allows browsers to cache this code.

	 3. Page.ClientScript.RegisterClientScriptBlock is used to dynamically register client
script from code.

 480	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Creating Your Own Client Callbacks
In the previous lesson, you learned how to implement partial-page updates by using the
UpdatePanel control and other features of the Microsoft ASP.NET AJAX-oriented controls.
These controls make it easy to create a client callback (a call to the server followed by a call
back to the client from the server). There may be times, however, when you need more con-
trol over how you call to the server from the client and vice versa. In these cases, you need
to write your own asynchronous client callbacks.

Creating a page with its own client callback code follows a standard set of steps. First, you
must define the server-side code. To do so:

	 1. Implement the System.Web.UI.ICallbackEventHandler for your ASP.NET page. This server-
side interface is used to set up both the receive call from the client (RaiseCallbackEvent)
and the method that returns processing to the client (GetCallbackResults).

	 2. Implement the RaiseCallbackEvent method for the ICallbackEventHandler interface. This
method is called by the client. You can use it to receive parameter values from the client.

	 3. Implement the GetCallbackResult method for the ICallbackEventHandler interface. This
function is used to return the results of any server-side processing. The results are sent
as a string back to the client code.

After the server-side code is written, the next task is to create the client-side code. This
also follows a standard set of steps:

	 4. Add a client script function that will be called by the server as the result of the server
processing. You can use this function to process any results coming back from the
server. This function’s name should be the same as the name you registered with
the GetCallbackEventReference inside your server-side code when the page is
loaded. This ensures that the callback gets called after server-side processing.

	 5. Create another JavaScript function that calls the server from the client. This function
is typically created in your server-side code when the page is loaded. Doing so allows
you to register the client-side function by using the RegisterClientScriptBlock method
of the ClientScriptManager control. This function is then used by one or more controls
on your page to initiate the client-side call to the server.

	 6. The final JavaScript function that is inserted into the rendered page is actually generated
for you by ASP.NET. This is the function that actually does the calling between the client
and server. This function is generated when you use the GetCallbackEventReference
method of the ClientScriptManager control in your server-side code.

As an example, suppose you have a webpage that contains a DropDownList control. Imagine
that you want to call the server when the user selects an item from the DropDownList, but you
do not want to do a full-page post. Rather, you want to initiate an asynchronous client callback.
You can then do some processing on the server and return the results to the client. The client
page can then be updated without causing a refresh.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 481

Let’s see how to implement this example. First, you would need to implement the
ICallbackEventHandler interface for the code-behind page. This code might look as follows.

Sample of Visual Basic Code

Partial Class _Default
 Inherits System.Web.UI.Page
 Implements System.Web.UI.ICallbackEventHandler

Sample of C# Code

public partial class Default :
 System.Web.UI.Page, System.Web.UI.ICallbackEventHandler

Next, you would implement the RaiseCallbackEvent. This event is called by the client during
a callback. It receives any event arguments from the client as a string. For this example, these
event arguments represent the selected choice in the DropDownList. Suppose you want to store
these event arguments in a class-level variable. Your code should look as follows.

Sample of Visual Basic Code

Dim _callbackArgs As String

Public Sub RaiseCallbackEvent(ByVal eventArgument As String) _
 Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

 _callbackArgs = eventArgument

End Sub

Sample of C# Code

string _callbackArgs;

public void RaiseCallbackEvent(string eventArgument)
{
 _callbackArgs = eventArgument;
}

You also would have to implement the GetCallbackResult method. This method returns a
result back to the client following the server-side processing. In our example, we simply return
the user’s selected item from the DropDownList. In a real-world scenario, you might do some
processing, calling the database, and so forth. The code for this method looks as follows.

Sample of Visual Basic Code

Public Function GetCallbackResult() As String _
 Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

 Return _callbackArgs

End Function

Sample of C# Code

public string GetCallbackResult()
{
 return _callbackArgs;
}

 482	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

The next step is to add code to the page load event that registers the various client scripts.
First, you register the client script that will be called by the server following the server-side
processing. In this example, this script is called ClientCallbackFunction. This function is defined
in the markup for the page. Next, you create a JavaScript function that is used to call the server-
side code. In the example, this function is called MyServerCall. It is referenced in the page
markup to make the server-side call. You register this function with the ClientScriptManager
by using the RegisterClientScriptBlock method, as shown here.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 'register the name of the client-side function that will
 ' be called by the server
 Dim callbackRef As String = Page.ClientScript.GetCallbackEventReference(_
 Me, "args", "ClientCallbackFunction", "")

 'define a function used by the client to call the server
 Dim callbackScript As String = String.Format(_
 "function MyServerCall(args) {{0};}, ", callbackRef)

 'register the client function with the page
 Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), _
 "MyServerCall", callbackScript, True)

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 //register the name of the client-side function that will
 // be called by the server
 string callbackRef = Page.ClientScript.GetCallbackEventReference(
 this, "args", "ClientCallbackFunction", "");

 //define a function used by the client to call the server
 string callbackScript = String.Format(
 "function MyServerCall(args) {{0};}, ", callbackRef);

 //register the client function with the page
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "MyServerCall", callbackScript, true);
}

The last step in this example is to write the page markup. Here you define a client script that
receives the callback from the server. Recall that this script is named ClientCallbackFunction and
takes a string (args) as a parameter. In this example, this function writes out the args value to
a Label control. You also must initiate the call to the server from the client. For this, recall that
you need to call the MyServerCall method. In the example, this method is called as a result of

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 483

the OnChange event for the DropDownList control. The example passes the selected item as a
parameter. These page markup items look as follows.

<script type="text/javascript">
function ClientCallbackFunction(args)
{
 LabelMessage.innerText = args;
}
</script>

<asp:DropDownList ID="DropDownListChoice" runat="server"
 OnChange="MyServerCall(DropDownListChoice.value)">

 <asp:ListItem>Choice 1</asp:ListItem>
 <asp:ListItem>Choice 2</asp:ListItem>
 <asp:ListItem>Choice 3</asp:ListItem>
</asp:DropDownList>

<asp:Label ID="LabelMessage" runat="server"></asp:Label>

When the page is run, a user selects a choice from the drop-down list. This calls the
MyServerCall client-side method, which initiates a call to the server. The RaiseCallbackEvent
method is then called on the server; this accepts the event arguments (the user’s choice). The
server processes the request and calls the GetCallbackResult method. The results are then
passed back to the client. When back on the client, the ClientCallbackFunction JavaScript
method is executed, and the result (the user’s choice) is shown to the user.

Working with the Microsoft AJAX Library
As you have seen, you can create your own JavaScript and embed it in an ASP.NET page.
However, JavaScript can be challenging to program with, especially if you are used to
developing in an object-oriented world with a strong type system, a framework, and error
handling and debugging support. The Microsoft AJAX Library helps solve these issues by
bringing support for these items in the form of a wrapper library for the JavaScript language.

This section provides an overview of the Microsoft AJAX Library. It then covers how you can
leverage this library to create AJAX-enabled server controls, client components, and behaviors
that can be attached to client controls.

Features of the Microsoft AJAX Library
The Microsoft AJAX Library is actually written in JavaScript. It is a set of files that are sent
to the browser to provide a base of capabilities on which you can build. ScriptManager
automatically injects these scripts into the page markup. ScriptManager first determines
which files are required, and if they are, it manages their inclusion in the markup. Microsoft
AJAX Library support is not available unless you include a ScriptManager on your page or
explicitly including these files.

 484	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Note miCROsOFT AjAX LibRARy FiLEs

You can use the Microsoft AJAX Library outside of ASP.NET or examine the source code of
the library. The files include MicrosoftAjax.js and MicrosoftAjaxWebForms.js. The former
provides the basic language extensions to support an object-oriented programming style
in JavaScript. The latter provides code for partial rendering. There are also debug versions
of the files, such as MicrosoftAjax.debug.js. The compiler and ScriptManager render the
appropriate code depending on the mode of your application (release or debug).

The Microsoft AJAX Library is meant to make your JavaScript more robust, easier to write,
and more reusable. The following are the core features and benefits of the library:

■ Object-oriented support The library allows you to define namespaces; build classes that
contain fields, properties, and methods; create event handlers; implement inheritance
and interfaces; use data types and enumerations; and support reflection.

■ base classes The library includes a Global namespace that provides extensions to the
JavaScript base types, including String, Number, Date, Boolean, Array, and Object. It also
adds the Type class to the language for registering namespaces, classes, and more.

■ A framework (or set of namespaces) The Microsoft AJAX Library includes a root name-
space called Sys that contains classes and other namespaces that make programming
AJAX applications easier. Think of the Sys namespace as a client-side equivalent to System
in the Microsoft .NET Framework (although obviously not as rich). Other namespaces
include Sys.Net, Sys.Services, Sys.UI, Sys.WebForms, and Sys.Serialization.

■ browser compatibility JavaScript is a standards-driven language. However, there are
multiple quirks to the implementations of that language across browsers, just as there
are for HTML. The Microsoft AJAX Library takes these into account and has built-in
support for browser compatibility with Internet Explorer, Firefox, and Safari.

■ Debugging and error handling The Microsoft AJAX Library includes debugging
extensions to make debugging easier. In fact, there are two versions of the library:
a release version and a debug version. In addition, the library includes an extended
Error object that provides more error information. It also includes tracing support
with Sys.Debug.trace.

■ globalization support The Microsoft AJAX Library supports building global, localized
client scripts for working across languages and cultures. Your single JavaScript code base
can then provide localized UI support without posting back to the server. This is achieved
through number and data format methods that work with the language and culture set-
tings in the browser.

Next you will learn more about the contents of the Sys namespaces, how to code against
the library, and how to work with client events. Following this, you will read about how you
can use this information to add client-side capabilities to the page.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 485

The Microsoft AJAX Library Namespaces
The Microsoft AJAX Library is about two things: extending the JavaScript language and
providing a base framework for common AJAX tasks. There are many types, controls,
enumerations, and members found in the library. The following provides an overview
of how the library’s namespaces are organized:

■ global The Global namespace represents an extension of JavaScript itself. It extends
many of the core elements and capabilities of the language. For example, the Number,
String, Date, Array, and other types are given new functionality by the Microsoft AJAX
Library. In addition, the Global namespace adds the Type class to JavaScript. The Type
class is used to register object-oriented items in JavaScript like namespaces, classes,
interfaces, and enumerations. The following line of JavaScript code shows an example
of using the Type class to register a namespace.

Type.registerNamespace("MyCompany.MyApplication");

■ sys The Sys namespace is the root namespace of the AJAX Library. The Global name-
space extends JavaScript, whereas the Sys namespace contains a framework for AJAX
programming with JavaScript. There are several core classes in the Sys namespace.
They include the Application class, which is a run-time version of the library used for
connecting to client-side events.

The Component class is also in the Sys namespace. It is used for registering and creating
instances of the components you create for use with the library. You use it by calling the
Component.create method (also accessed via the shortcut $create). The Component
class also serves as the base class for the Control and Behavior classes discussed later
in this section.

The Sys namespace includes other notable classes such as StringBuilder for concatenating
strings; Debug for debug and tracing support; EventArgs, which is used as a base class for
passing parameters to events; and more.

■ sys.net The Sys.Net namespace contains classes focused on the communication
between the browser and the server. The classes in this namespace provide the basis
for doing partial-page updates and calling web services from the browser. Classes in this
namespace include the Sys.Net.WebRequest class, which is covered in Chapter 10 in the
web services discussion.

■ sys.serialization The Sys.Serialization namespace is also used to communicate between
client and server. It contains a single class: JavaScriptSerializer. This class is used to serialize
and deserialize data to be passed from browser and server in web service calls.

■ sys.services The Sys.Services namespace contains classes for working with the AJAX
authentication and profile services from script.

 486	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

■ sys.Ui The Sys.UI namespace contains the classes used to add AJAX features to the UI. It
includes the Behavior, Control, and DomElement classes , and more. You use these classes
when building your own AJAX UI features. These classes are covered in later sections in
this lesson.

■ sys.WebForms The Sys.WebForms namespace encapsulates the classes for partial-page
updates. These classes are used by the UpdatePanel control. You can also use these to
create your own partial-page scenarios. The PageRequestManager class is found here; it
can be used to customize asynchronous postbacks.

This number of namespaces can seem a little daunting at first. As in any library, however,
there are some features you will end up using a lot and others you won’t usually need. We
cannot cover every class and method here. You will see, however, that much of the action
takes place in the Sys.UI namespace; this is where you interact to write AJAX UI elements.

More INfo  miCROsOFT AjAX LibRARy REFEREnCE

If you get stuck with a specific class or method in the framework or in one of the following
examples, you can look up the item in the complete library reference. This can be found on
MSDN—see the “Microsoft Ajax Library Client Reference” at http://msdn.microsoft.com
/en-us/library/bb397536.aspx.

Object-Oriented AJAX Development
JavaScript has support for many basic features such as simple classes, data types, and operators.
However, it is missing key object-oriented features. These include support for namespaces,
inheritance, interfaces, fields, properties, enumerations, events, reflection, and more. The
Microsoft AJAX Library extends the language by providing support for these items.

A natural question to ask is why you need this type of support for JavaScript. The answer
is that in many cases you do not. However, if you are building your own controls or need to
enable very specific programming on the client, this library will help you. The best way to use
the library is to define your requirements; create a JavaScript class definition in a .js file that
will provide methods, properties, and other items you need to meet those requirements; and
then register that file with your page. You can then create an instance of your class and work
with it on the page. This includes associating the class items with the actions on controls.

This section covers the “create-a-class” step. You will read about how to connect to this
class on your page in the sections that follow and in the practice.

NAMESPACES
The Microsoft AJAX Library adds the ability to work with namespaces to JavaScript. A namespace
is a way to encapsulate code into a library for easier classification and reference. It also helps
manage name collisions, because two classes cannot have the same name in a single namespace.
In addition, namespaces that you create and register with the library are then available in
IntelliSense in Visual Studio, making development a little easier.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 487

The library provides an important class called Type. The Type class represents a typing system
for JavaScript. It is the key class that enables you to have namespaces, classes, enumerations, and
things like that. The class sits inside the Global namespace.

You use the registerNamespace method of the Type class to define a namespace. This
is typically done at the top of your class file. You then use the namespace you define here
throughout your class definition to add classes, enumerations, and so forth. The following
line of code shows an example.

Type.registerNamespace("Contoso.Utilities");

In this example, the Contoso.Utilities namespace is being defined. Consider this a company-
wide utility namespace that might include helper classes for a development team.

CLASSES (CONSTRUCTORS, FIELDS, PROPERTIES, AND METHODS)
The Microsoft AJAX Library also allows you to define class definitions. The syntax for creating
a class with the library is Namespace.ClassName. You assign the class name to a function that
also serves as your constructor. This function can also take parameters.

For example, suppose you want to add a class to the Contoso.Utilities namespace defined
earlier. The requirements for this class are to provide validation features (on the client)
related to the process of a user changing his or her password. You might name this class
ChangePasswordValidator. The following code shows a definition of this class.

//define class name (as function), create constructor, and
// set class-level field values
Contoso.Utilities.ChangePasswordValidator =
 function(requirePasswordsNotMatch, requireNumber)
{
 Contoso.Utilities.ChangePasswordValidator.initializeBase(this);
 this.RequirePasswordsNotMatch = requirePasswordsNotMatch;
 this.RequireNumber = requireNumber;
 this._passwordRuleViolations = new Array();
}

Notice that the class is set to a function. This function serves as the constructor for the class.
When a developer uses the new keyword to create an instance of your class, he or she will be
shown this constructor by IntelliSense and have to provide the two parameters defined by the
function. These parameters are specific to the password scenario and facilitate how the password
rules will process. The parameters are set to field-level items on the class inside the constructor.
This is shown by the following call.

this.<FieldName> = <parameter>

The following is an example.

 this.RequireNumber = requireNumber)

Also notice the call to initializeBase. This ensures that the base class from which your class de-
rives gets its constructor called, too. You typically derive your classes from Sys.Component or one
of its derivates. However, you do not have to. You derive from Sys.Component, Sys.UI.Behavior, or
Sys.UI.Control if you intend to use the class as part of an AJAX control (more on this later).

 488	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

After you define the class and its constructor, the next step is to define the fields, properties,
methods, and other items that make up the actual class. You do so by defining a prototype for
the class. You set the prototype definition to include fields, methods, and methods that act as
properties.

For example, to define a prototype for the ChangePasswordValidator class, you make a call
to the JavaScript prototype property and set it equal to a class definition (enclosed in braces). To
define fields for the class, you simply declare variables at the class level and set their data type.
Fields are essentially name-value pairs in which the name is an element of the prototype (or
class definition) and the value is set by the user of the class. The following code shows the start
of a class definition that also defines two Boolean fields.

//define class contents (fields, properties, methods)
Contoso.Utilities.ChangePasswordValidator.prototype =
{

 //declare fields
 RequirePasswordsNotMatch: Boolean,
 RequireNumber: Boolean,
 ...

}

The next step is to add properties to the class definition just started. By default, JavaScript
does not really support properties. Instead, you can define methods that act as properties by
declaring two functions. One function returns the value of an internal member and the other
function receives a value to be assigned to this internal member. The convention for naming
properties in the Microsoft AJAX Library is to use set_propertyName and get_propertyName
for the setter and getter, respectively. The internal variables are defined with leading under-
scores (_), as in _privateMember. This indicates to the library that these items should remain
private to the class (even if JavaScript does not actually support private fields).

As an example, consider the class discussed earlier for a user who is changing his or her
password. You might want to define write-only properties for the current password and the
new password. You can do so by simply implementing a set_ function (and not a get_). This is
shown in the following code example, along with a property to return all password violations
that occur during validation.

//properties
set_currentPassword: function(value)
{
 this._currentPassword = value;
},

set_changeToPassword: function(value)
{
 this._changeToPassword = value;
},

get_passwordRuleViolations: function()
{
 return this._passwordRuleViolations;
},

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 489

You add methods to a class prototype in much the same way that you add a function. The fol-
lowing code shows two example functions. The first, CheckPasswordStrength, takes a string and
returns an enumeration value, Contoso.Utilities.PasswordStrength (more on this in a moment).
The second function definition, AllowPasswordChange, can be called to determine whether a
user’s changed password meets the criteria for a change. If not, rules are added to an Array, and
the false value is returned by the function. These rules (or password error conditions) can then be
accessed through the property defined previously.

//methods
CheckPasswordStrength: function(password)
{
 var strPass = new String(password.toString());
 if (strPass.length < 4)
 {
 return Contoso.Utilities.PasswordStrength.Weak;
 }
 else if (strPass.Length < 7)
 {
 return Contoso.Utilities.PasswordStrength.Medium;
 }
 else
 {
 return Contoso.Utilities.PasswordStrength.Strong;
 }
},

AllowPasswordChange: function()
{

 var pass1 = new String(this._currentPassword);
 var pass2 = new String(this._changeToPassword);

 //use new, extended Array type
 var ruleViolations = new Array();

 //min length rule
 if (pass2.length < 5)
 {
 Array.add(ruleViolations, 'Password too short.');
 }

 //check if passwords match
 if (this.RequirePasswordsNotMatch)
 {
 if (pass1 == pass2)
 {
 Array.add(ruleViolations, 'Passwords cannot match.');
 }
 }

 490	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

 //contains numbers
 if (this.RequireNumber)
 {
 if (pass2.match(/\d+/) == null)
 {
 Array.add(ruleViolations, 'Password must include a number.');
 }
 }

 //reset rule violations property
 this._passwordRuleViolations = ruleViolations;

 //determine if change allowed
 if (ruleViolations.length > 0)
 {
 return false;
 }
 else
 {
 return true;
 }
}

As with a namespace, you must also register a class with the Microsoft AJAX Library for it
to be available with the ScriptManager at run time and through IntelliSense at design time.
You register a class by calling the registerClass extension method of your object. This method
has three parameters: typeName, baseType, and interfaceTypes. TypeName is the full name
of the class you intend to register. BaseType is the class on which the new class builds. This is
how inheritance is supported by the library. If your class should stand alone, you can pass
null into this parameter. If your class is meant to be an AJAX control or a behavior, you pass in
Sys.UI.Control or Sys.UI.Behavior, respectively. Finally, the interfaceTypes parameter indicates
the interfaces that the class must implement. You can define your own interfaces with the
library. You can also implement one or more framework interfaces. This parameter is an
array, so you can pass multiple interfaces into it. The following code shows an example of
the registerClass method.

//register code as an actual class
Contoso.Utilities.ChangePasswordValidator.registerClass(
 'Contoso.Utilities.ChangePasswordValidator', null, Sys.IDisposable);

ENUMERATIONS
The Microsoft AJAX Library provides support for enumerations. These enumerations are simply
named integer values. Like enumerations in other languages (C# and Visual Basic included),
enumerations provide a more readable and maintainable coding style.

You define an enumeration the same way you define a class, by using the prototype property.
You then define fields for the class and set their initial value. Finally, you call the registerEnum
method of the Type class (which is used to extend the JavaScript library). The following is an
example of an enumeration created to define a password’s strength.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 491

//create and register an enumeration
Contoso.Utilities.PasswordStrength = function(){};
Contoso.Utilities.PasswordStrength.prototype =
{
 Weak: 1,
 Medium: 2,
 Strong: 3
}
Contoso.Utilities.PasswordStrength.registerEnum(
 "Contoso.Utilities.PasswordStrength");

INHERITANCE
Support for inheritance is also available with the Microsoft AJAX Library. This allows a JavaScript
class to inherit the properties and methods of a base class. Of course, the inheriting class can also
override those properties and methods. This is similar to inheritance in other object-oriented
languages.

You implement inheritance through the registerClass method discussed earlier by setting the
baseType property during registration. This enables single inheritance (similar to how the .NET
Framework works). If you want to override a function, you simply redefine it by using the same
name in the new class.

INTERFACES
You can also define and implement interfaces with the Microsoft AJAX Library. These interfaces
are again similar to those in the .NET Framework; they represent contracts that the class must
implement. You can also implement multiple interfaces in a class.

You indicate that a class should implement an interface by using the registerClass method.
This was shown earlier and is repeated in the following code. The third parameter of this
method represents the interfaceTypes that the class implements. You can pass a single
interface (as shown here with Sys.IDisposable) or multiple interfaces.

Contoso.Utilities.ChangePasswordValidator.registerClass(
 'Contoso.Utilities.ChangePasswordValidator', null, Sys.IDisposable);

The library also allows you to define and implement your own interfaces. To create an
interface, you define it as you would a class. However, you do not add implementation to
the interface, you just include method stubs. You then call the registerInterface method
of the Type class. This registers your interface for use with the library. The following code
shows an example of defining and registering an interface with the library.

//declare an interface
Contoso.Utilities.IValidationLogic = function() {}
Contoso.Utilities.IValidationLogic.prototype =
{
 get_isValid: function(){},
 get_validationRules: function() {},
 validate: function(){}
}
Contoso.Utilities.IValidationLogic.registerInterface(
 "Contoso.Utilities.IValidationLogic");

 492	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

IMportaNt  LOADED sCRiPT

When you write JavaScript that is intended to be used by the Microsoft AJAX Library,
you need to tell the library when you have finished loading your script. You can do so
by calling the notifyScriptLoaded method of the Sys.Application object. The following
shows an example.

//indicate that this is the end of the class / script
if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

Using Custom Classes
Classes you create with the Microsoft AJAX Library can be used directly within your ASPX pages.
To do so, you must first register the class with the ScriptManager. This tells the ScriptManager
you have a class that is built with the library in mind. It also ensures that you get IntelliSense in
the IDE for your namespaces, classes, methods, and so on. The following page script shows an
example of how you would add the script that was defined in the previous section to the page.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference path="ContosoUtilities.js" />
 </Scripts>
</asp:ScriptManager>

After the custom classes have been defined, you can use the class library as required in page-
level script. For example, you can create a new instance of the ChangePasswordValidator control
created earlier by using the new keyword and passing in the appropriate parameters to the
constructor. The following code shows an example of creating an instance of the class and
uses the enumeration, calling properties, and calling methods.

<script language="javascript" type="text/javascript">

 //call constructor
 var validator =
 new Contoso.Utilities.ChangePasswordValidator(true, true, true);

 //check the password strength
 strength = validator.CheckPasswordStrength("password");
 switch (strength)
 {
 case Contoso.Utilities.PasswordStrength.Weak:
 alert("Weak");
 break;
 case Contoso.Utilities.PasswordStrength.Medium:
 alert("Medium");
 break;
 case Contoso.Utilities.PasswordStrength.Strong:
 alert("Strong");
 break;
 }

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 493

 //set properties
 validator.set_currentPassword("password");
 validator.set_changeToPassword("pas2");

 //call methods
 if (validator.AllowPasswordChange())
 {
 alert("Password may be changed");
 }
 else
 {
 var violations = validator.get_passwordRuleViolations();

 alert("Rule violations: " + violations.length);
 for (i = 0; i < violations.length; i++)
 {
 alert("Rule violation " + i + " = " + violations[i]);
 }
 }

</script>

AJAX Client-Side Life Cycle Events
The Microsoft AJAX Library also includes a client-based event life cycle. You can use this life
cycle to intercept events when the page runs, and load your code as required. Think of this as
similar to how you work with code-behind files. For example, in a code-behind file you might
write code in the Page_Load event. Similarly, in the code you write to run in the browser, you
can implement the Sys.Application.load event.

Fortunately, the life cycle of your client code is very similar to that of your server code. This
includes events for init, load, unload, and disposing. In this way, the Application client object
works in a similar way as the Page object in your server code. To take advantage of this event
model you must, of course, use a ScriptManager control on your page. You register an event
in script by using the add_event syntax. The following code shows how you would register
code with the Sys.Application.Load event.

Sys.Application.add_load(PageLoad);
function PageLoad(sender)
{
 //page-load code goes here
}

The library also allows you to unregister (or remove) events. You do so in a similar manner,
by using the remove_<event name> syntax. The following shows an example.

Sys.Application.remove_load(PageLoad);

 494	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

You can follow this similar model to trap other events in the library. For example, another
important class with events that you might want to work with is the PageRequestManager class
of the Sys.WebForms namespace. This class is used for partial-page updates and asynchronous
postbacks. It includes the following events:

■	 initializeRequest Raised before the asynchronous postback starts

■	 beginRequest Raised as the asynchronous postback is sent to the server

■	 pageLoading Raised when the asynchronous postback response first comes back
from the server

■	 pageLoaded Raised after the content has been loaded from the results of the
asynchronous postback

■	 endRequest Raised when the asynchronous postback has been completed

As you might have guessed, the UpdatePanel control relies heavily on these events. You
can also use these events to cancel asynchronous postbacks, provide custom information or
animation to the user when these events are fired, or simply run your code at specific times
within the request.

Building Client Capabilities with AJAX
Thus far, you’ve seen how to program against the Microsoft AJAX Library. You can use the
skills you’ve learned to create client-side controls that are built on the Microsoft AJAX Library
and thus are managed by it. It is important to remember that these are not server controls.
Rather, they are controls that implement AJAX features on the client.

There are three types of client objects you can create with the Microsoft AJAX Library:
component, control, and behavior objects. The following provides a brief description of each:

■ sys.Component This object provides a base class for creating reusable AJAX compo-
nents. Classes that derive from Sys.Component do not generate UI elements. Instead,
they work as common controls that provide functionality across pages. For example,
the Timer control in the Microsoft AJAX Library implements Sys.Component.

■ sys.Ui.Control This object provides a base class for creating reusable, AJAX-enabled
client controls. These controls are typically related to a single Document Object Model
(DOM) element (such as an input box or button). They provide additional functionality
to the DOM element with which they are meant to work.

■ sys.Ui.behavior This object represents a base class for creating behaviors that can be
added to one or more DOM elements at design time. A behavior is not associated with
a single DOM element. Rather, it can extend the DOM elements to which it is applied.
For example, you might create a behavior that opens a new window when the cursor
points to the element. You could then apply this behavior to a button, input box,
hyperlink, or other element.

Every control you create to work with the Microsoft AJAX Library will derive from one of
these objects as its base. The sections that follow provide additional details on the three types
of client objects you can create with the Microsoft AJAX Library.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 495

Creating an AJAX Client Component
An AJAX client component is a class you create that derives from the Sys.Component class. You
derive from this class when you want to create a class that gets managed by the Microsoft AJAX
Library but does not work directly with the UI. This is similar to the class that was created in the
previous section. However, in this case, you inherit the Sys.Component base class. This ensures
that the library knows how to manage the lifetime of your object from initialize through disposal.

As an example (and building on the password example), consider a class that you write as a
component that provides methods for verifying the strength of a password on the client. You
would create this class the same way classes were created in the previous section. However,
for the client component you have a couple of additional items to consider.

First, when you define the class constructor, you should make sure to initialize the base
constructor in the base class. The following code shows an example.

Type.registerNamespace("AjaxEnabled");

//create constructor
AjaxEnabled.PasswordStrengthComponent = function() {
 AjaxEnabled.PasswordStrengthComponent.initializeBase(this);
}

Next, you might consider overriding the base class’s methods. When you do, you should also
make sure to call the methods of the base class you are overriding. You can do so by calling the
callBaseMethod method (of the Type class). As an example, if you override the initialize method
of the base class, you should write the following code to call its base init method.

initialize: function() {
 AjaxEnabled.PasswordStrengthComponent.callBaseMethod(this, 'initialize');
 //add custom initialization here
}

Finally, when you register the actual component, you must indicate that you are inheriting
from the Sys.Component base class. The following shows an example of the registerClass method
indicating inheritance of the Component class.

//register class as a Sys.Component
AjaxEnabled.PasswordStrengthComponent.registerClass(
 'AjaxEnabled.PasswordStrengthComponent', Sys.Component);

Note  ADDing A REFEREnCE TO ThE miCROsOFT AjAX LibRARy

When working with JavaScript files in the code editor, you can add a reference to the
Microsoft AJAX Library. This will ensure that your coding includes IntelliSense for
the library. This is similar to the using statement in C# and the Imports statement in
Visual Basic. You embed this reference in a comment at the top of your .js file. The
following shows an example.

/// <reference path="MicrosoftAjax.js"/>

 496	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Using the client component is the same as using any other Microsoft AJAX Library class. You
first register it with the ScriptManager. You can then create an instance of it in your page and
work with it as you would any other AJAX class (as discussed earlier). The first practice at the end
of this lesson walks you through creating this component and working with it on an ASPX page.

Creating an AJAX Client Control
An AJAX client control is a control that you create that is meant to provide additional, client-
side functionality to a DOM element (such as a button or an input box). A client control is meant
to work as a single, encapsulated control much the same way as the ASP.NET server controls or
the custom controls you might write. It is possible, however, to attach an AJAX client control to
an existing DOM element or server control without creating a custom control. The more robust
scenario is to create a custom server control that embeds the AJAX client control to provide
additional features. This section explores both of these options.

AJAX client controls extend the functionality of a DOM element. Therefore, you must provide
a means to indicate the DOM element that the AJAX control is meant to extend. This can be done
in the constructor. For example, consider a password strength control that works with a text box to
turn the text box different colors as the user types. These colors are based on the strength of the
password after each keystroke. To start this control, you might define the following constructor.
//define the namespace
Type.registerNamespace('AjaxEnabled');

//create constructor
AjaxEnabled.PassTextBox = function(element) {
 AjaxEnabled.PassTextBox.initializeBase(this, [element]);

 this._weakCssClass = null;
 this._mediumCssClass = null;
 this._strongCssClass = null;

}

Notice that the constructor takes the element parameter. This represents the DOM element
that the control is meant to extend. The first line of the constructor calls the initialize method
of the base class (Sys.UI.Control) and passes an instance of this class and a reference to the
element being extended by this class.

The next step is to define the class itself. This is the same as creating AJAX classes, which we
discussed previously. However, most client controls you write will intercept events fired from
the DOM element that they are intended to extend. They can also raise their own events to
be used by the client. To enable this functionality, you need to override the initialize method
of the Sys.UI.Control base class. The following code shows an example of this function inside
the class’s prototype.
//initialize the UI control
initialize: function() {
 AjaxEnabled.PassTextBox.callBaseMethod(this, 'initialize');

 this._onKeyupHandler = Function.createDelegate(this, this._onKeyup);
 $addHandlers(this.get_element(), {'keyup' : this._onKeyup}, this);
},

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 497

Notice the first line in the code just given. Here you indicate that the initialize method
should also call the base class’s initialize method. The next line creates a delegate to the
method onKeyup that you define in your class. You then register this method as a handler for
the element. The $addHandlers method does this. The first parameter is the DOM element
for which you want to intercept events. You can call the get_element method to return
the element associated with the class (from the constructor). The next parameter to the
$addHandlers call is an array of the events you want to intercept. Each event is referenced
by name, followed by the name of the method in your class you want to have called when
the event fires. In the final parameter, you pass an instance of the running class.

In addition to the initialize event, you will also want to override dispose to clean things
up. For example, you might want to remove the event handlers you added during initialize.
Of course, here, too, you will want to make sure to call the base class’s dispose method. The
following shows an example of doing both of these things.

dispose: function() {
 $clearHandlers(this.get_element());
 AjaxEnabled.PassTextBox.callBaseMethod(this, 'dispose');
},

The next step is to define code for the events you intend to intercept. You do so by cre-
ating a function (with the same name as the event you indicated in the createDelegate and
$addHandlers calls) that takes a single parameter as the event argument. Inside the event, you
have access to the DOM element that the control extends through the call, this.get_element().
The following code shows an example of the intercepted keystroke event to be called when a
user types in a text box.

//define keystroke event
_onKeyup : function(e) {

 //get password text
 var pass = this.get_element().value;
 var strength = this.returnPasswordStrength(pass);

 switch (strength) {
 case "Weak":
 this.get_element().className = this._weakCssClass;
 break;
 case "Medium":
 this.get_element().className = this._mediumCssClass;
 break;
 case "Strong":
 this.get_element().className = this._strongCssClass;
 break;
 }
},

The next step is to finish the class definition by creating your properties and methods. For
this example, these items are covered in Practice 2 of this lesson.

 498	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Finally, you register the class with the Microsoft AJAX Library. When doing so, you indicate
that the class inherits Sys.UI.Control. The following code shows an example.

//register class as a Sys.Control
AjaxEnabled.PassTextBox.registerClass('AjaxEnabled.PassTextBox', Sys.UI.Control);

//notify loaded
if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

When it is complete (see Practice 2 later in this lesson for a complete class listing), you can
use the class on a page. You have two options for doing so: registering the class on the page
through JavaScript, or creating a custom control to encapsulate this client control. The following
sections look at both options.

USING AN AJAX CLIENT CONTROL ON A PAGE
You can use the client control with existing ASP.NET controls and DOM elements by directly
accessing it on your page. To do so, you must first add a ScriptManager control to your page.
Inside it, you reference the script that contains your client control. The following code shows
an example of this for the password strength control discussed earlier.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="PasswordStrength.js" />
 </Scripts>
</asp:ScriptManager>

You also need to add the DOM element you intend to extend to the page. This is as straight-
forward as adding a control to the page. The password strength example is meant to work with
a text box. Therefore, you can add either an <input /> box or an <asp:TextBox /> control to the
page. The following shows an example of the latter.

<asp:TextBox ID="TextBoxPass" runat="server" TextMode="Password"></asp:TextBox>

The final step is to create an instance of the client control and connect it to the DOM element.
You will typically perform such actions inside the application init method of the Microsoft AJAX
Library. Therefore, you must create an override for this method. Inside the override, you use the
$create method (a shortcut to Sys.Component.create) to both create an instance of your AJAX
client control and connect that instance with the DOM element. The $create method has five
parameters, as follows:

■ type This parameter indicates the class instance you intend to create.

■ properties This parameter is used to indicate properties and property values of the
class instance that should be set when the item is created.

■ events This parameter is used to indicate the events you intend to register from the
client code to the client control.

■ references This parameter indicates references to other components.

■ element This parameter is used to indicate the DOM element to which your client
control should be attached.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 499

The following code shows a call to the $create method for the password strength control.
Complete Practice 2 of this lesson to see the control in action.

<script language="javascript" type="text/javascript">

 var app = Sys.Application;
 app.add_init(appInit);

 function appInit(sender, args) {

 $create(AjaxEnabled.PassTextBox,
 {weakCssClass : 'weak', mediumCssClass : 'medium',
 strongCssClass : 'strong'},
 null, null, $get('TextBoxPass'));

 }

</script>

ENCAPSULATING AN AJAX CLIENT CONTROL INTO A CUSTOM SERVER CONTROL
A more robust solution for creating AJAX-enabled controls is to embed your client-side func-
tionality into a custom control. Custom controls are covered in depth in Chapter 7, “Creating
Custom Web Controls.” You might want to make sure you have read that chapter if you need
a quick overview of custom controls.

To create a custom control that embeds your client script, you must define a server-side
class and use it to write the custom control. This class can be part of your website in the
App_Code directory or can be embedded in its own assembly. The latter option allows you
to isolate the control from the website and even use it across websites. The former option is
great for dynamically compiling your control and deploying it on the code files associated
with it (and not the DLL of a component).

The class itself must inherit from a control. This can be either an existing control you intend to
extend or a base control (such as System.Web.UI.Control). The control must also implement the
IScriptControl interface . This interface is used to implement methods to embed your JavaScript in
the control. The following code example shows the password strength example control inheriting
from TextBox and implementing the IScriptControl interface.

Sample of Visual Basic Code

Namespace AjaxEnabled

 Public Class PassTextBox
 Inherits TextBox
 Implements IScriptControl
 ...

Sample of C# Code

namespace AjaxEnabled
{
 public class PassTextBoxCs : TextBox, IScriptControl
 {
 ...

 500	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

The next step is to create a class-level variable to represent the ScriptManager that works
with the control. You can declare this variable and then override the OnPreRender event of the
control to set its value. You do so by calling the ScriptManager.GetCurrent static method and
passing in the page containing the control. The following shows an example.

Sample of Visual Basic Code

Private _sMgr As ScriptManager
Protected Overrides Sub OnPreRender(ByVal e As EventArgs)
 If Not Me.DesignMode Then

 'test for the existence of a ScriptManager
 _sMgr = ScriptManager.GetCurrent(Page)

 If _sMgr Is Nothing Then _
 Throw New HttpException(_
 "A ScriptManager control must exist on the page.")

 _sMgr.RegisterScriptControl(Me)
 End If

 MyBase.OnPreRender(e)
End Sub

Sample of C# Code

private ScriptManager sMgr;
protected override void OnPreRender(EventArgs e)
{
 if (!this.DesignMode)
 {
 //test for the existence of a ScriptManager
 sMgr = ScriptManager.GetCurrent(Page);

 if (sMgr == null)
 throw new HttpException(
 "A ScriptManager control must exist on the page.");

 sMgr.RegisterScriptControl(this);
 }

 base.OnPreRender(e);
}

Next, you define the properties of the control that users will set. In the password example,
there are properties defined for the three style class names that should be set on the text box
for each of the password strengths (weak, medium, and strong). You can add fields or properties
to the server control to represent these items. You then create a GetScriptDescriptors method to
map these properties or fields to properties of the control. The following shows an example.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 501

Sample of Visual Basic Code

Public WeakCssClass As String
Public MediumCssClass As String
Public StrongCssClass As String

Protected Overridable Function GetScriptDescriptors() _
 As IEnumerable(Of ScriptDescriptor)

 Dim descriptor As ScriptControlDescriptor = _
 New ScriptControlDescriptor("AjaxEnabled.PassTextBox", Me.ClientID)

 descriptor.AddProperty("weakCssClass", Me.WeakCssClass)
 descriptor.AddProperty("mediumCssClass", Me.MediumCssClass)
 descriptor.AddProperty("strongCssClass", Me.StrongCssClass)

 Return New ScriptDescriptor() {descriptor}

End Function

Sample of C# Code

public string WeakCssClass;
public string MediumCssClass;
public string StrongCssClass;

protected virtual IEnumerable<ScriptDescriptor> GetScriptDescriptors()
{
 ScriptControlDescriptor descriptor =
 new ScriptControlDescriptor("AjaxEnabled.PassTextBox", this.ClientID);

 descriptor.AddProperty("weakCssClass", this.WeakCssClass);
 descriptor.AddProperty("mediumCssClass", this.MediumCssClass);
 descriptor.AddProperty("strongCssClass", this.StrongCssClass);

 return new ScriptDescriptor[] { descriptor };
}

You must also register the actual JavaScript code to be used by your control. You do so by
writing a GetScriptReferences method. This method references the .js file that you intend to use
to extend your custom control. There are two ways to implement this method, one for controls
in the App_Code directory of the website and another for controls you create as stand-alone
assemblies. The following code shows an example of the former, a custom control created in the
website’s App_Code directory and referencing a JavaScript file in the same website.

Sample of Visual Basic Code

Protected Overridable Function GetScriptReferences() _
 As IEnumerable(Of ScriptReference)

 Dim reference As ScriptReference = New ScriptReference()
 reference.Path = ResolveClientUrl("PasswordStrength.js")

 Return New ScriptReference() {reference}

End Function

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 502	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Sample of C# Code

protected virtual IEnumerable<ScriptReference> GetScriptReferences()
{
 ScriptReference reference = new ScriptReference();
 reference.Path = ResolveClientUrl("PasswordStrength.js");

 return new ScriptReference[] { reference };
}

The latter method, embedding the control in its own assembly, is covered in Practice 3 at
the end of this lesson.

To use the custom control, you register it with the page and then define its tag. For example,
to use the password strength custom control created inside the App_Code directory, you add
the following directive to the top of your webpage source.

<%@ Register Namespace="AjaxEnabled" TagPrefix="AjaxEnabled" %>

You then add a ScriptManager to your page. You can then define the control’s markup as
you would any other server control. The following shows the control in the example. Notice
that the three properties of the control that manage the style of the text box are being set
declaratively to style class names defined elsewhere on the page.

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

<AjaxEnabled:PassTextBox ID="textbox1" runat="server"
 TextMode="Password" WeakCssClass="weak" MediumCssClass="medium"
 StrongCssClass="strong"></AjaxEnabled:PassTextBox>

Creating an AJAX Behavior for Client Controls
Fortunately, an AJAX behavior client control works in much the same way an AJAX client control
does. The biggest distinction is that behaviors are meant to be more general and are created to
extend one or more controls (and not to be embedded as a stand-alone UI control). Behaviors
are meant to be applied to DOM elements at design time and thus extend the behavior of the
controls to which it is applied.

For the most part, you write a behavior control as you would a client control, by writing a
JavaScript file that provides extensions to a control. However, you inherit from Sys.UI.Behavior
instead of Sys.UI.Control.

ENCAPSULATING THE AJAX BEHAVIOR AS AN EXTENDER CONTROL
The difference between client and behavior controls, although slight, is in how you use the con-
trol. Rather than being a custom control based on a single web control (as discussed in the
previous section), a custom behavior control inherits from the ExtenderControl class. In addi-
tion, when you define the class, you add the TargetControlType attribute to the class definition.
This allows users of the control to set the control they want to have extended during design
time. The following shows a basic class definition of a custom extender control.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 503

Sample of Visual Basic Code

<TargetControlType(GetType(Control))> _
Public Class MyExtender
 Inherits ExtenderControl

End Class

Sample of C# Code

[TargetControlType(typeof(Control))]
public class MyExtender : ExtenderControl
{

}

From there, you use the same methods to build out the rest of the control as discussed for
an AJAX custom server control previously. This includes a call to GetScriptReferences to set a
reference to the AJAX behavior class used by the custom control.

USING THE AJAX BEHAVIOR
The AJAX behavior is encapsulated in a custom control that inherits from the ExtenderControl
class. You therefore use the control as you would any other custom control (as discussed
previously). You first register the control on the page by using the @ Register directive. You
then define an instance of the control in your markup. Because it is an extender control,
however, you must also define the control it extends by setting the control’s TargetControlId
property to the ID of another control on the page. This indicates the control to which you
want to provide additional behavior. The following provides an example of what the markup
looks like.

<asp:Button ID="Button1" runat="server" Text="Button" />

<ajaxEnabled: MyExtender runat="server"
 ID=" MyExtender1" TargetControlID="Button1"
 PropertyCssClass="MyCssClassName"/>

PrActIcE	1	 Creating and Using an AjAX Component

In this practice, you create an AJAX client component. This component does not have a UI.
Rather, it is meant to be used to provide additional functionality to the pages that use it. In
the second exercise, you register and use the component on a page.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

 504	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

ExErcIsE	1	 Creating the AJAX Component

In this exercise, you create a new ASP.NET website and add a client component inside a JavaScript
file. The client component defines a method for determining a password’s strength.

	 1. Open Visual Studio and create a new ASP.NET website named AjaxEnabled in either
C# or Visual Basic.

	 2. Add a new JavaScript file to the site. Right-click the Scripts folder in the website and
select Add New Item. In the Add New Item dialog box, select Jscript File. Name the file
PasswordstrengthComponent.js.

	 3. Open the newly created JavaScript file. At the top of the file, add code to reference the
MicrosoftAjax.js library and to register a new namespace. The following shows an example.

/// <reference name="MicrosoftAjax.js"/>

Type.registerNamespace("AjaxEnabled");

	 4. Next, define the constructor for your JavaScript class as a function. This is a simple
AJAX component, so not much happens here. The following shows an example:

//create constructor
AjaxEnabled.PasswordStrengthComponent = function() {
 AjaxEnabled.PasswordStrengthComponent.initializeBase(this);
}

	 5. The next step is to define the inside of the class. You do so by creating its prototype.
Inside the prototype, declare a function called returnPasswordStrength that takes a
password, checks its value, and returns its strength. The following shows an example
class definition that also includes the dispose method.

//define class
AjaxEnabled.PasswordStrengthComponent.prototype = {
 initialize: function () {
 //add custom initialization here
 AjaxEnabled.PasswordStrengthComponent.callBaseMethod(this, 'initialize');
 },

 returnPasswordStrength: function (password) {
 var strPass = new String(password.toString());
 if (strPass.length < 5) {
 return "Weak";
 }
 else {
 if (strPass.length < 8) {
 return "Medium";
 }
 else {
 return "Strong";
 }
 }
 },

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 505

 dispose: function () {
 //add custom dispose actions here
 AjaxEnabled.PasswordStrengthComponent.callBaseMethod(this, 'dispose');
 }
}

	 6. Finally, add code to the class to register it with the Microsoft AJAX Library by calling the
registerClass method of the component. Be sure to indicate that the class inherits
the Sys.Component class from the library. The following code shows an example that
includes notification to the application that the script has been fully loaded.

//register class as a Sys.Component
AjaxEnabled.PasswordStrengthComponent.registerClass(
 'AjaxEnabled.PasswordStrengthComponent', Sys.Component);

//notify script loaded
if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

	 7. Save the file. You have completed the creation of the component. In the next exercise,
you will use this component on a webpage.

ExErcIsE	2	 Calling the AJAX Component from a Webpage

In this exercise, you add the AJAX component created in the previous exercise to a webpage.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 2, Practice 1, Exercise 1 project in the sample files installed
from the CD.

	 2. Open the Default.aspx page in Source view. Remove the markup inside the
BodyContent tags.

	 3. Add a ScriptManager control from the Toolbox to the page. Inside the ScriptManager
control, set a reference to the PasswordStrengthComponent.js file created previously.
The following shows an example.

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="Scripts/PasswordStrengthComponent.js" />
 </Scripts>
 </asp:ScriptManager>
</asp:Content>

	 4. Next, add controls to the page (under the ScriptManager markup) that represents a
user logon form. This includes a text box control used for entering a password. Your
UI controls might look as shown on the next page.

 506	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

<div style="font-size: large; font-weight: bold">User Logon</div>
<hr />

User Name:

<asp:TextBox ID="TextBoxUserName" runat="server" Width="200"></asp:TextBox>

Password:

<asp:TextBox ID="TextBoxPassword" runat="server"
 TextMode="Password" Width="200"></asp:TextBox>
<asp:Label ID="LabelStrength" runat="server" Text=""></asp:Label>

<input id="ButtonSubmit" type="button" value="Log On" />

	 5. The next step is to add JavaScript to your page to work with your client component. In
this example, you create an event that fires as the user presses a key inside the Password
text box. Each time, you grab the contents of the text box and verify the data by using the
custom library that you wrote. You write the results out to the screen by using a label
control that you define on the page (LabelStrength, defined in the previous step). The
following code is placed inside the HeaderContent tags on the page.

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
 <script language="javascript" type="text/javascript">

 function _OnKeypress() {
 var checker = new AjaxEnabled.PasswordStrengthComponent();
 var pass =
 document.getElementById("MainContent_TextBoxPassword").value;
 var strength = checker.returnPasswordStrength(pass);
 document.getElementById(
 "MainContent_LabelStrength").innerText = strength;
 }

 </script>
</asp:Content>

	 6. The last step is to make sure that this event is registered for the Password text box. You
can do so by adding the onkeyup="_OnKeypress()" attribute to the TextBoxPassword
control defined previously.

	 7. Finally, run your page. Enter values in the Password text box and notice how the labels
change as you type. Figure 9-6 shows an example of the page in action.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 507

FigURE 9-6  The AJAX password client component running in a browser.

PrActIcE	2	 Creating and Using an AjAX Client Control

In this practice, you create an AJAX client control that works with a text box DOM element to
show users their password strength. In Exercise 2, you add this control to a webpage and wire it
to a text box. This same control is used in Practice 3, in which you wrap the control as a custom
server control.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Creating an AJAX Client Control

In this exercise, you create a JavaScript file for checking password strength.

	 1. Open Visual Studio and create a new ASP.NET website named AjaxEnabled (if you have
a conflict with the website you created in Practice 1, place this project in a different
folder) in either C# or Visual Basic.

	 2. Add a new JavaScript file to the root of the site. Right-click the website and select Add
New Item. In the Add New Item dialog box, select Jscript File. Name the file PassTextbox.js.

 508	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

	 3. Open the newly created JavaScript file. At the top of the file, add code to reference
the MicrosoftAjax.js library and to register a new namespace. The following shows
an example.

/// <reference name="MicrosoftAjax.js"/>

Type.registerNamespace("AjaxEnabled");

	 4. Next, define the constructor for your JavaScript class as a function. In this case, the con-
structor takes the element parameter. This is meant to represent the DOM element that
the control extends. Use this element to initialize the base class of System.UI.Control. This
control will set the style of a text box based on the strength of the password. Therefore,
it exposes three properties, one for each password strength. Inside the constructor,
initialize the private fields used to represent these properties.

The following shows an example of the constructor.

//create constructor
AjaxEnabled.PassTextBox = function (element) {
 AjaxEnabled.PassTextBox.initializeBase(this, [element]);

 this._weakCssClass = null;
 this._mediumCssClass = null;
 this._strongCssClass = null;
}

	 5. The next step is to define the inside of the class by creating its prototype. The prototype
of this class will include both an initialize and a dispose method. It will also include event
code called onKeyup that handles the text box keyup event. Finally, the code includes
several properties for managing the setting and getting of the password style classes. The
following shows an example of the prototype definition. Note: Most of this code was
covered in the lesson. Refer back to the text if you have trouble following the code.

//define class
AjaxEnabled.PassTextBox.prototype = {

 //initialize the UI control
 initialize: function() {
 AjaxEnabled.PassTextBox.callBaseMethod(this, 'initialize');

 this._onKeyupHandler = Function.createDelegate(this, this._onKeyup);
 $addHandlers(this.get_element(), {'keyup' : this._onKeyup}, this);
 },

 dispose: function() {
 $clearHandlers(this.get_element());
 AjaxEnabled.PassTextBox.callBaseMethod(this, 'dispose');
 },

 //define keystroke event
 _onKeyup : function(e) {

 //get password text

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 509

 var pass = this.get_element().value;
 var strength = this.returnPasswordStrength(pass);

 switch (strength) {
 case "Weak":
 this.get_element().className = this._weakCssClass;
 break;
 case "Medium":
 this.get_element().className = this._mediumCssClass;
 break;
 case "Strong":
 this.get_element().className = this._strongCssClass;
 break;
 }
 },

 //define properties
 get_weakCssClass: function() {
 return this._weakCssClass;
 },
 set_weakCssClass: function(value) {
 this._weakCssClass = value;
 },
 get_mediumCssClass: function() {
 return this._mediumCssClass;
 },
 set_mediumCssClass: function(value) {
 this._mediumCssClass = value;
 },
 get_strongCssClass: function() {
 return this._strongCssClass;
 },
 set_strongCssClass: function(value) {
 this._strongCssClass = value;
 },

 returnPasswordStrength: function(password) {
 var strPass = new String(password.toString());
 if (strPass.length < 5)
 {
 return "Weak";
 }
 else
 {
 if (strPass.length < 8)
 {
 return "Medium";
 }
 else
 {
 return "Strong";
 }
 }
 }
}

 510	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

	 6. Finally, add code to the class to register it with the Microsoft AJAX Library by calling the
registerClass method of the component. Be sure to indicate that the class inherits
the Sys.UI.Control class from the library. The following code shows an example that
includes notification to the application that the script has been fully loaded.

//register class as a Sys.Control
AjaxEnabled.PassTextBox.registerClass('AjaxEnabled.PassTextBox',
 Sys.UI.Control);

//notify loaded
if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

	 7. Save the file. You have completed creating the AJAX UI portion of the control. In the
next exercise, you will use this control on a webpage. In Practice 3, you will wrap this
script into a custom server control.

ExErcIsE	2	 Using the AJAX Client Control on a Webpage

In this exercise, you add the AJAX UI control created in the previous exercise to a webpage
and connect it to a text box control.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you
can open the completed Lesson 2, Practice 2, Exercise 1 project in the sample files
installed from the CD.

	 2. Open the Default.aspx page in Source view. Remove the content inside the BodyContent
area of the page.

	 3. Add a ScriptManager control from the Toolbox to the page. Inside the ScriptManager
control, set a reference to the PassTextBox.js file created previously. The following shows
an example.

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="PassTextBox.js" />
 </Scripts>
 </asp:ScriptManager>

</asp:Content>

	 4. Next, add controls under the ScriptManager control that represents a user logon form.
This includes a text box control used for entering a password. Your UI controls might
look as follows.

<div style="font-size: large; font-weight: bold">User Logon</div>
<hr />

User Name:

<asp:TextBox ID="TextBoxUserName" runat="server" Width="200"></asp:TextBox>

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 511

Password:

<asp:TextBox ID="TextBoxPassword" runat="server"
 TextMode="Password" Width="200"></asp:TextBox>
<asp:Label ID="LabelStrength" runat="server" Text=""></asp:Label>

<input id="ButtonSubmit" type="button" value="Log On" />

	 5. In addition, add style class definitions to the page for each of the password strengths.
These will change the look of the text box based on the strength of the password. The
following shows an example added to the HeaderContent section of the page source.

<asp:Content ID="HeaderContent" runat="server"
 ContentPlaceHolderID="HeadContent">

 <style type="text/css">
 .weak
 {
 border: thin solid #FF0000;
 }
 .medium
 {
 border: thin solid #FFFF00;
 }
 .strong
 {
 border: medium solid #008000;
 }
 </style>

</asp:Content>

	 6. The next step is to define JavaScript on the page to create an instance of the AJAX UI
control and connect it to the TextBoxPassword control. You can do so in the Microsoft
AJAX Library’s application initialize event. When you create an instance of the control,
you will want to pass in property definition settings and a reference to the text box. The
following code should be added to the page under the ScriptManager control markup.

<script language="javascript" type="text/javascript">

 var app = Sys.Application;
 app.add_init(appInit);

 function appInit(sender, args) {

 $create(AjaxEnabled.PassTextBox,
 { weakCssClass: 'weak', mediumCssClass: 'medium',
 strongCssClass: 'strong' }, null, null,
 $get('MainContent_TextBoxPassword'));
 }

</script>

 512	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

	 7. Finally, run your page. Enter values in the Password text box and notice how the style of
the text box changes as you type. Figure 9-7 shows an example of the page in action.
When the user enters a strong password, the text box border turns thicker and green.

FigURE 9-7  The AJAX password client UI control running in a browser.

PrActIcE	3	 Encapsulating an AjAX Client Control as a Custom Control

In this practice, you encapsulate the AJAX UI control created in the previous example as a
custom control. You then register and use it on the page.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Embedding an AJAX Client Control as a Custom Control

In this exercise, you create a custom control that encapsulates the AJAX client control created in
the previous practice.

Note that this practice uses the JavaScript file (PassTextBox.js) created in Practice 2.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 513

	 1. Open Visual Studio and create a new ASP.NET Web site named AjaxEnabled (if you
have a conflict, place the project in a separate folder) in either C# or Visual Basic.

	 2. Add a new class library to the solution: right-click the solution and choose Add New
Project | Select Windows | Class Library. Name this class library PassTextbox.

	 3. Add references to the project: right-click the PassTextBox project and select Add Reference.
On the .NET tab of the Add Reference dialog box, select the following references:
System.Drawing, System.Web, and System.Web.Extensions. Close the dialog box.

	 4. Open the class file in the code editor. Set the root/default namespace of the class to
AjaxEnabled. You can do so from the project Properties dialog box for the class library.
Also, set the assembly name to AjaxEnabled. This is done through the project Properties
dialog box.

	 5. Name the class PassTextbox (you should also change the filename). Indicate that the
class inherits from the TextBox control and implements the IScriptControl.

	 6. Add using statements (or, in Visual Basic, Imports) for System.Web.UI.WebControls,
System.Web.UI, and System.Web.

	 7. Next, add a private variable to track a ScriptManager control at the class level. Also, add
three fields to the control for managing the password text box style properties based on
password strength. The top portion of your control should now look as follows.

Sample of Visual Basic Code

Public Class PassTextBox
 Inherits TextBox
 Implements IScriptControl

 Private _sMgr As ScriptManager

 Public WeakCssClass As String
 Public MediumCssClass As String
 Public StrongCssClass As String
...

Sample of C# Code

public class PassTextBox : TextBox, IScriptControl
{

 private ScriptManager sMgr;

 public string WeakCssClass;
 public string MediumCssClass;
 public string StrongCssClass;

 514	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

	 8. Next, add a method called GetScriptDescriptors. This method is meant to define the
properties and events that work with the client control. Here you add three property
descriptors, one for each password strength style. The following code shows an example.

Sample of Visual Basic Code

Protected Overridable Function GetScriptDescriptors() _
 As IEnumerable(Of ScriptDescriptor)

 Dim descriptor As ScriptControlDescriptor = _
 New ScriptControlDescriptor("AjaxEnabled.PassTextBox", Me.ClientID)

 descriptor.AddProperty("weakCssClass", Me.WeakCssClass)
 descriptor.AddProperty("mediumCssClass", Me.MediumCssClass)
 descriptor.AddProperty("strongCssClass", Me.StrongCssClass)

 Return New ScriptDescriptor() {descriptor}

End Function

Sample of C# Code

protected virtual IEnumerable<ScriptDescriptor> GetScriptDescriptors()
{
 ScriptControlDescriptor descriptor =
 new ScriptControlDescriptor("AjaxEnabled.PassTextBox", this.ClientID);

 descriptor.AddProperty("weakCssClass", this.WeakCssClass);
 descriptor.AddProperty("mediumCssClass", this.MediumCssClass);
 descriptor.AddProperty("strongCssClass", this.StrongCssClass);

 return new ScriptDescriptor[] { descriptor };
}

	 9. Now add a method called GetScriptReference. This method is meant to get a reference
to the JavaScript that is used by this custom control. In this case, the JavaScript will be
embedded in the same assembly. Therefore, add the following code.

Sample of Visual Basic Code

Protected Overridable Function GetScriptReferences() _
 As IEnumerable(Of ScriptReference)

 Dim reference As ScriptReference = New ScriptReference()

 reference.Assembly = "AjaxEnabled"
 reference.Name = "AjaxEnabled.PassTextBox.js"

 Return New ScriptReference() {reference}

End Function

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 515

Sample of C# Code

protected virtual IEnumerable<ScriptReference> GetScriptReferences()
{
 ScriptReference reference = new ScriptReference();
 reference.Assembly = "AjaxEnabled";
 reference.Name = "AjaxEnabled.PassTextBox.js";

 return new ScriptReference[] { reference };
}

	 10. You now need to fill out the rest of this class. This code is straightforward and common
to all controls of this nature. The rest of the members of the class are as follows.

Sample of Visual Basic Code

Protected Overrides Sub OnPreRender(ByVal e As EventArgs)
 If Not Me.DesignMode Then

 'test for the existence of a ScriptManager
 _sMgr = ScriptManager.GetCurrent(Page)

 If _sMgr Is Nothing Then _
 Throw New HttpException(_
 "A ScriptManager control must exist on the page.")

 _sMgr.RegisterScriptControl(Me)
 End If

 MyBase.OnPreRender(e)
End Sub

Protected Overrides Sub Render(ByVal writer As HtmlTextWriter)
 If Not Me.DesignMode Then _
 _sMgr.RegisterScriptDescriptors(Me)
 MyBase.Render(writer)
End Sub
Function IScriptControlGetScriptReferences() _
 As IEnumerable(Of ScriptReference) _
 Implements IScriptControl.GetScriptReferences

 Return GetScriptReferences()

End Function

Function IScriptControlGetScriptDescriptors() _
 As IEnumerable(Of ScriptDescriptor) _
 Implements IScriptControl.GetScriptDescriptors

 Return GetScriptDescriptors()

End Function

 516	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Sample of C# Code

protected override void OnPreRender(EventArgs e)
{
 if (!this.DesignMode)
 {
 //test for the existence of a ScriptManager
 sMgr = ScriptManager.GetCurrent(Page);

 if (sMgr == null)
 throw new HttpException(
 "A ScriptManager control must exist on the page.");

 sMgr.RegisterScriptControl(this);
 }

 base.OnPreRender(e);
}

protected override void Render(HtmlTextWriter writer)
{
 if (!this.DesignMode)
 sMgr.RegisterScriptDescriptors(this);

 base.Render(writer);
}

IEnumerable<ScriptReference> IScriptControl.GetScriptReferences()
{
 return GetScriptReferences();
}

IEnumerable<ScriptDescriptor> IScriptControl.GetScriptDescriptors()
{
 return GetScriptDescriptors();
}

	 11. The next step is to embed your JavaScript file as a resource to this class.

	 a. Copy the PassTextBox.js file created in the earlier practice to your PassTextBox class
library project (or get it from the sample files installed from the CD).

	 b. In Solution Explorer, view properties for the PassTextBox.js file. In the Properties
window, set the Build Action property to Embedded Resource.

	 c. Open the project’s AssemblyInfo file. You might have to click the Show All Files tool-
bar button from Solution Explorer. In Visual Basic, you can then find this file under
the My Project folder. In C#, it is under a folder called Properties. Open this file and
add the following Web resource assembly definition.

Sample of Visual Basic Code

<Assembly: System.Web.UI.WebResource("AjaxEnabled.PassTextBox.js", "text/
javascript")>

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 517

Sample of C# Code

[assembly: System.Web.UI.WebResource("AjaxEnabled.PassTextBox.js", "text/
javascript")]

	 12. Finally, build the project. You should now have a custom server control based on the
TextBox class that also uses an embedded AJAX UI control targeted to work with the
Microsoft AJAX Library. In the next exercise, you will practice how to use this control.

ExErcIsE	2	 Using the Custom AJAX Control on a Webpage

In this exercise, you add the custom AJAX control created in the previous exercise to a webpage.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 2, Practice 3, Exercise 1 project in the sample files installed
from the CD.

	 2. Open the website project.

	 3. Add a project reference to the PassTextBox control. Because both your website and
your custom control are in the same solution, you can add a project reference from
the website to the text box control by right-clicking the website project and choosing
Add Reference. Select the Projects tab in the Add Reference dialog box and select the
PassTextBox project. (If your projects are not in the same solution, you must copy the DLL
files from the previous exercise to the Bin directory of the website.)

	 4. Open the Default.aspx page in Source view. Remove the content inside the
BodyContent tags.

	 5. Add a ScriptManager control from the Toolbox to the BodyContent area of the page.

	 6. At the top of the page, under the @ Page directive, add an @ Register directive to
register the custom control. This directive should point to the assembly that contains
the custom control created previously.

If you are following along closely, the name of this assembly is AjaxEnabled. If you went
fast and perhaps missed step 4 in Exercise 1 of this practice, your assembly might be
named PassTextBox. You can check the Bin directory of the site to be sure.

<%@ Register Assembly="AjaxEnabled" Namespace="AjaxEnabled"
 TagPrefix="ajaxEnabled" %>

	 7. Next, add controls to the page that represents a user logon form. These controls should
be similar to those found at the end of the previous practice. Note: Be sure to include
the style definitions set there as well. However, in this case, you do not define a password
text box and connect it to the AJAX UI control. Instead, you define an instance of the
already-embedded custom control as follows.

<ajaxEnabled:PassTextBox ID="textbox1" runat="server" width="200"
 TextMode="Password" WeakCssClass="weak" MediumCssClass="medium"
 StrongCssClass="strong"></ajaxEnabled:PassTextBox>

 518	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

	 8. Finally, run your page. Enter values in the Password text box and notice how the style
of the text box changes as you type.

Note POTEnTiAL nAmEsPACE COnFLiCT

If you are using C#, you might get an error due to a namespace conflict. The assembly
name of the website and the assembly name of the control are set to the same value,
AjaxEnabled. You can overcome this by changing the website’s assembly name and
namespace. To do so, right-click the website and choose Properties. Here you can set
the values for these two items to AjaxEnabled2.

Lesson Summary
■ You can define client script for a page by using the <script/> tag. You can write JavaScript

inside this tag or you can use it to point to a .js file.

■ The ClientScriptManager class is used to register client script dynamically from server-
side code. An instance of this class is accessible from the Page.ClientScript property.

■ The ScriptManager control can also be used to register your own custom client
scripts. This is useful if you are already using this control for partial-page updates
or to access the Microsoft AJAX Library.

■ The Microsoft AJAX Library provides object-oriented support for building JavaScript
code that extends the features of the client’s browser. This includes a set of base
classes and a framework (Sys).

■ There are typically three types of objects you create for use with the Microsoft AJAX
Library: components, controls, and behaviors. A component is a class that has no UI. A
control is typically a single control that provides AJAX capabilities. A behavior provides
extended capabilities that can be attached to a control at design time.

■ You can wrap an AJAX client control into a custom server control. To do so, you
implement the IScriptControl interface.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Creating Client Scripts with the Microsoft AJAX Library.” The questions are also available on
the companion CD as a practice test if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

 Lesson 2: Creating Client Scripts with the Microsoft AJAX Library ChAPTER 9 519

	 1. Which of the following lines of JavaScript registers a new class to be used as an extension
to a DOM element?

	 A. MyNamespace.MyClass.registerClass('MyNamespace.MyClass ', Sys.UI.Control);

	 B. MyNamespace.MyClass.registerClass('MyNamespace.MyClass ', null, Sys.IDis-

posable);

	 c. MyNamespace.MyClass.registerClass('MyNamespace.MyClass ', null);

	 D. MyNamespace.MyClass.registerClass('MyNamespace.MyClass ', Sys.UI.Behavior);

	 2. You are creating an AJAX component that does an asynchronous postback to the
server for partial-page updates. You need your code to be notified when the partial-
page response first comes back from the server. Which event should you intercept?

	 A. endRequest

	 B. pageLoading

	 c. pageLoaded

	 D. beginRequest

	 3. You write a JavaScript class that uses the Microsoft AJAX Library. You intend to use the
class on a webpage. Which of the following actions should you take?

	 A. Add the following markup to the <head /> section of the ASPX page.

<script src="ContosoUtilities.js" type="text/javascript"></script>

	 B. Add a ScriptManager control to your page. It automatically finds your .js files in
your solution. You can then work with them by using IntelliSense.

	 c. Add a ScriptManager control to your page. Add a reference nested inside the
ScriptManager control that points to your JavaScript file.

	 D. Use the ScriptReference class in your code-behind file and set its path to the path
of your .js file.

	 4. You want to create a custom control that works as an AJAX client behavior. What
action(s) should you take? (Choose all that apply.)

	 A. Create a custom server-side class that inherits from a valid System.Web.UI.Control.

	 B. Create a custom server-side class that inherits from ExtenderControl.

	 c. Create a custom server-side class that implements the interface IScriptControl.

	 D. Create a custom server-side class that is decorated with the attribute
TargetControlType.

 520	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Lesson 3: implementing jQuery

Programming in the browser has been problematic for years. Different browsers support the
JavaScript language in different ways. Writing code to run on the client often meant rewriting
it for various browsers or supporting only one or two browsers. Fortunately, jQuery solves this
problem.

jQuery is an open source library that simplifies the way JavaScript is written. It works across
all modern browsers and is lightweight. You can use it for a variety of client-side programming
tasks, such as selecting items inside your page, manipulating those items, changing styles, doing
animations and effects, handling user events on the client side, and calling web services by using
AJAX. There are also several plug-ins available for jQuery that provide rich controls that execute
inside a browser window.

Visual Studio 2010 and ASP.NET 4 now fully support jQuery for client-side development. The
jQuery library is installed by default when you create a new ASP.NET website.

This lesson covers the core aspects related to jQuery development. It includes an introduc-
tion and a tutorial on building your first jQuery page. It then covers the many uses for jQuery,
including selecting and traversing the DOM, working with DOM elements, responding to user
events inside the client, doing animations and effects, and implementing AJAX behavior by
using jQuery.

After this lesson, you will be able to:
■	 Select, filter, find, and traverse page items by using jQuery.
■	 Add, remove, and modify page elements by using jQuery.
■	 Add effects and animations to your page by using jQuery.
■	 Handle control events with jQuery.
■	 Demonstrate AJAX capabilities by calling a web service and client script

from jQuery.

Estimated lesson time: 40 minutes

real World

Mike Snell

Developers are using the jQuery library. The simplicity, power, and speed of the
library are all contributing to its rapid adoption. I have had the opportunity to

speak with a wide audience of web developers, and the majority are taking advantage
of this library. Microsoft’s inclusion of the default templates in ASP.NET will result in
an even wider adoption (and better user experiences).

 Lesson 3: Implementing jQuery ChAPTER 9 521

Introducing the jQuery Library
jQuery is simply a file of JavaScript code that allows you to more easily write JavaScript code
that runs in many different browsers. This code can do many things; it can work with UI styles,
handle user events, animate parts of your page, call back to the server via AJAX, and more.

The jQuery library has a core set of features on which you can build. In fact, there are many
extensions and plug-ins available for jQuery that help with menus, UI controls, page layout,
navigation, and much more. In this lesson, however, you will focus on the core aspects of the
library. The following list outlines the essential functionality that jQuery provides. We will go
over each of these areas in greater details in later sections.

■ Core The core of the jQuery library allows you to identify code that can execute only
after a document has fully loaded, create DOM elements dynamically, iterate selected
elements, create extensions to jQuery itself, and more.

■ selecting jQuery’s power is in its ability to quickly select items in the DOM. You can
easily return a single item from your page’s DOM or many items that match a pattern
without having to write much code. You use the jQuery selectors to find specific HTML
tags or to find form elements by ID, cascading style sheet class name, attribute or
attribute value, and more.

■ Filtering and Traversing You can create filters to select only those DOM elements that
meet your filter criteria. You can also traverse through your selection and act upon the
selected items (by changing their style or adding an event, for example). Some important
filter and traverse functions are first, last, odd, visible, match, selected, contains, enabled,
find, next, prev, parent, and siblings.

■ manipulation After you have selected an item (or multiple items), you can also use
jQuery to manipulate the item. This might be as simple as evaluating the HTML con-
tents or setting the text contents of the selected item. You can also use functions such
as append, insert, replaceWith, wrap, and remove (among others) to add, modify, or
remove content from the selected DOM item.

■ Cascading style sheets jQuery also provides functions for working with cascading
style sheets. This includes finding and setting styles, positioning items, setting height
and width, and more.

■ Events The jQuery library allows you to attach client code to user events in the browser.
This decouples your event code from the actual markup. You can handle almost any user
input event, including hover, toggle, click, dblclick, keydown, keyup, focus, mousedown,
mouseenter, mouseleave, scroll, resize, and more.

■ Animation and Effects jQuery provides functions for adding effects to and animating
the items on your page. Functions include show, hide, fadeIn, fadeOut, fadeTo, slideDown,
slideUp, animate, and more.

 522	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

■ AjAX The jQuery library supports AJAX calls from the browser to the server. It allows
you to call a web service or client script on the server and return the results to the page
without refreshing the entire page.

■ Utilities There are several utility functions inside the jQuery language for working
with browser compatibility, arrays, strings, and more.

Note  ThE jQUERy LibRARy WEbsiTE

You can find more information about jQuery from the official jQuery library website.
This site provides updates to the library, tutorials, full documentation, and plug-ins.
All of this can be found at http://www.jquery.com/.

Adding the jQuery Library to a Webpage
A new ASP.NET 4 website will include the jQuery files inside the Scripts directory by default. Note
that if you are working with an existing site that does not include jQuery, you can easily copy the
files into your site. The jQuery language is contained in a single file, jquery-<version>.min.js, in
which version is the current version (1.4.1 at the time of this writing).

Notice in Figure 9-8 that there are actually three jQuery files inside the Scripts directory.
The jquery-1.4.1-vsdoc.js file is used by Visual Studio to provide IntelliSense in the text
editor for jQuery code. Visual Studio simply looks for this file based on the naming con-
vention and will provide the appropriate IntelliSense. The jquery-1.4.1.js file is the debug
version of jQuery. This is a version of the code that is readable. You will want to reference
this file in your code when you are debugging your client scripts. The jquery-1.4.1.min.js
file is the “minified” version of the jQuery language. You use this file for production applica-
tions because it is a smaller client download and executes faster.

FigURE 9-8  The production version of jQuery is a single file, jquery-1.4.min.js.

 Lesson 3: Implementing jQuery ChAPTER 9 523

The first step to using the jQuery language is to reference it on your page. You can do so
with a simple <script/> block added to the top of the page. The following line of code shows
an example of referencing the debug version of the jQuery language on a webpage.

<script src="Scripts/jquery-1.4.1.js" type="text/javascript"></script>

You can also reference the library by using the ScriptManager control. You would add a
script reference just as you would to any other .js file. You typically use the ScriptManager
when you intend to mix Microsoft AJAX Library code with jQuery.

Note  hOsTing ThE jQUERy LAngUAgE FiLEs

The jQuery language files are actually hosted by several content delivery networks (or
CDNs). This ensures faster downloads and caching of the jQuery language. Microsoft
provides a CDN host of jQuery at http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.min.js.
You can use this URL to reference the jQuery language in your production applications.

Writing Your First jQuery Script
There are many basic jQuery blocks of code that do approximately the same three things:
ensure that the entire document has been loaded by the browser, select one or more elements
from the DOM, and manipulate that element in some way (by changing the style, adding event
code, adding items to the page, and so on). Of course, this does not represent the full capability
of jQuery, just some of the most basic (and frequently used) functionality.

As an example, suppose you want to add a simple fade-in effect to the title of your page. You
would first reference the jQuery script file. You would then write code to execute a function when
the full document has been loaded by the browser. Inside this function, you would write code to
find the title and then animate it. Finally, you would write markup for the actual title on the page.
The following code illustrates this example with a page that derives from a master page.

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master"
 AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
 <script src="Scripts/jquery-1.4.1.js" type="text/javascript"></script>
</asp:Content>

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <script type="text/javascript">
 $(document).ready(function () {
 $("h2").fadeIn("slow");
 });
 </script>

 <h2 style="display: none">
 Page Title
 </h2>

</asp:Content>

 524	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

There are few things to notice about this code and markup. First, notice that the script
reference to the jQuery library is added to the HeaderContent content area because this code
uses a master page. Next, notice that the title of the page is contained in an <h2> tag. This
tag also has its display style set to none when the page loads (because you plan to fade it in).

Now take a look at the jQuery code. Notice the use of the dollar sign ($); this is equivalent
to calling the core jQuery() function. This function is used to select items in your webpage and to
respond to jQuery life cycle events. The code, $(document).ready(), is actually selecting the
entire document and then indicating what to do when the ready event fires. The ready event
is a jQuery client-side event that triggers when the full DOM has been loaded by the browser
(like an ASP.NET Page_Load event on the server). You then pass an anonymous function to be
executed when this event fires. Note that you could write a function and then pass its name.
However, anonymous functions make the code easier to write and to read.

Finally, the line that reads, $(“h2”).fadeIn(“slow”);, uses the jQuery selector function $() to
find all instances of the tag <h2>. You then indicate that for all found items, you want to call
the jQuery fadeIn function and fade these items in slowly.

You should now have a good overview of just how the jQuery language can be used on a
webpage in ASP.NET. In the next few sections, you will explore searching the DOM, handling
client-side events, adding effects, and making AJAX calls with jQuery in more detail.

Selecting and Traversing the DOM
Much of jQuery is about finding items on your page and then doing something with (or to)
them. The jQuery functions that find items on your page are called selectors. The base function
in jQuery is jQuery() or $() and works as the base selector function. There are three primary ways
to pass string arguments to this function:

■ select by element Finds all elements with a specified tag name and returns an array of
those elements. You simply pass the name of the tag to the selector function, as in $("h2").

■ select by iD Allows you to select a single element by its ID. You use the pound (#)
character to indicate that you are searching by ID. For example, the element, <span
id="someId"> can be searched for by using the function call $("#someId").

■ select by cascading style sheet Allows you to find all tags with a specific cascading
style sheet class name. You use a period (.) to indicate the class name. For example,
to find all elements with the cascading style sheet class name of userInputStyle (as in
<div class="userInputStyle">), you would use the $(".userInputStyle") selector.

Advanced Selectors
The jQuery selectors are very flexible. You can combine the three selection types just listed to
get specific with your searches. For example, to select all tags with the cascading style
sheet style of sectionHeading, you would write $("span.sectionHeading").

 Lesson 3: Implementing jQuery ChAPTER 9 525

There are also several keywords you can use within the selection string to refine your
selection, such as :first, :last, :even, :odd, :not, :first-child, and :last-child. You use these
keywords appended to your selection parameter with a colon as in $(“span:first”) to find
the first tag in the page.

jQuery also lets you search the DOM for elements with specific attributes. You do so by
using square brackets, as in $(“a[href*=MyDomain]”). This code finds all anchor (<a/>) tags in
the page that have the text “MyDomain” as part of the href attribute. The *= indicates a find
all search. Table 9-1 describes the available search characters

TAbLE 9-1 jQuery Search Characters

sEARCh
ChARACTER DEsCRiPTiOn EXAmPLE

* (asterisk) Searches for the search term
in all text in the string

$("a[href*=MyDomain]")

^ (caret) Searches for the search term
at the beginning of the string

("a[href^=Folder/]")

$ (dollar sign) Searches for the search term
at the end of the string

$(a[href$=.com]")

! (exclamation
point)

Searches for elements whose
attributes do not match the
search string

$(a[href!=http://www.MyDomian.com]")

You can see that jQuery is a powerful DOM search tool. There are many ways in which to find
a group of elements on your page. Table 9-2 shows some examples and provides a description of
each. Of course, you can modify these examples to create even more scenarios.

TAbLE 9-2 jQuery Selector Examples

jQUERy sELECTOR EXAmPLE DEsCRiPTiOn

$("h2:first") Used to find the first instance of the <h2> element. Similar
syntax can be used for last, odd, and even.

$("div:first-child") Used to select the all first child elements inside <div> tags
on the page. Similar syntax can be used with last-child.

$("#div1:nth-child(4)") Used to select the fourth child element inside the tag whose
ID is div1.

$("span:not(.sectionHead)") Used to select all tags that do not have the
sectionHead cascading style sheet class.

$(":enabled") Returns all enabled elements on the page. The same syntax
can also be used for disabled.

(continued)

 526	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

jQUERy sELECTOR EXAmPLE DEsCRiPTiOn

$(":checked") Returns all checkbox elements on the page that are checked.
Similar syntax can be used for selected items in a list.

$("div:hidden") Returns all hidden <div/> tags on the page. Similar syntax
can be used for visible.

$(":contains(.docx)") Used to find all elements on the page that contain the
text .docx.

$("#div1 #div2") Finds any <div/> tags with the ID of div2 nested inside
another <div/> tag with the ID of div1.

$(":button") Used to find all elements of type button. You can use similar
syntax with input, text, password, radio, submit, checkbox,
and image.

exaM tIp

Be sure you know the basics of the jQuery syntax for the exam. You will have to be able to read
and understand this code, which is different from standard JavaScript or .NET Framework code.

Traversing Your Selection
The result returned by a jQuery selector is a set of elements that match the selection criteria.
Even if you only get a single element back in your selection, jQuery gives you a set of elements.
This allows you to work with a single item or a collection of items by using the same syntax.

You call functions on the returned set to work with the returned elements. These func-
tions might actually manipulate the elements, bind client-side events to an element, change
a style, or add an effect. You can also traverse the collection by walking through it, filtering it,
and selecting specific items inside it. These functions are referred to as traversing and filtering
functions in jQuery.

As an example, suppose you want to traverse the items of a returned selection set and
execute code against each item. In this case, you can use the .each() function. It works much
like the For…Each statement in the .NET Framework languages. The following sample code
demonstrates this. This code finds all <h2/> tags on a page and appends a sequential section
ID to the title text. Notice that you pass an anonymous function to the .each() function. This
function is executed once for each element in the set.

<script type="text/javascript">
 $(document).ready(function () {
 $("h2").each(function (index) {
 this.innerHTML = "Section " + index;
 });
 });
</script>

 Lesson 3: Implementing jQuery ChAPTER 9 527

Note  ChAining FUnCTiOns

The jQuery language allows you to chain functions together. This means that your code will
be easier to read and write. For example, to find all <h2> tags, iterate over them, and fade
them into view, you could write the following code:

$("h2").fadeIn().each(function (index) { ...

jQuery provides several functions, such as .each(), that can be used for filtering and traversing
sets of found elements. Table 9-3 lists many common examples you are likely to encounter and
provides a description of each.

TAbLE 9-3 Query Traversing and Filtering Functions

jQUERy TRAvERsing /
FiLTERing EXAmPLE DEsCRiPTiOn

$("span").get(0)

$("span")[0]

The .get() function allows you to select a single
item inside a result set.

Both lines of code search the DOM for all
 tags and return the first item inside
the set of found items.

var items = $("h2").size(); The .size function allows you to determine the
number of elements in the result set.

This code returns the number of found items
and sets the value to a variable.

$("h2").add("span").css("color", "green"); The .add() function allows you to add things to
found items.

This code finds all <h2/> elements and adds
a tag with the cascading style sheet
color style set to green.

You can use the .add() function to add selected
elements, HTML fragments, another element,
and more.

$("h2").eq(1).css("color", "green"); The .eq() function allows you to cut down the
size of your result set to a single item from
the returned set.

This code selects the second <h2/> item
and turns it green. (Note that the index is
zero based.)

(continued)

 528	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

jQUERy TRAvERsing /
FiLTERing EXAmPLE DEsCRiPTiOn

$("#div1").children() The .children() function allows you to select all
child elements for a specified result set.

This code finds the <div/> element with the
ID of div1 and then selects all of its first-level
children.

There are overloads to the .children() function
that allow you to add a selector to further refine
your results.

Remember, the original selector might return a
set of objects. Calling .children() is actually call-
ing .children() for each item in the set.

$("#div1").find("h2") The .find() function is similar to a sub-search
in that it allows you to search through your
result set.

This code first finds everything inside a <div/>
tag with the ID of div1 and then selects only
those elements that are defined as <h2/>.

$("h2").filter(function(index) {
 return $("b", this).length == 1;
}).css("color", "green");

The .filter() function works like find() (see
previous entry). However, it also contains an
overload that allows you to pass a function to
the function that can be used to evaluate each
item in the result set and determine whether
the item should be filtered out.

This code finds all <h2/> elements and then
iterates over them by using a filter function.
Inside the filter function, it looks for a tag
inside each element (this). If the tag is found
(.length == 1), that item is returned as part of
the results and its color is set to green.

$("h2").slice(2) The .slice() function allows you to cut the
results based on a start and optional end
position in the zero-bound array.

This code finds all <h2/> elements and reduces
the set to the third element through the end.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 3: Implementing jQuery ChAPTER 9 529

jQUERy TRAvERsing /
FiLTERing EXAmPLE DEsCRiPTiOn

$("h2").next() The .next() function returns the element imme-
diately following the selected element.

This code finds each <h2/> element on the
page and returns the element that immediately
follows each found item.

Note that the .prev() function works the same
way but returns the element immediately
before the selected element.

$("#div1").nextUntil("p") The nextUntil() function finds all elements
returned from a previous search until it finds
a specific element that tells it to stop.

This code finds the <div/> tag with the ID of div1
and then gets all elements following the <div/>
tag’s end tag until it comes across a <p/> tag.

Manipulating Your Selection
jQuery allows you to quickly narrow your selection to the elements on which you want to focus
and traverse the selection. The next step is usually to manipulate those elements in some way.
There are many manipulation functions; some allow you to change an attribute, others allow you
to impact the cascading style sheet, and others allow you to modify the entire set of selected
elements in some way. Table 9-4 provides some examples and a description of each.

TAbLE 9-4 jQuery Manipulation Functions

jQUERy mAniPULATiOn EXAmPLE DEsCRiPTiOn

$("h2").append(
 " :
home");

You use the .append() function to insert HTML at
the end of a found element. jQuery will append your
HTML as the last child item of the found element.

This code finds <h2/> elements and then appends
a hyperlink at the end of the <h2/> content.

$("#div1").detach(); The .detach() function removes the found elements
from the DOM.

This sample code finds the <div/> tag with the div1
ID and removes it and its contents.

Note that .detach() is similar to .remove(). detach()
keeps the removed items around in case you intend
to reinsert them somewhere else. The .remove()
method removes the items altogether.

(continued)

 530	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

jQUERy mAniPULATiOn EXAmPLE DEsCRiPTiOn

$(document).height(); You use the .height() function when you need the
pixel value of the height of something (typically to
calculate layout spacing).

This code finds the height of the entire document.

jQuery includes similar functions for .width(),
.innerHeight(), .innerWidth(), .outerHeight(),
and .outerWidth().

$("#div1").after($("#div2")); The .after() method allows you to insert content
after a found item (or set of items). You can also
use it to insert one found item after another (as
in the example).

This code finds the <div/> tag with the ID of div2
and inserts it after the found <div/> tag with the
ID of div1.

jQuery includes similar functions called .before(),
.insertAfter(), and .insertBefore().

$("h2").replaceWith
("<h1>Page Title</h1>");

The .replaceWith() method removes content from
the DOM and replaces it with something else.

This sample code finds all <h2/> tags on the page
and removes them. It then puts the provided con-
tent in place of these tags. Note that it replaces the
entire group of tags with just a single instance of
the provided content.

$("h2").wrapInner(
 "");

The .wrapInner() function wraps HTML content
around the content of selected elements.

In this example, the tag is wrapped
around the content contained between any
found <h2/> tags.

jQuery provides similar functions called .wrap(),
.wrapAll(), and .unwrap().

Handling Client-Side Events
The jQuery language allows you to bind scripts to client-side events such as button clicks,
mouse movement, and keyboard interaction. These scripts can be written in separate .js files
or within the page. They are then bound to events by using the jQuery .bind() method. There
is no need to add markup to the page to do this binding. This ensures a clean separation
between your markup and your client-side code.

 Lesson 3: Implementing jQuery ChAPTER 9 531

As an example, suppose you are creating a page that searches for employees based on their
ID. This page might include a text box and a search button, as in the following markup (which
uses a master page).

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" Runat="Server">
 <h2>Employee Search</h2>
 <hr />
 Enter Employee ID

 <asp:TextBox ID="TextBoxEmpId" runat="server"></asp:TextBox>
 *

 <input type="button" id="ButtonSearch" runat="server" value="Search" />
</asp:Content>

You may want to bind code to the click event of the input button. The event code might
then validate the user’s input and, if it is valid, contact the server for search data. You could
add the following jQuery code to your page to set up this binding.

<script type="text/javascript">
 $(document).ready(function () {
 $("#MainContent_ButtonSearch").click(validateEmpId);
 });
</script>

Note that this code uses the .click() method to define a binding to the validateEmpId
JavaScript function. The .click() method is a shortcut. You could also call .bind("click",
"validateEmpId").

The code inside validateEmpId might also use jQuery to find the user’s input, validate it,
and then set an appropriate message on the page. Of course, if the ID is valid, you would also
want to reach out to the server for the search results; you will look at this in “Implementing
AJAX with jQuery,” later in this lesson. The following shows a version of the validateEmpId
client-script.

function validateEmpId() {
 var empId = $("#MainContent_TextBoxEmpId").val();
 if (empId.length < 8 || empId.length > 10) {
 $("#msgValidEmpId").text("* Invalid Employee ID");
 }
 else {
 $("#msgValidEmpId").text("*");
 /// call back to server ...
 }
}

Figure 9-9 shows the page running in a browser. Notice the message displayed next to the
text box. This is displayed after the search button click.

 532	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

FigURE 9-9  The jQuery event bound to a button on the page.

The jQuery library provides many events to which you can bind. These include events
related to input tags (such as button), page-level actions, and user input events. You can
trap these events and respond accordingly to make your page more interactive. All element
events can be bound by using the .bind("event", handler) syntax. jQuery also provides short-
cut methods based on event names (such as click). You use these shortcut methods to directly
bind to an event without the use of the .bind() method. These all work in a similar manner:
you indicate the event name as the method name and pass a function pointer to it. Table 9-5
lists some event methods you can use to bind to found elements.

TAbLE 9-5 jQuery Client-Side Event Shortcut Methods

jQUERy EvEnT mEThOD DEsCRiPTiOn

.blur() Bind to this event to execute code when an element loses
focuses.

.click(), .dblclick() Bind to these events to execute code when a user clicks
or double-clicks on a specified element.

.error() Bind to this event to trap element errors such as a broken
link or a missing image.

.focus(), .focusin(), .focusout() Bind to the .focus() event to execute code when an
element receives focus. The .focusin() event will be
triggered for child elements when a parent element
receives focus. The .focusout() event triggers when
focus is lost by an element or its parent.

 Lesson 3: Implementing jQuery ChAPTER 9 533

jQUERy EvEnT mEThOD DEsCRiPTiOn

.hover() Bind to this event to execute code when the mouse
pointer is within the context of a specified element.

.keydown(), .keyup(),

.keypress()
Bind to these events to trap user keyboard input
associated with the bound element.

.mousedown(), .mouseup(),

.mouseenter(), .mouseleave(),

.mouseout(), .mouseover(),

.mousemove()

The mouse events (along with .hover()) are used to trap
events related to the user’s mouse pointer and
a specified page element.

.load(), .unload() These methods are triggered when a specified element is
loaded or unloaded on the page.

.resize() Bind to this event to trap when the browser changes sizes.

.scroll() Use this event to execute code when a user scrolls a
specified element (such as a text box or select list).

.select() This event is triggered when a user selects data or other
child elements contained within a parent element.

.unbind() Use this event to unbind code from an element’s event.

Adding Effects and Animations to a Page
The jQuery library provides methods for adding client-side effects to your elements such as
show, hide, fade in, and more. These effects and animations are easy to use. You simply find
your elements by using a jQuery search and then call the effect you want. You can also com-
bine effects in a queue-like manner through method chaining. This is as simple as adding
one method call after another, as in the following.

.fadeIn().fadeOut().fadeIn()

As an example, suppose you want to add an effect to a page’s title in order to highlight
it for the user. The following code finds the first <h2/> element on the page, waits one
second after the page has been loaded, and then slides the title text into view in a down-
ward motion.

$(document).ready(function () {
 $("h2:first").delay(1000).slideDown();
});

jQuery provides several methods for managing similar effects and element animations.
Table 9-6 provides a list of many of these methods and a description of each.

 534	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

TAbLE 9-6 jQuery Animation and Effects Methods

jQUERy AnimATiOn /
EFFECT EXAmPLE DEsCRiPTiOn

.delay() Used to delay the call of the subsequent method in a
method chain. You pass the number of milliseconds you
want to delay to the method.

.fadeIn(), .fadeOut(), .fadeTo() Allow you to fade an element into view (as long as it is
set to have no display in the markup), out of view, or to
another element, as in .fadeTo().

jQuery.fx.off Turns off all jQuery effects for the page.

.show(), .hide() Allow you to show or hide one or more selected elements.
This method shows or hides an element by fading it into or
out of view, providing a rudimentary form of animation.

.slideDown(), .slideUp(),

.slideToggle()
Allow you to animate the showing of an item, fading it
into view in a sliding motion.

Note that .slideToggle() allows you to fade an element
into and out of view (and toggle the current shown or
hidden state).

.toggle() Allows you to bind two functions to alternating click
events. This way, one set of code executes the first time a
user clicks an element and another set of code executes
the second time they click the same element (and alter-
nating thereafter).

.stop() Used to stop any effect or animation that is running for
the selected elements.

Implementing AJAX with jQuery
As you saw in Lesson 1, you can use AJAX to call back to the server from the client, get a
response, and then update only a portion of the page without doing a refresh. This makes
for a better, more interactive user experience. However, Lesson 1 relied on the ASP.NET
AJAX Extensions controls to handle the details of setting up the client-to-server calls and
the page update.

The jQuery library provides similar AJAX functionality but does so by calling web services
you define. You can call a stand-alone web service from jQuery and then use the results to
update a portion of the page (without causing a refresh). Alternatively, you can write your
code to call back to just the page itself and execute a method in the same way. You will
take a look at both of these options.

 Lesson 3: Implementing jQuery ChAPTER 9 535

Calling a Web Service with $.ajax()
The jQuery.ajax() method enables you to call a web service and then update your page with the
results. This method performs an asynchronous HTTP request, passes data to the request, and
gets the results. You can use this method for a variety of tasks, including loading and executing
a .js file, posting data to a web form, getting the HTML of a page, and sending and receiving
XML data. The typical use, however, is posting to web services for partial page updates.

This method takes several name-value pairs as a parameter, called settings. The settings
include the URL of your request, the content-type, the HTTP method (GET or POST), and the
user name and password of the request. In fact, there are more than 20 settings with which
you can work.

Let’s look at an example of using jQuery to call a typical ASP.NET web service (ASMX file).
Note that web services are covered in detail in the Chapter 10. In this simple example, the web
service takes an employeeId as a parameter and returns a name as a result. The first step is to
set up the web service. The following code shows an example.

Sample of Visual Basic Code

<System.Web.Script.Services.ScriptService()> _
Public Class EmployeeServiceVb
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function GetEmployee(ByVal employeeId As String) As String
 'simulate employee name lookup
 Return "Jane Developer"
 End Function
End Class

Sample of C# Code

[System.Web.Script.Services.ScriptService]
public class EmployeeService : System.Web.Services.WebService
{
 [WebMethod]
 public string GetEmployee(string employeeId)
 {
 //simulate employee name lookup
 return "Jane Developer";
 }
}

Notice the ScriptService attribute in the code. You adorn your code with this attribute to
indicate that the service can be called from client-side script such as jQuery.

The next step is to make the AJAX call from a webpage. Assume that you have a form
(based on a master page) that allows a user to enter an employee ID and then click a search
button with the ButtonSearch ID to trigger the client-side JavaScript. You would then write
the jQuery code shown on the following page.

 536	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

<script type="text/javascript">
 $(document).ready(function () {
 $("#MainContent_ButtonSearch").click(function () {

 var empId = $("#MainContent_TextBoxEmpId").val();

 $.ajax({
 type: "POST",
 dataType: "json",
 contentType: "application/json",
 url: "EmployeeService.asmx/GetEmployee",
 data: "{'employeeId': '" + empId + "'}",
 success: function (data) {
 alert("Employee name: " + data.d);
 },
 error: function () {
 alert("Error calling the web service.");
 }
 });
 });
 });
</script>

Let’s walk through this code. Note that the code is bound to the button click event when
the page loads. Next, the user’s input is assigned to a variable, empId. Then the call to $.ajax()
is made. Notice that the settings are passed as name-value pairs separated by a colon. There is
no set order to these pairs. The following list describes each setting:

■ type This is the HTTP request type, which in this case is POST.

■ contentType This indicates the request’s Multipurpose Internet Mail Extensions (MIME)
type. Here it is set to a JSON message format. The JSON message type is a lightweight
standard that does not contain the overhead of XML. It is typically used by client-side AJAX.

■ dataType This parameter indicates the MIME type of data you want to have returned
from the request; this too is set to JSON.

■ url This is the URL pointing to the web service. Notice that you append the service
method name to the end of the URL.

■ data If the web service takes parameters, you pass these through to the data setting.
This too is a set of name-value pairs contained in braces. In this case, the web method
takes the employeeId parameter to which you pass the user input.

■ success Here you indicate a function to be called if the AJAX call is successful. The
results of the call are passed to a parameter you provide (data). Recall that the results
are in JSON format and thus can be translated into an object. You reference the results
through data.d. In this case, the results are simply a string. If your results are a complex
data type, you would reference the return values as data.d.PropertyName. (See the
practice at the end of the chapter for an example.)

■ error This parameter allows you to define a function to be called if the AJAX call
results in an error.

 Lesson 3: Implementing jQuery ChAPTER 9 537

In this example, the results of the call are displayed to the user in a client-side alert. You
will create a more robust example in this lesson’s practice. First, however, let’s look at making
the same call back to the page (and not to a web service).

Calling Back to the Webpage with $.ajax()
If your page is self-contained, you might not want to expose a set of web services. In this
case, ASP.NET allows you to add your web methods directly to your page and thus not have
to create separate web services. The jQuery.Ajax method can then call the page directly to
execute this code.

Let’s look that the prior example again, but this time contain it to a single page. The first
step, as before, is to write the web method. This time, you write the web method inside the
page itself. Note that you can do so either as part of the code-behind file or within the page
by using a <script runat="server"> tag. The following shows the web method used earlier,
this time inside a page.

Sample of Visual Basic Code

<script runat="server">
 < System.Web.Services.WebMethod()> _
 Public Function GetEmployee(ByVal employeeId As String) As String
 'simulate employee name lookup
 Return "Jane Developer"
 End Function
</script>

Sample of C# Code

<script runat="server">
 [System.Web.Services.WebMethod]
 public static string GetEmployee(string employeeId)
 {
 //simulate employee lookup
 return "Jane Developer";
 }
</script>

Notice that, in this case, you do not need to use the ScriptService attribute. ASP.NET assumes
that code marked as a WebMethod inside a page is meant to be called from AJAX.

The $.jquery() call to this code is the same as before, with one exception: the URL. You
would change the URL to point to the ASPX page instead of the service. In this case, that
setting would look as follows.

url: "EmployeeLookupWebForm.aspx/GetEmployee",

Everything else about the page works in the same way. This technique simply provides
encapsulation of the page and its code.

 538	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Additional AJAX Methods in the jQuery Library
The jQuery library exposes some additional jQuery methods that allow you to work with
AJAX. These methods act as shorthand methods to the .ajax() method. They allow you to
submit an HTTP POST or GET directly to a page, get JSON encoded data from the server,
or get a JavaScript file for execution. Table 9-7 lists many of these shorthand methods and
provides a brief description of each.

TAbLE 9-7 jQuery AJAX Methods

jQUERy AjAX mEThOD DEsCRiPTiOn

$.getJSON() This is a shorthand version of $.ajax(). However, in this case,
the dataType setting is automatically set to a JSON message
and the request type is HTTP GET.

For example, suppose you have the following JSON formatted
message saved as a text file called States.txt.

{
"state": ["Alabama", "Alaska", "Arkansas"]
}

You could use .getJSON() to retrieve the data in this file and
display the results, as in the following.

$.getJSON("States.txt",
 function(data) {
 alert("First states: " + data.
 state[1]);
 });

$.get() This is a shorthand version of $.ajax(). In this case, the request
type is automatically set to HTTP GET. You can pass the URL
and message dataType settings as parameters.

As an example, the following jQuery code returns the full
contents of the DataList.txt file.

$.get("DataList.txt", null, function (html) {
 alert(html);
}, "text");

Note that the last parameter is the dataType setting—in this
case, "text". This tells jQuery how to parse your results. If
this were a structured message type, you would want to use
a parser such as HTML, XML, script, or JSON.

 Lesson 3: Implementing jQuery ChAPTER 9 539

jQUERy AjAX mEThOD DEsCRiPTiOn

$.post() This is a shorthand version of $.ajax(). In this case, the request
type is automatically set to HTTP POST. You can pass the URL,
data to be sent to the page, and the dataType structure of the
return message as parameters.

You typically use this when you need to post data to the page
and return the results. The following example posts the empId
value to the EmpDetails.aspx page and returns the HTML results.

$.post("EmpDetails.aspx",
 { "empId": "AB123" }, function (data) {
 alert(data);
 }, "html");

Note that in this case, the EmpDetails.aspx page is expecting a
form value for empId in a post, as in Request.Form["empId"].

$.getScript() This is a shorthand version of $.ajax(). In this case, the dataType
is automatically set to script. You pass the URL to the script
file. jQuery will get the script and load it. You can then call
the methods in the loaded script.

The following example loads a .js file called UpdateContents.js
that includes a function called GetContent. After the file is
loaded, the function is called.

$.getScript('jquery/UpdateContents.js',
function() {
 GetContent();
});

 540	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Quick Check
	 1. Which jQuery library file should you deploy with your production applications?

	 2. How can you ensure that the browser has loaded the full content of the DOM
prior to executing any jQuery code?

	 3. How would you use jQuery to select the <div id="employeeDetails"> element?

	 4. How would you pass parameters to a jQuery AJAX call?

Quick Check Answers
	 1. You should use the jquery-1.4.1.min.js file, which has been minified and thus

optimized for download and performance.

	 2. You can use the $(document).ready() event to execute code only after the DOM
has been loaded.

	 3. You would use the jQuery method and pass the ID as a parameter prepended
with the pound (#) symbol, as in $("#employeeDetails").

	 4. You pass parameters to a jQuery call by enclosing them in braces and separating
them as name-value pairs with a colon, as in the following:

data: "{'myParameter': 'paramValue'}",

PrActIcE	 Creating a jQuery Webpage that Works with AjAX

In this practice, you use the jQuery skills for selectors, animation, and AJAX that you learned in the
lesson. You create a webpage to look up an employee and display the results back to the page.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Building the Webpage and Writing the Web Service

In this exercise, you create the website, lay out the webpage, and define an ASMX service to
be called from jQuery.

	 1. Open Visual Studio and create a new website called jQueryExample. Notice the
jQuery scripts installed in the Scripts folder.

 Lesson 3: Implementing jQuery ChAPTER 9 541

	 2. Open Default.aspx and remove the markup inside the MainContent content control.

	 3. Add markup to allow a user to enter an employee ID and click a search button. Also, add
markup to show the results of the lookup. These results should be enclosed in a <div/>
tag with a style set for no display. The following markup shows an example.

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <h2>Employee Lookup</h2>
 <hr />
 Enter Employee ID

 <asp:TextBox ID="TextBoxEmpId" runat="server"></asp:TextBox>

 <input type="button" id="ButtonSearch" runat="server" value="Search" />

 <div id="empDetails" style="display: none; margin-top: 40px">
 <h2>Employee Details</h2>
 <hr />
 ID:

 Name:

 Title:

 Department:

 </div>

</asp:Content>

	 4. Add a web service to your website. You can do so by right-clicking the project in
Solution Explorer and choosing Add New Item. Select Web Service from the Add
New Item dialog box. Name your service Employeeservice.asmx.

	 5. Inside the web service code (App_Code/EmployeeService.cs or App_Code
/EmployeeService.vb), add a class to represent an Employee. This class can be
added to the bottom of the file (or as a separate file altogether). Make sure that
this class has a default constructor. Create a separate constructor to return an
instance based on employee ID. The following code shows an example.

Sample of Visual Basic Code

<Serializable()> _
Public Class Employee

 Public Sub New(ByVal empId As String)
 'simulate looking up an employee
 Me.ID = empId
 Me.FullName = "Joe Developer"
 Me.Title = "ASP.NET Sr. Developer"
 Me.Department = "Application Development"
 End Sub

 Public Sub New()

 End Sub

 542	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

 Public Property FullName() As String
 Public Property ID As String
 Public Property Title As String
 Public Property Department As String

End Class

Sample of C# Code

[Serializable]
public class Employee
{
 public Employee(string empId)
 {
 //simulate looking up an employee
 this.ID = empId;
 this.FullName = "Joe Developer";
 this.Title = "ASP.NET Sr. Developer";
 this.Department = "Application Development";
 }

 public Employee()
 {
 }

 public string FullName { get; set; }
 public string ID { get; set; }
 public string Title { get; set; }
 public string Department { get; set; }
}

	 6. Next, uncomment the line related to the ScriptService attribute at the top of the web
service class.

	 7. You can remove the constructor and the HelloWorld web methods from the code. Then
create a web service to return an Employee object based on an ID. The following code
shows an example.

Sample of Visual Basic Code

<WebService(Namespace:="http://tempuri.org/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<System.Web.Script.Services.ScriptService()> _
Public Class EmployeeService
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function GetEmployeeById(ByVal employeeId As String) As Employee
 'simulate employee name lookup
 Return New Employee(employeeId)
 End Function

End Class

 Lesson 3: Implementing jQuery ChAPTER 9 543

Sample of C# Code

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class EmployeeService : System.Web.Services.WebService {

 [WebMethod]
 public Employee GetEmployeeById(string employeeId)
 {
 //simulate employee name lookup
 return new Employee(employeeId);
 }

}

	 8. Build your solution and verify that there are no errors.

ExErcIsE	2	 Writing the jQuery Code to Animate the Page and Call the Web Service

In this exercise, you add jQuery selectors, animation, and an AJAX call to the website created in
the previous exercise.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 3, Exercise 1 project in the sample files installed from the CD.

	 2. Open the Default.aspx page in Source view. Add a reference to the jQuery library to the
HeadContent content control. Note that you might want to use the debug version if you
plan to walk through any jQuery code. The following shows an example.

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent"
 <script src="Scripts/jquery-1.4.1.js" type="text/javascript"></script>
</asp:Content>

	 3. Add a <script/> tag to the MainContent area of the page. Inside this script, you will
write jQuery code to be bound to the ButtonSearch control when the page loads.
The following shows an example.

<script type="text/javascript">
 $(document).ready(function () {
 $("#MainContent_ButtonSearch").click(function () {

 });
</script>

 544	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

	 4. Add jQuery code to the button click function (shown previously) to hide the employee
details <div/> tag (in case it is shown from a previous lookup), get the user’s input
(employee ID), make the .ajax() call to the web service, display the results, and show
the employee details with animation. The following is a full listing of the jQuery
JavaScript for the page.

<script type="text/javascript">

 $(document).ready(function () {
 $("#MainContent_ButtonSearch").click(function () {

 /// hide employee details (if shown)
 $("#empDetails").hide("slow");

 var empId = $("#MainContent_TextBoxEmpId").val();

 $.ajax({
 type: "POST",
 dataType: "json",
 contentType: "application/json",
 url: "EmployeeService.asmx/GetEmployeeById",
 data: "{'employeeId': '" + empId.toString() + "'}",
 success: function (data) {
 $("#textId").html(data.d.ID);
 $("#textName").html(data.d.FullName);
 $("#textTitle").html(data.d.Title);
 $("#textDepartment").html(data.d.Department);

 /// show employee details
 $("#empDetails").show("slow");
 },
 error: function () {
 alert("Error calling the web service.");
 }
 });
 });
 });

</script>

	 5. Save and run the page. Notice how each lookup of an employee animates the display
to the user. This is because the .show() and .hide() methods were included. Figure 9-10
shows an example of what you should see.

 Lesson 3: Implementing jQuery ChAPTER 9 545

FigURE 9-10  The Employee Lookup page running jQuery and AJAX in a browser.

Lesson Summary
■ You can use jQuery to select elements on the page, filter your selection, and then

manipulate the results.

■ You can select elements by using a tag name, as in $("h2"); an id, as in $("#tagId");
and cascading style sheet style, as in $(".styleClassName").

■ jQuery will select all found elements and return them as a group. You can use the
.each() method to traverse the collection, much as you would with For…Each.

■ You use the .bind() method in jQuery to bind elements to client-side event code.
Events can be keyboard input, mouse clicks, page events, and more.

■ The $.ajax() method takes a group of settings as name-value pairs to call back to a web
service or webpage asynchronously as part of a partial-page update.

■ You can use the $.ajax() shorthand methods $.getJSON(), $.get(), $.post(), and
$.getScript() to execute specific versions of an AJAX request.

 546	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 3,
“Implementing jQuery.” The questions are also available on the companion CD as a practice
test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You need to write jQuery code to select the first heading (h2) tag on the page and
then slowly fade the item into view. Which line of code would accomplish this task?

	 A. $("#h21").fadeIn(500);

	 B. $("h2:first").fadeIn("slow");

	 c. $(".h2:first").fadeIn(500);

	 D. $("h2:first").fadeIn(500);

	 2. You want to execute a function after the DOM has loaded. This function should bind
an event code to be run when the user presses a key on the keyboard inside a text box
control with the textBox1 ID. Which steps should you take? (Choose all that apply.)

	 A. Bind to the keyPress event by using the following code.

$("#textBox1").bind("keyPress", ())

	 B. Add your event binding code to the $(document).ready() event at the top of your
script.

	 c. Add your event binding code to the $(document).load() event at the top of your script.

	 D. Bind to the keyPress event by using the following code.

$("#textBox1").add("keyPress", ()).

	 3. You want to use the .ajax() method to call a web method named GetCityCodes. This web
method is contained on the same webpage as the jQuery code and UI markup. This
method should be called by using JSON. The web method takes the state parameter.
Which of the following calls would you use?

	 A. $.ajax({

type: "POST",

dataType: "json",

contentType: "application/json",

url: "CityLookup.aspx/GetCityCodes",

data: "{'state': '" + state + "'}",

success: function (data) {

 alert(data.d);

},

 Case Scenarios ChAPTER 9 547

	 B. $.ajax({

type: "POST",

dataType: "json",

contentType: "application/json",

url: "CityLookup.asmx/GetCityCodes",

data: "{'state': '" + state + "'}",

success: function (data) {

 alert(state.d);

},

	 c. $.ajax({

type: "POST",

dataType: "json",

contentType: "application/json",

url: "CityLookup.aspx/GetCityCodes/" + state,

success: function (data) {

 alert(data.d);

},

	 D. $.ajax({

type: "POST",

dataType: "json",

contentType: "application/json",

url: "CityLookup.asmx/GetCityCodes",

data: "state:" + state,

success: function (data) {

 alert(data.d);

},

	 4. You want to use an HTTP GET to retrieve a basic text file from the server by using AJAX
and jQuery. Which of the following jQuery methods would you use?

	 A. $.post()

	 B. $.getScript()

	 c. $getJSON()

	 D. $.get()

Case scenarios

In the following case scenarios, you apply what you’ve learned about AJAX in ASP.NET and
jQuery. If you have difficulty completing this work, review the material in this chapter before
beginning the next chapter. You can find answers to these questions in the “Answers” section
at the end of this book.

 548	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Case Scenario 1: Using the ASP.NET AJAX Extensions
You are an application developer for Contoso, Ltd, a pharmaceuticals company. You have
recently converted your internal data analysis application over to an ASP.NET website. This has
provided users with additional access to the application and has allowed for easier deployment.
However, users are trying to get used to having to search and page through data rather than
having a more direct connection to it.

One complaint has been lodged about a particularly feature-rich page. This page contains
multiple data grids and several user actions. The page can take 5 to 10 seconds to fully load.
However, when they are in the page, users typically work on the same page for many minutes.

In addition, the page contains a grid of data near the bottom. This grid is searchable and can
show only 25 records at a time. Each search or request for an additional page of data requires
a refresh of the page. Users complain that they then lose the context of the page and have to
scroll back down to the area in which they were working (in addition to waiting another 5 to 10
seconds for the page to load).

You have been asked to take a look at these issues and come up with a plan.

	 1. What ASP.NET AJAX control could you use to stop the page from fully refreshing when
users search for new data in the grid?

	 2. You decide to use ASP.NET AJAX to help solve some of these issues. What control must
you add to the page?

	 3. When the page executes an asynchronous postback, you want to notify the user as to
the progress of the postback. What ASP.NET control can you use to do so?

Case Scenario 2: Using the Microsoft AJAX Library
You are a developer at Fabrikam, Inc. The new product that you put in the field will be web
based. You know that users need a highly interactive client, so you decide to implement ASP.NET
AJAX. You have identified and plan to write the following components for the site:

■ A clock that shows how long any page on the site has been open in the browser window

■ The ability to highlight the control that has the current focus on the page

■ Logic that can be used by the client to validate data including part numbers, vendor
codes, and more

Thinking about the solution you intend to write, answer the following questions.

	 1. Using the Microsoft AJAX Library, how would you implement each of these in terms of
component, control, or behavior?

	 2. Which of these features would you wrap as a custom server control and what class
would you use to implement it?

 Suggested Practices ChAPTER 9 549

Case Scenario 3: Using jQuery
You are a developer working for Adventure Works, a sporting goods retailer. You have been
asked to write a webpage that allows a user to work interactively to learn more about selected
bicycle models. You have decided on a design with a selected group of users. When a user
clicks on a section of the bicycle, the page should load details of the selected bike component
(wheels, seat, brakes, cranks, handlebars, and so on). These details can be retrieved from a
product catalog web service exposed as ASMX. When you display the details, you want to
animate them onto the web form without performing a full page refresh.

Answer the following questions about how you will develop the solution.

	 1. You decide to implement the bike photo in an Image control. How can you use jQuery
to bind to the click event for the control? How do you ensure that the DOM has been
loaded prior to binding? How can you tell where the user has clicked on the bike?

	 2. How would you call the web service to process an asynchronous update to the page
without causing a refresh? What attribute would need to be applied to the web service?

	 3. What jQuery methods would you use to animate the display of the bicycle data to
the user?

suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Add Partial-Page Update Support to a Page
For this task, you should complete Practice 1 to gain experience with partial-page updates.
Practice 2 shows you how you can leverage the Timer control. Practice 3 demonstrates the
UpdateProgress control.

■ Practice 1  Find a page in your current website that uses a data grid to display data.
Put this data grid into an UpdatePanel to enable partial-page updates when paging
through the data.

■ Practice 2 Create a webpage that allows a user to cycle through a series of pictures. Use
the Timer control to automatically update the graphic on display at periodic intervals.

■ Practice 3 Find a page in your current application that takes a long time to load and
provides a lot of user interaction. Add partial-page update to this page. When the
page updates, use the UpdateProgress control to notify the user.

 550	 ChAPTER 9	 Working with Client-Side Scripting, AJAX, and jQuery

Create Client Code by Using the Microsoft AJAX Library
For this task, you should complete Practice 1 to learn the basics of building a control with the
Microsoft AJAX Library. Practice 2 will give you insight into building a client behavior control.

■ Practice 1  Create an AJAX client control that extends an ASP.NET button with a
confirmation alert window. Wrap the control as a custom server control by using the
IScriptControl interface.

■ Practice 2  Create an AJAX client behavior control that highlights a control as it receives
focus. Wrap the control as a custom server control by using the ExtenderControl class.

Write Interactive Client Code with jQuery
For this task, you should complete Practice 1 to practice the basics of using jQuery on a
webpage. Practice 2 will give you experience calling services with jQuery.

■ Practice 1  Add the jQuery library to an existing website with which you work.
Encapsulate an area inside a <div/> tag. Use jQuery to select this area and animate
its display to the user (slide it down or fade it in).

■ Practice 2  Find an existing webpage inside the site you are currently creating that posts
back to the page and then updates the user (or create a new page). Take the postback
and related method of the page and mark it as a web method (do not create a new web
service). Then use jQuery to call this same method as a partial-page update.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you
can look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 10 551

C h A P T E R 1 0

Writing and Working
with HTTP Modules
and Web Services
Web services are a versatile tool; they enable you to perform system integration, execute

business process workflow across boundaries, provide for business logic reuse, and
much more. There are two primary ways to create services in Microsoft ASP.NET. You can
create web services based on the classic ASP.NET XML web service (ASMX) model. This is a
familiar ASP.NET programming experience for developers of services that are meant to be
exclusively bound to Hypertext Transfer Protocol (HTTP) and hosted by Internet Information
Services (IIS) and ASP.NET. You can also use Windows Communication Foundation (WCF) to
create web services. This model allows developers to write services that can be configured
to work with a variety of hosts, protocols, and clients. Of course, this includes hosting in IIS
and communicating through HTTP.

This chapter first covers creating HTTP handlers and modules, which includes responding
to requests for specific file types such as PDF (Portable Document Format), XPS (XML Paper
Specification), and similar types. It also includes creating modules that are called for specific
application events across all requests to the server. Though they are not exactly web services,
both HTTP handlers and modules are meant to respond to specialized HTTP requests. The
chapter then moves on to cover programming actual web services. This includes Extensible
Markup Language (XML) web services and those based on WCF (including WCF data services).

Exam objectives in this chapter:
■	 Configuring and Extending a Web Application

■ Create and configure HttpHandlers and HttpModules.
■ Reference and configure ASMX and WCF services.

■	 Displaying and Manipulating Data
■ Create and consume a data service.

Lessons in this chapter:
■	 Lesson 1: Creating HTTP Handlers and HTTP Modules 552
■	 Lesson 2: Creating and Consuming XML Web Services 574
■	 Lesson 3: Creating and Consuming WCF Services 593

 Contents

 ChAPTER 10 551

 Writing and Working with hTTP modules and Web ser-
vices 551

Before You Begin . 552

Lesson 1: Creating HTTP Handlers and HTTP Modules 552

Creating a Custom HTTP Handler 553

Asynchronous Handlers and Pages 558

Creating a Custom HTTP Module 566

Lesson Summary 573

Lesson Review 574

Lesson 2: Creating and Consuming XML Web Services 574

Creating an ASP.NET Web Service 576

Consuming an ASP.NET Web Service 580

Authentication and XML Web Services 586

Lesson Summary 591

Lesson Review 592

Lesson 3: Creating and Consuming WCF Services . 593

Introducing WCF 594

Creating a WCF Service with ASP.NET 596

Consuming a WCF Service in an ASP.NET Page 600

Calling a WCF Service from Client Script by Using AJAX
(REST and JSON) 603

Creating WCF Data Services 607

Lesson Summary 619

Lesson Review 619

Case Scenarios . 620

Case Scenario 1: Working with HTTP Requests 620

Case Scenario 2: Selecting a Service Model 621

Suggested Practices . 621

Work with XML HTTP Handlers and Modules 621

Work with XML Web Services 622

Work with WCF Services 622

Take a Practice Test . 622

 552	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
with Microsoft Visual Studio 2010 by using Microsoft Visual Basic or Microsoft Visual C#. In
addition, you should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Using Hypertext Markup Language (HTML) and client-side scripting

■ Creating ASP.NET websites and forms

■ Adding web server controls to a webpage

■ Using AJAX on a webpage

real World

Mike Snell

Most websites do not require you to write your own custom HTTP handlers.
Rather, these are reserved for very special cases, such as when you are writing

a specialized application, a custom processing framework, or a file processor of some
kind. That said, most developers I know just can’t stand not knowing how their code
is processed and executed. Understanding HTTP handlers (and modules) is key to
unlocking how HTTP requests are linked to your ASP.NET pages.

Lesson 1: Creating hTTP handlers and hTTP modules

Some web development tasks require you to write code to handle the actual HTTP request
sent to the server. You might need to write a specialized image server, a file processor, or a
process to handle a custom level of security. This type of code is written as either an HTTP
handler or an HTTP module.

An HTTP handler is an endpoint on the server that responds to requests for different
resources. A familiar HTTP handler is the ASP.NET page handler that is called when an ASPX
page is requested from the server. You can write similar custom handlers to be called when
a resource with a specific file extension is requested of the server. An example of this is the
ASP.NET tracing infrastructure, which is built by using a handler that accepts resource requests
for Trace.axd files.

An HTTP module is code that gets called for every request or response routed to your
application. This code is registered with the server and can subscribe to events within the
request-and-response pipeline. You can write HTTP modules to manage custom security
levels, do custom logging, or execute similar tasks.

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 553

This lesson describes how you can write your own HTTP handlers and HTTP modules to
work with ASP.NET and IIS.

After this lesson, you will be able to:
■	 Create a custom HTTP handler to respond to requests for nonstandard file types.
■	 Enable asynchronous communication inside a webpage.
■	 Create a custom HTTP module as part of the ASP.NET page life cycle.

Estimated lesson time: 30 minutes

Creating a Custom HTTP Handler
An HTTP handler is code that executes when an HTTP request for a specific resource is made
to the server. For example, when a user requests an ASPX page from IIS, the ASP.NET page
handler is executed. When an ASMX file is accessed, the ASP.NET service handler is called. You
can create your own custom HTTP handlers, register them with IIS, and receive notice when
a specific request has been made. This allows you to interact with the request and write your
own custom output to the browser.

You create a custom, synchronous HTTP handler by implementing the IHttpHandler inter-
face. This interface requires you to implement the IsReusable property to indicate whether your
handler can be reused. If IsReusable is set to true, your handler will be put into a pool to help
increase performance across requests.

The IHttpHandler interface also requires you to implement the ProcessRequest method. This
method is called by ASP.NET when your handler executes. You write code in this to produce a
response for the HTTP request. Note that an HTTP handler exists inside ASP.NET. Therefore, it
has access to the application context, including the session state, application state, and identity
of the user making the request.

After you have created your custom HTTP handler, you register it with IIS. You can do so
explicitly by using the IIS configuration tools. This mapping is based on file extension. You first
map your custom file extension to ASP.NET and then map the extension to your custom handler
from within your ASP.NET application. ASP.NET also allows you to use the .ashx extension to
automatically register a custom HTTP handler. In this case, you create a page with the .ashx
extension and use the @ WebHandler directive to point to your custom HTTP handler code.
This will automatically register your HTTP handler with IIS and ASP.NET.

As an example, consider the processing of image requests in ASP.NET. Each image in an
HTML page requires a separate browser request and a separate response from the web server.
By default, IIS does not pass requests for images to ASP.NET. Instead, IIS simply reads the image
file from the file system and sends it directly to the web browser as static content.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 554	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

But suppose you want to handle requests for images in your ASP.NET code instead of just
passing them back by IIS. You might want to do this so you can dynamically generate a chart
displaying performance information over a period of time or dynamically create thumbnails
in a photo album application. In these circumstances, you can either periodically generate the
images in advance or you can create a custom HTTP handler to receive the image requests,
process them, and render a response. It is the latter option on which this example focuses.
The following outlines how you can configure ASP.NET (and your custom HTTP handler code)
to receive requests for images:

	 1. Write code to act as the HTTP handler for a specific file type (in this case, JPG).

	 2. Configure IIS to pass requests for the required image types to ASP.NET, and configure
your ASP.NET application to pass the request to your custom HTTP handler.

Creating the Handler
Remember, to create the HTTP handler, you implement the IHttpHandler interface. The output
you want to render should be put inside the ProcessRequest method. The following code dem-
onstrates a simple HTTP handler. You add this code as a class file to your website’s App_Code
directory. You will get a chance to work with this example in the practice for this lesson.

Sample of Visual Basic Code

Public Class ImageHandler
 Implements IHttpHandler

 Public ReadOnly Property IsReusable As Boolean _
 Implements System.Web.IHttpHandler.IsReusable
 Get
 Return False
 End Get
 End Property

 Public Sub ProcessRequest(ByVal context As System.Web.HttpContext) _
 Implements System.Web.IHttpHandler.ProcessRequest

 'set the MIME type
 context.Response.ContentType = "image/jpeg"

 Dim Request As HttpRequest = context.Request
 Dim Response As HttpResponse = context.Response

 If Request.RawUrl.ToLower.Contains("jellyfish.jpg") Then
 Response.TransmitFile(Request.PhysicalApplicationPath & _
 "/images/Jellyfish.jpg")
 ElseIf Request.RawUrl.ToLower.Contains("koala.jpg") Then
 Response.TransmitFile(Request.PhysicalApplicationPath & _
 "/images/Koala.jpg")
 Else
 Response.Write("File not found")
 End If

 End Sub

End Class

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 555

Sample of C# Code

public class ImageHandler : IHttpHandler
{
 public bool IsReusable
 {
 get { return false; }
 }

 public void ProcessRequest(HttpContext context)
 {
 //set the MIME type
 context.Response.ContentType = "image/jpeg";

 HttpRequest Request = context.Request;
 HttpResponse Response = context.Response;

 if(Request.RawUrl.ToLower().Contains("jellyfish.jpg"))
 {
 Response.TransmitFile(Request.PhysicalApplicationPath +
 "/images/Jellyfish.jpg");
 }
 else if (Request.RawUrl.ToLower().Contains("koala.jpg"))
 {
 Response.TransmitFile(Request.PhysicalApplicationPath +
 "/images/Koala.jpg");
 }
 else
 {
 Response.Write("File not found");
 }
 }
}

Registering the Handler by Using Web.config
There are two ways to register the handler with IIS and ASP.NET: you can either configure IIS
to send the request to ASP.NET and your application, or you can add configuration code to
your Web.config file to register the custom handler when your application is deployed. Let’s
look at the second option first.

You can register your custom handler by using the Web.config file. This registration differs
between IIS 6.0 and IIS 7.0. In IIS 6.0, you create an <add> element in the <configuration>
<system.Web><httpHandlers> section of your Web.config file for each file extension you want
to register with your handler. The following markup demonstrates how to point requests sent to
your application for files of type JPG to your custom class, ImageHandler.

<configuration>
 <system.Web>
 <httpHandlers>
 <add verb="*" path="*.jpg" type="ImageHandler"/>
 </httpHandlers>
 </system.Web>
</configuration>

 556	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

In IIS 7.0, you write similar configuration code. However, you place it inside the
<configuration><system.WebServer><handlers> section of your Web.config file, as
the following markup illustrates.

<configuration>
 <system.WebServer>
 <handlers>
 <add verb="*" path="*.jpg" type="ImageHandler"
 name="ImageHandler"/>
 </handlers>
 </system.WebServer>
</configuration>

In either case, any requests sent by IIS to ASP.NET for files ending in .jpg will be forwarded to
the ImageHandler class. For this to work properly, either the ImageHandler assembly must be
available in the application’s Bin folder or the source code must be in the App_Code folder.

Configuring IIS to Forward Requests to ASP.NET
For performance reasons, IIS passes only requests for specific file types to ASP.NET. For
example, IIS passes requests for files with the .aspx, .axd, .ascx, and .asmx extensions to the
Aspnet_Isapi.dll file that performs the ASP.NET processing. For all other file types, including
HTML, JPG, and GIF, ASP.NET simply passes the file from the file system directly to the
client browser.

You have seen how you can use the Web.config file to change this. You can also use
the IIS 7.0 administration tools to configure an IIS application mapping from the image
file extension to the Aspnet_Isapi.dll file. The process of configuring this information also
differs between IIS 6.0 and IIS 7.0. The following steps outline the process for configuring
with IIS 7.0:

	 1. Open the IIS Manager.

	 2. Expand the nodes until you get to your site or to the default website. Select the node
for your application.

	 3. Double-click the Handler Mappings icon in the center pane of the IIS Manager. Note
that if you have used the Web.config method of registration, you should see that
registration in the Handler Mappings list.

	 4. In the Actions pane (on the right side), select Add Managed Handler.

	 5. In the Add Managed Handler dialog box, shown in Figure 10-1, set Request Path to
the file name or extension you want to map; in this case, .jpg. The Type list allows you
to choose the class name of the HTTP handler. The Name field is simply for entering a
descriptive name.

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 557

FigURE 10-1 Configuring an application mapping to process image requests in IIS 7.0.

After you have configured the application extension mapping, all requests for that file type
are forwarded to ASP.NET and to your handler. To enable normal image processing in most
areas of your website, create a separate virtual directory just for dynamically generated images.

Creating Automatically Registered Handlers by Using the
.ashx Extension
By default, ASP.NET reserves the .ashx file extension for custom HTTP handlers. This means
that you can write a page with the .ashx file extension that points to your custom HTTP
handler and not be concerned with registration. The request will be routed to ASP.NET,
and ASP.NET will route the request to your HTTP handler.

For example, suppose you rewrote the HTTP handler that processes image requests so that
it is based on the query string instead of the file name. You could do so simply by changing
the evaluation inside the If statements to something like the following.

Request.QueryString.ToString().ToLower().Contains("jellyfish")

You can then add a file to your site with the .ashx extension, as in MyImageHandler.ashx.
You add only one line of markup to this file. This line uses the @ WebHandler directive to
point to your custom HTTP handler, as in the following.

<%@ WebHandler Language="C#" Class="ImageHandlerQs" %>

You can then deploy and call this handler without additional configuration. You would call
this handler by using the query string, as in the following.

http://localhost:56560/lesson1/MyImageHandler.ashx?jellyfish

 558	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Asynchronous Handlers and Pages
Asynchronous programming allows a request to execute on a non-ASP.NET thread, allowing
ASP.NET to continue to process incoming requests and making your site more responsive,
especially when serving long-running requests. An asynchronous handler returns the request
processing thread to ASP.NET and enables it to perform additional actions while the asynchro-
nous task executes. In most web applications, the user cannot interact with the page until
page rendering is complete (this applies to partial page updates as well). Therefore, most
asynchronous programming in web applications is done to improve the efficiency of long-
running webpages by performing multiple actions simultaneously and freeing the ASP.NET
threads to respond to additional requests.

For example, consider a webpage that must query a network resource (such as a web service).
Because IIS and ASP.NET can only render a limited number of pages simultaneously, the ASP.NET
thread pool can become completely consumed, creating a performance bottleneck. When
the thread pool has been consumed, your server waits for pages to finish rendering before
beginning to process other pages. Even though the server might have available processor
cycles, requests are queued. If your application executes these calls asynchronously, the server
can begin rendering more pages simultaneously, improving efficiency and increasing scale.

Note imPROving PERFORmAnCE WiTh ThREAD POOLing

Thread pooling can be tricky. When implementing asynchronous handlers and webpages,
use a performance testing tool to verify performance under a heavy load. Sometimes the
overhead introduced by asynchronous programming can offset the benefits. Whether
performance improves depends on many aspects of the application and web server con-
figuration. One sure way to get performance gains is to create a new thread. There is only
one Common Language Runtime (CLR) thread pool per AppDomain, so you must be sure
to not just consume the same threads ASP.NET would be using. Instead, create your own.

Creating an Asynchronous HTTP Handler
An asynchronous HTTP handler differs from a synchronous one in that when it is executed,
ASP.NET will put the handler code on a separate thread, one obtained from the CLR. The thread
that would normally run a synchronous handler is then placed back into the thread pool
to handle additional user requests. This reduces the chance that the limited set of ASP.NET
threads will block processing, and thus can improve overall performance.

You create an asynchronous handler much like you would a synchronous handler. You use a
similar interface called IHttpAsyncHandler and then override the IsReusable property and the
BeginProcessRequest method. You write code inside this method to initiate an asynchronous
call. You also provide a callback method that gets called when the asynchronous operation
completes. Finally, you write code inside the EndProcessRequest method to deal with any
cleanup when the process completes.

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 559

Consider the image handler created in the previous example. We can rewrite that example
to demonstrate asynchronous processing. You start by implementing the IHttpAsyncHandler
interface. Remember, you write your code inside the BeginProcessRequest method. You must
also include code for IsReusable, EndProcessRequest, and ProcessRequest. You can make the
latter simply throw an exception if your handler is called in a synchronous way.

Inside BeginProcessRequest, you create an instance of a class that implements the
IAsyncResult interface. This custom class is where you put your code that is to be run on
a separate thread. In the example code shown next, that is done inside the StartAsync
method. Notice the call to ThreadPool.QueueUserWorkItem. This passes the name of
the method (StartAsyncOperation) you want to run on a separate thread. When a thread
becomes available, this method will execute. When it is finished, the method running on
the separate thread invokes the callback delegate, which is of type AsyncCallback.

Sample of Visual Basic Code

Imports Microsoft.VisualBasic
Imports System.Threading

Public Class AsynchImageHandler
 Implements IHttpAsyncHandler

 Public ReadOnly Property IsReusable As Boolean _
 Implements System.Web.IHttpHandler.IsReusable
 Get
 Return False
 End Get
 End Property

 Public Function BeginProcessRequest(ByVal context As System.Web.HttpContext, _
 ByVal cb As System.AsyncCallback, ByVal extraData As Object) _
 As System.IAsyncResult _
 Implements System.Web.IHttpAsyncHandler.BeginProcessRequest

 context.Response.Write("<p>BeginProcessRequest starting ...</p>")

 Dim imageOperation As New ImageAsynchOperation(cb, context, extraData)
 imageOperation.StartAsync()

 context.Response.Write("<p>BeginProcessRequest queued ...</p>")

 Return imageOperation

 End Function

 560	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

 Public Sub EndProcessRequest(ByVal result As System.IAsyncResult) _
 Implements System.Web.IHttpAsyncHandler.EndProcessRequest

 'process any cleanup code here

 End Sub

 Public Sub ProcessRequest(ByVal context As System.Web.HttpContext) _
 Implements System.Web.IHttpHandler.ProcessRequest

 Throw New InvalidOperationException()

 End Sub

End Class

Class ImageAsynchOperation
 Implements IAsyncResult

 Private _completed As Boolean
 Private _state As [Object]
 Private _callback As AsyncCallback
 Private _context As HttpContext

 Public Sub New(ByVal callback As AsyncCallback, _
 ByVal context As HttpContext, _
 ByVal state As [Object])

 _callback = callback
 _context = context
 _state = state
 _completed = False

 End Sub

 ReadOnly Property IsCompleted() As Boolean _
 Implements IAsyncResult.IsCompleted
 Get
 Return _completed
 End Get
 End Property

 ReadOnly Property AsyncWaitHandle() As WaitHandle _
 Implements IAsyncResult.AsyncWaitHandle
 Get
 Return Nothing
 End Get
 End Property

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 561

 ReadOnly Property AsyncState() As [Object] _
 Implements IAsyncResult.AsyncState
 Get
 Return _state
 End Get
 End Property

 ReadOnly Property CompletedSynchronously() As Boolean _
 Implements IAsyncResult.CompletedSynchronously
 Get
 Return False
 End Get
 End Property

 Public Sub StartAsync()

 ThreadPool.QueueUserWorkItem(New _
 WaitCallback(AddressOf StartAsyncOperation), Nothing)

 End Sub

 Private Sub StartAsyncOperation(ByVal workItemState As [Object])

 Dim Request As HttpRequest = _context.Request
 Dim Response As HttpResponse = _context.Response

 If Request.RawUrl.ToLower.Contains("jellyfish") Then
 Response.Write("<p>JellyFish</p>")
 ElseIf Request.RawUrl.ToLower.Contains("koala") Then
 Response.Write("<p>Koala</p>")
 Else
 Response.Write("<p>Not found.</p>")
 End If

 Response.Write("<p>Asynch operation completed.</p>")

 _completed = True
 _callback(Me)

 End Sub

End Class

 562	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Sample of C# Code

using System;
using System.Web;
using System.Threading;

public class AsynchImageHandler : IHttpAsyncHandler
{
 public bool IsReusable
 {
 get { return false; }
 }

 public AsynchImageHandler()
 {
 }

 public IAsyncResult BeginProcessRequest(HttpContext context,
 AsyncCallback cb, object extraData)
 {
 context.Response.Write("<p>BeginProcessRequest starting ...</p>");

 ImageAsynchOperation imageOperation =
 new ImageAsynchOperation(cb, context, extraData);
 imageOperation.StartAsync();

 context.Response.Write("<p>BeginProcessRequest queued ...</p>");

 return imageOperation;
 }

 public void EndProcessRequest(IAsyncResult result)
 {
 //process any cleanup code here
 }

 public void ProcessRequest(HttpContext context)
 {
 throw new InvalidOperationException();
 }
}

class ImageAsynchOperation : IAsyncResult
{
 private bool _completed;
 private object _state;
 private AsyncCallback _callback;
 private HttpContext _context;

 public ImageAsynchOperation(AsyncCallback callback,
 HttpContext context, object state)
 {
 _callback = callback;
 _context = context;
 _state = state;
 _completed = false;
 }

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 563

 public bool IsCompleted
 {
 get { return _completed; }
 }

 public System.Threading.WaitHandle AsyncWaitHandle
 {
 get { return null; }
 }

 public object AsyncState
 {
 get { return _state; }
 }

 public bool CompletedSynchronously
 {
 get { return false; }
 }

 public void StartAsync()
 {
 ThreadPool.QueueUserWorkItem(new WaitCallback(StartAsyncOperation), null);

 }

 public void StartAsyncOperation(object workItemState)
 {

 HttpRequest Request = _context.Request;
 HttpResponse Response = _context.Response;

 if (Request.RawUrl.ToLower().Contains("jellyfish"))
 {
 Response.Write("<p>JellyFish</p>");
 }
 else if (Request.RawUrl.ToLower().Contains("koala"))
 {
 Response.Write("<p>Koala</p>");
 }
 else
 {
 Response.Write("<p>Not found.</p>");
 }

 Response.Write("<p>Asynch operation completed.</p>");

 _completed = true;
 _callback(this);
 }
}

 564	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

The final step is to register your HTTP handler in the Web.config file. This process is the
same as discussed previously (in the “Registering the Handler by Using Web.config” section).
In this example, the handler will respond to files with *.asynchJpg extensions. Figure 10-2
shows the code running in a browser. Notice the order in which the messages are written
out to the browser. This illustrates the different threads and the callback.

FigURE 10-2 The IHttpAsyncHandler prevents thread blocking in your code.

Creating an Asynchronous Webpage
You can follow the asynchronous HTTP handler model to create an asynchronous webpage.
This is a webpage that works with the IHttpAsynchHandler interface (instead of a registered
handler for a specified file extension).

For example, assume you were writing the asynchronous HTTP handler in the previous
example as a webpage. This webpage would still use the same ImageAsynchOperation class
that implements IAsynchResult as defined above. However, it would use this class not in a
handler, but on a webpage. The following steps walk you through the basic process of imple-
menting this example inside a standard ASPX page.

	 1. Add the Async="true" attribute to the @ Page directive inside your markup. This
indicates that the page implements the IHttpAsynchHandler interface. The following
shows an example.

Sample of Visual Basic Code

<%@ Page Language="VB" Async="true" AutoEventWireup="false" %>

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 565

Sample of C# Code

<%@ Page Language="C#" Async="true" AutoEventWireup="true" %>

	 2. Inside your page’s code-behind file, create methods that get called to start and end your
asynchronous operation typically named BeginProcessRequest and EndProcessRequest.
The following shows an example. Notice that you no longer need to get a context object;
the webpage provides this.

Sample of Visual Basic Code

Public Function BeginProcessRequest(ByVal sender As Object, _
 ByVal e As EventArgs, ByVal cb As System.AsyncCallback, _
 ByVal extraData As Object) As System.IAsyncResult

 Response.Write("<p>BeginProcessRequest starting ...</p>")

 Dim imageOperation As New ImageAsynchOperation(cb, Me.Context, extraData)
 imageOperation.StartAsync()

 Response.Write("<p>BeginProcessRequest queued ...</p>")

 Return imageOperation

End Function

Public Sub EndProcessRequest(ByVal result As System.IAsyncResult)
 'process any cleanup code here

End Sub

Sample of C# Code

protected IAsyncResult BeginProcessRequest(object sender,
 EventArgs e, AsyncCallback cb, object extraData)
{
 Response.Write("<p>BeginProcessRequest starting ...</p>");

 ImageAsynchOperation imageOperation =
 new ImageAsynchOperation(cb, this.Context, extraData);
 imageOperation.StartAsync();

 Response.Write("<p>BeginProcessRequest queued ...</p>");

 return imageOperation;
}

protected void EndProcessRequest(IAsyncResult result)
{
 //process any cleanup code here
}

 566	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

	 3. Call the AddOnPreRenderCompleteAsync method inside the Page_Load event to declare
the event handlers you just created. The following code demonstrates.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 AddOnPreRenderCompleteAsync(AddressOf BeginProcessRequest, _
 AddressOf EndProcessRequest)

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 AddOnPreRenderCompleteAsync(
 new BeginEventHandler(BeginProcessRequest),
 new EndEventHandler(EndProcessRequest));
}

That is all that is required to create a webpage that acts as an asynchronous HTTP handler.
There is no registration required in Web.config or with IIS; you can just run the page.

Creating a Custom HTTP Module
When you write your own HTTP module, the module’s code is executed every time a page is
requested from the server or a response is sent back to a requestor. This might be to imple-
ment a specific security model, to do extra logging, to rewrite a request, or to perform some
similar function. In this way, HTTP modules are like the old Internet Server API (ISAPI) filters;
however, all ASP.NET modules are managed (or, in other words, executed) within the CLR.
ASP.NET itself uses HTTP modules for things such as session state and caching.

You create an HTTP module by writing code that implements the IHttpModule interface.
This code can be created as a separate assembly and shared across multiple web applications.
You can also just write a class file and place it in your App_Code directory.

ASP.NET creates an instance of the HttpApplication class when your application starts. This
class finds any registered HTTP modules and creates an instance of each. You register an HTTP
module by using the Web.config file (similar to registering an HTTP handler). When each module
is created, its Init method is called. You override the IHttpModule.Init method to indicate the
application events to which you want to subscribe. These are typically application life cycle
events such as BeginRequest, AuthenticateRequest, ProcessRequest, and others. Your code is
then called when these events fire for each request.

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 567

Note AsP.nET APPLiCATiOn LiFE CyCLE

Requests for ASP.NET resources are processed through the HttpApplication pipeline. This
pipeline defines a number of life cycle events to which you can subscribe with your HTTP
modules. For more information, see “ASP.NET Application Life Cycle Overview.” For IIS 5.0
and 6.0, go to http://msdn.microsoft.com/en-us/library/ms178473.aspx. For IIS 7.0, use this
URL instead: http://msdn.microsoft.com/en-us/library/bb470252.aspx.

exaM tIp

Be sure to understand the differences between HTTP Handlers and HTTP Modules when
preparing to take the exam. It can be easy to get them confused with each other.

As an example, suppose you want to write an HTTP module to log all page requests to the
application event log on a particular server. You would do so by creating a class that imple-
ments the IHttpModule interface. You would then override the Init method and provide code
for the appropriate application events. The following code shows an example. Notice that you
have full access to the ASP.NET context inside your HTTP module.

Sample of Visual Basic Code

Imports Microsoft.VisualBasic
Imports System.Diagnostics
Imports System.Web

Public Class LoggingModule
 Implements IHttpModule

 Public ReadOnly Property ModuleName() As String
 Get
 Return "LoggingModule"
 End Get
 End Property

 Public Sub Dispose() Implements _
 IHttpModule.Dispose

 End Sub

 Public Sub Init(ByVal context As System.Web.HttpApplication) _
 Implements IHttpModule.Init

 AddHandler context.BeginRequest, _
 AddressOf Me.Application_BeginRequest
 AddHandler context.EndRequest, _
 AddressOf Me.Application_EndRequest

 End Sub

 568	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

 Private Sub Application_BeginRequest(ByVal source As Object, _
 ByVal e As EventArgs)

 Dim application As HttpApplication = CType(source, HttpApplication)
 Dim context As HttpContext = application.Context

 If VirtualPathUtility.GetExtension(_
 context.Request.FilePath) = ".aspx" Then

 Dim eLog As EventLog = New EventLog()
 eLog.Source = "Application"
 eLog.WriteEntry("Begin .aspx request :: " &
 DateTime.Now.ToLongDateString() & " :: " &
 context.Server.MachineName,
 EventLogEntryType.Information)
 End If

 End Sub

 Private Sub Application_EndRequest(ByVal source As Object, _
 ByVal e As EventArgs)
 Dim application As HttpApplication = CType(source, HttpApplication)
 Dim context As HttpContext = application.Context

 If VirtualPathUtility.GetExtension(_
 context.Request.FilePath) = ".aspx" Then

 Dim eLog As EventLog = New EventLog()
 eLog.Source = "Applicaiton"
 eLog.WriteEntry("End .aspx request :: " &
 DateTime.Now.ToLongDateString() & " :: " &
 context.Server.MachineName,
 EventLogEntryType.Information)
 End If

 End Sub

End Class

Sample of C# Code

using System;
using System.Web;
using System.Diagnostics;

public class LoggingModule: IHttpModule
{
 public LoggingModule()
 {
 }

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 569

 public String ModuleName
 {
 get { return "LoggingModule"; }
 }

 public void Dispose() { }

 public void Init(HttpApplication context)
 {
 context.BeginRequest +=
 (new EventHandler(this.Application_BeginRequest));
 context.EndRequest +=
 (new EventHandler(this.Application_EndRequest));
 }

 private void Application_BeginRequest(Object source, EventArgs e)
 {
 HttpApplication application = (HttpApplication)source;
 HttpContext context = application.Context;

 if (VirtualPathUtility.GetExtension(
 context.Request.FilePath) == ".aspx")
 {
 EventLog eLog = new EventLog();
 eLog.Source = "Applicaiton";
 eLog.WriteEntry("Begin .aspx request :: " +
 DateTime.Now.ToLongDateString() + " :: " +
 context.Server.MachineName,
 EventLogEntryType.Information);
 }
 }

 private void Application_EndRequest(Object source, EventArgs e)
 {
 HttpApplication application = (HttpApplication)source;
 HttpContext context = application.Context;

 if (VirtualPathUtility.GetExtension(
 context.Request.FilePath) == ".aspx")
 {
 EventLog eLog = new EventLog();
 eLog.Source = "Applicaiton";
 eLog.WriteEntry("End .aspx request :: " +
 DateTime.Now.ToLongDateString() + " :: " +
 context.Server.MachineName,
 EventLogEntryType.Information);
 }
 }
}

You then must register your HTTP module inside the Web.config file (or through the IIS
management console). If you are running in IIS 6.0 (or IIS 7.0 in classic mode) you would
register the module in the Web.config file, inside the <system.Web> element, as shown on
the following page.

 570	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

<httpModules>
 <add name="LoggingModule" type="LoggingModule" />
</httpModules>

If you are running IIS 7.0 in integrated mode, then you register the HTTP module under the
<system.WebServer> element as follows:

<modules>
 <add name="LoggingModule" type="LoggingModule" />
</modules>

Note hTTP mODULEs AnD gLObAL.AsAX EvEnTs

Like an HTTP module, the Global.asax file can also be used to register code to be
called for application events. You do this by adding code to events such as Application_
BeginRequest, Application_EndRequest, Application_LogRequest, and others. This code
will run just like an HTTP module and does not need additional registration. You typically
create an HTTP module if you intend to encapsulate complex code or want to share code
across websites. If your needs are simpler, the Global.asax might be a better choice. For
more information on working with the Global.asax file, see Chapter 3, “Handling Events
and Managing State.”

Quick Check
	 1. When you are writing an HTTP handler, which method of the IHttpHandler inter-

face should you implement to produce a response for a specific HTTP request?

	 2. You are running IIS 7.0 in integrated mode. You want to register an HTTP handler
or module by using the Web.config file. To which configuration element do you
add your handler or module?

	 3. How do you create an asynchronous HTTP handler?

	 4. In what method would you register your application events when creating an
HTTP module by using the IHttpModule interface?

Quick Check Answers
	 1. You should implement the ProcessRequest method. This method will be called

by ASP.NET for your registered HTTP handler.

	 2. You add the configuration information to the <system.WebServer> element
when using IIS 7.0 in integrated mode.

	 3. You would implement the IHttpAsyncHandler interface, which would include the
BeginProcessRequest and EndProcessRequest methods.

	 4. You would implement the IHttpModule.Init method and use it to register your
code to application events.

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 571

PrActIcE	 Creating a Custom hTTP handler

In this practice, you create a custom HTTP handler to dynamically return images based on a
request for files of type JPG.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Creating a Custom Image Handler

In this exercise, you create an ASP.NET website and a custom HTTP handler to return images
based on user requests.

	 1. Open Visual Studio and create a new website called jpeghandler.

	 2. Right-click your website in Solution Explorer and choose Add ASP.NET Folder and then
App_Code.

	 3. Add a new class file to the App_Code directory. Name the class jpeghandler.

	 4. Edit the automatically generated class declaration so that it implements the IHttpHandler
interface, as the following shows.

Sample of Visual Basic Code

'Public Class JpegHandler
 Implements IHttpHandler

End Class

Sample of C# Code

public class JpegHandler : IHttpHandler

	 5. Use Visual Studio to automatically generate the required IHttpHandler members
IsReusable and ProcessRequest. You can do so by pointing to the IHttpHandler
interface declaration and using the smart tag.

	 6. Implement the IsReusable property by returning false.

Sample of Visual Basic Code

Public ReadOnly Property IsReusable As Boolean _
 Implements System.Web.IHttpHandler.IsReusable
 Get
 Return False
 End Get
End Property

 572	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Sample of C# Code

public bool IsReusable
{
 get { return false; }
}

	 7. Add a folder called Images to your website. From the sample images folder on your
machine, add the Koala.jpg and Jellyfish.jpg images. Alternatively, you can copy them
from the CD for this book.

	 8. Implement the ProcessRequest method. Inside this method, check the requested URL.
If one of the images is requested, transmit the file as part of the response. You could
use this simple example to reroute user requests for images to other locations, to a
database, or to dynamically generated images. The following code shows an example.

Sample of Visual Basic Code

Public Sub ProcessRequest(ByVal context As System.Web.HttpContext) _
 Implements System.Web.IHttpHandler.ProcessRequest

 'set the MIME type
 context.Response.ContentType = "image/jpeg"

 Dim Request As HttpRequest = context.Request
 Dim Response As HttpResponse = context.Response

 If Request.RawUrl.ToLower.Contains("jellyfish.jpg") Then
 Response.TransmitFile(Request.PhysicalApplicationPath & _
 "/Images/Jellyfish.jpg")
 ElseIf Request.RawUrl.ToLower.Contains("koala.jpg") Then
 Response.TransmitFile(Request.PhysicalApplicationPath & _
 "/Images/Koala.jpg")
 Else
 Response.Write("File not found")
 End If

End Sub

Sample of C# Code

public void ProcessRequest(HttpContext context)
{
 //set the MIME type
 context.Response.ContentType = "image/jpeg";

 HttpRequest Request = context.Request;
 HttpResponse Response = context.Response;

 if(Request.RawUrl.ToLower().Contains("jellyfish.jpg"))
 {
 Response.TransmitFile(Request.PhysicalApplicationPath +
 "/Images/Jellyfish.jpg");
 }

 Lesson 1: Creating HTTP Handlers and HTTP Modules ChAPTER 10 573

 else if (Request.RawUrl.ToLower().Contains("koala.jpg"))
 {
 Response.TransmitFile(Request.PhysicalApplicationPath +
 "/Images/Koala.jpg");
 }
 else
 {
 Response.Write("File not found");
 }
}

Note DEFining ThE mimE TyPE

This code sample sets the context.Response.ContentType property to "image/jpeg". You
should use this property to define the correct Multipurpose Internet Mail Extensions
(MIME) type so that the browser knows how to handle the file you send it. Otherwise,
the browser might try to display it as text.

	 9. Open the Web.config file. Add an <httpHandler> element to the <system.Web> element.
The following markup demonstrates this.

<httpHandlers>
 <add verb="*" path="*.jpg" type="JpegHandler"/>
</httpHandlers>

	 10. Run your application. Edit the URL in the browser to point to either Koala.jpg or Jellyfish.jpg
and notice the results. Try another file name and notice that your JpegHandler indicates that
the file is not found.

Lesson Summary
■ By default, ASP.NET handles a limited number of file types, including ASPX, ASCX, and

AXD. You can configure ASP.NET to handle any file type, which is useful if you need
to dynamically generate normally static files, such as images. To configure ASP.NET to
receive requests for other types, you create a custom HttpHandler class and add the
type to the Web.config file in the <httpHandlers> section.

■ You can use the .ashx file extension to create a basic, page-based HTTP handler.
■ You can create asynchronous HTTP handlers by implementing the IHttpAsyncHandler.

Typically these handlers are meant to perform multiple actions simultaneously to help
improve application performance.

■ Asynchronous webpages can improve performance in scenarios in which the thread
pool might be limiting performance. To enable asynchronous pages, first add the
Async="true" attribute to the @ Page directive. Then create events to start and end
your asynchronous code.

■ You can create a custom HTTP module to respond to application events for every
request made to your website. You do so by implementing the IHttpModule interface
and registering your events inside its Init method.

 574	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Creating HTTP Handlers and HTTP Modules.” The questions are also available on the com-
panion CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You need to have ASP.NET dynamically generate Microsoft Word documents when a
web browser requests a file ending in a .docx extension. How can you do this?

	 A. Implement the IPartitionResolver interface.

	 B. Implement the IHttpModule interface.

	 c. Implement the IHttpHandler interface.

	 D. Implement the IHttpHandlerFactory interface.

	 2. You are writing a custom HTTP handler to be hosted in IIS 7.0 integrated mode. You
intend to register the handler by using the Web.config file. What should you do?
(Choose all that apply.)

	 A. Define an <add/> element inside the <httpHandlers/> element.

	 B. Define an <add/> element inside the <handlers/> element.

	 c. Add a <httpHandlers/> element to the <system.Web/> element.

	 D. Add a <handlers/> element to the <system.WebServer/> element.

	 3. You want to create custom code that will be run for each request made to a website.
What steps should you take? (Choose all that apply.)

	 A. Create a class file that implements the IHttpHandler interface.

	 B. Override the Init method to connect your code to specific application events.

	 c. Override the ProcessRequest method to wire up your code to specific application
events.

	 D. Create a class file that implements the IHttpModule interface.

Lesson 2: Creating and Consuming XmL Web services

Web services have become the common programming model for implementing interoper-
ability between systems that would otherwise have no connectivity. Before web services were
conceived, connecting applications in meaningful ways was a challenge. This challenge was
exacerbated by the need to cross application domains, servers, networks, data structures,

 Lesson 2: Creating and Consuming XML Web Services ChAPTER 10 575

security boundaries, and so on. However, with the increasing predominance of the Internet,
web services have become a common model for accessing data, performing distributed
transactions, and exposing business process workflow.

The Microsoft .NET Framework programmer has many options for creating and consuming
web services. These include the use of jQuery and the Microsoft AJAX Library (both of
which were discussed in Chapter 9, “Working with Client-Side Scripting, AJAX, and jQuery”).
They also include the ASMX model and WCF; it is on these models that this lesson and the
next focus. This lesson starts by covering the basics of building an XML web service on
the ASMX model, including defining web service projects and the web services themselves.
You will then see how to consume these services with ASP.NET.

After this lesson, you will be able to:
■	 Understand how ASP.NET uses Internet standards to allow you to build XML

web services.
■	 Create XML web services.
■	 Consume XML web services inside an ASP.NET page.
■	 Call an XML web service from client-side script.

Estimated lesson time: 45 minutes

real World

Mike Snell

I have been lucky to observe web services move from an idea to a real solution
for real business problems. Whereas developers in the past faced a very difficult

integration challenge, now they can simply declare that “we will expose it as a web
service.” I have seen projects that expose billing data, customer data, reporting
information, business workflow, course information, schedules, and much more.
In addition, software vendors have added services as part of their base offering.
It used to be commonplace to provide an application programming interface (API)
with your application. Now applications typically include a base set of services
that the application uses and that you can use to extend the application. Some
great examples of applications that provide these services include Microsoft Office
SharePoint Server and Visual Studio Team Foundation Server. Fortunately, web
services is one technology that has really lived up to its original promise.

 576	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Creating an ASP.NET Web Service
The Internet and its supported standards for HTTP and XML make web services possible.
However, having to program directly against HTTP, XML, and SOAP is a challenging (and
time-consuming) proposition. Luckily, ASP.NET provides a model for building and consuming
XML web services. With it, you can define a web service as an ASMX file and related code-
behind class. ASP.NET will then wrap this code as a web service object and expose your
service endpoint as the URL to your ASMX file. ASP.NET will take care of deserializing SOAP
requests, executing your .NET Framework code, and serializing your response to be sent
back to the requesting client as a SOAP message.

ASP.NET Web Service Templates
An XML web service in ASP.NET is defined in an ASMX file. This file can be added directly to an
existing website. This is useful if you want your website to expose web services in addition to
webpages. Of course, you can also create an empty website project and use it for only ASMX
web service files.

A web service website works like any other ASP.NET website. It includes the standard
ASP.NET folders, a Web.config file, and related elements. It is important to note that a web
service is hosted within ASP.NET and by IIS; therefore, it has access to features such as session
state, security model, configuration, and so on.

Like a webpage, web services are exposed through URLs. This means that you access a
web service by using your domain name followed by a page name, as in http://MyDomain
/MyService.asmx. The resource for an XML web service is accessed through the ASMX file.
This file is nothing more than a simple text file that is used as a pointer to the code for
your web service.

You add an ASMX file to your site for each web service you want to expose. You can do so
by using the Add New Item dialog box and selecting the Web Service template. When you do,
Visual Studio creates an ASMX file and puts a related class file inside the App_Code directory.
As an example, suppose you want to write an XML web service that exposes methods related to
working with the author data in Microsoft’s sample database, Pubs. You might start by creating
an ASMX file called Authors.asmx. This file would contain an @ WebService directive that points
to the actual code for the web service. The following shows an example of the markup you
would see in the ASMX file.

Sample of Visual Basic Code

<%@ WebService Language="VB" CodeBehind="~/App_Code/Authors.cs" Class="Authors" %>

Sample of C# Code

<%@ WebService Language="C#" CodeBehind="~/App_Code/Authors.cs" Class="Authors" %>

 Lesson 2: Creating and Consuming XML Web Services ChAPTER 10 577

This markup is similar to what you would see for a webpage. However, there is no additional
markup included inside a web service. Instead, the web service is defined entirely in code, which
in this case would be the Authors.cs file. Think of the web service class file as an object that only
exposes methods. Therefore, each web service can expose multiple methods. We will look at
writing the actual web services next.

The Web.Services Namespace
An ASP.NET XML web service class file inherits from the System.Web.Services.WebService
class. This class provides a wrapper for your web service code. In this way, you are free to
write web methods in pretty much the same way you would write any other method. The
WebService class and ASP.NET take care of the rest. Figure 10-3 shows the objects used by
most ASP.NET XML web services.

FigURE 10-3 Classes related to creating ASP.NET web services.

Each of these classes controls how your web service works and how ASP.NET and the com-
piler view your web service code. You can inherit from the WebService class to get access to
standard ASP.NET features. The attribute classes allow you to mark parts of your code as related
to XML web services. Items marked for use as web services are identified by ASP.NET. It then
knows how to deserialize requests for your service, call your service, and serialize the response.
It also handles working with SOAP, XML, Web Services Description Language (WSDL), and the
related web service standards. You will see how each of these classes is used for creating web
services in the upcoming sections.

 578	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Note WEb sERviCE DEsign COnsiDERATiOns

When you write a class that contains a web service, it is important to remember that this
class’s methods will be invoked across a network and into other application domains. You
send XML web service method invocations as messages by using HTTP. These messages
must be packaged (serialized) and unpackaged (deserialized) for transport in both direc-
tions. These types of method invocations, although powerful, can be expensive in terms
of processing time. Therefore, you will want to make the most of these invocations. For
this reason, you should define each of your methods to do a large amount of work and
then return the results. You do not want web services that maintain state on the server
and require a lot of smaller calls to access and set class data. These calls should be saved
for working with in-process objects only.

The WebService Class
The WebService class represents a base class for creating XML web services in ASP.NET. This
class is similar to the Page class for webpages. It provides access to ASP.NET objects such as
Application and Session.

It is important to note that this class is optional: you do not need to inherit from this class to
create XML web services. Instead, you use this class as a base class only when you want to access
and use the features of an ASP.NET application. You might, for example, need to use session
state between service calls. You could do so easily by first inheriting from this class and then
accessing the session object as if you were coding an ASP.NET webpage. If, however, you simply
want to expose methods over HTTP and don’t need to access the features of ASP.NET, your web
service need not inherit from this class (or any other class).

The following code shows the start of the Authors example web service. Here, the Authors
class inherits directly from the WebService base class.

Sample of Visual Basic Code

Public Class Authors
 Inherits System.Web.Services.WebService

Sample of C# Code

public class Authors : System.Web.Services.WebService

The WebServiceAttribute Class
The WebServiceAttribute class can be used to provide information about your web service. This
information is used by client applications that want to reference the web service. You use this
attribute to decorate your class with this information.

The WebServiceAttribute class can be used to provide both a namespace and a description
of your web service. This is done through parameters passed to the attribute class. The descrip-
tion parameter is simply text you write to identify the high-level intent of your web service. The

 Lesson 2: Creating and Consuming XML Web Services ChAPTER 10 579

namespace parameter sets the namespace of your web service. This should be a domain
name under your control and where your web service is hosted. Visual Studio uses the
http://tempuri.org namespace as a placeholder until you define your actual namespace.

As an example, suppose again that you are creating a web service centered on exposing
author information from the pubs database. You would define your class inside the Authors.cs
file as discussed previously. You could then add the WebService attribute to the class, as shown
in the following code.

Sample of Visual Basic Code

< WebService(Description:="Services related to published authors", _
 Namespace:="http://mydomain.com/")> _
Public Class Authors

Sample of C# Code

[WebService(Description = "Services related to published authors",
 Namespace = "http://mydomain.com/")]
public class Authors : WebService

The WebMethodAttribute Class
Your web service exposes web methods. Each of these methods provides some sort of func-
tionality encapsulated by the web service. Your class can identify these methods through the
use of the WebMethod attribute. You apply this attribute to any public method in your web
service class you want to expose as part of your service.

You can assign the WebMethod attribute to a class without setting any of the parameters of
the WebMethod class. This simply identifies your method as a web service method. However, the
WebMethod attribute class also has several constructors that can be used for various groups of
parameter values. The parameters include the following:

■ enablesessionstate This parameter is used to indicate whether the method should
be able to work with session state. You set this value to false to disable the use of
session state for the specified web method.

■ transactionOption This parameter is used to indicate whether your web method
supports transactions. The parameter is of the type System.EnterpriseServices.
TransactionOption. Web services are stateless HTTP calls. Therefore, you can only use
an XML web service as the root of a transaction. This means that the TransactionOptions
that indicate a root transaction are equivalent (Required, RequiresNew). All other
transaction options indicate no transaction support for the service (Disabled,
NotSupported, Supported).

■ cacheDuration This parameter is used to define the number of seconds for which
the response should be cached by the server. This is useful if your service has a high
volume of access and the data is relatively static. In this case, you can cache results
between calls to increase performance.

■ bufferResponse This parameter is used to indicate whether the web service response
should be buffered back to the client.

 580	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Consider the author example. Suppose you have a public method called GetAuthorTitles that
returns a list of titles based on the ID of a specified author. Because this data only changes when
an author publishes a new book, it is also a good candidate for caching. The following shows
the WebMethod attribute applied to this method. Here, the cacheDuration parameter is set to
five minutes (300 seconds).

Sample of Visual Basic Code

<WebMethod(CacheDuration:=300)> _
Public Function GetAuthorTitles(ByVal authorId As String) As DataTable
 ...
End Function

Sample of C# Code

WebMethod(CacheDuration=300)]
public DataTable GetAuthorTitles(string authorId)
{
 ...
}

Web Services and Data Types
Notice that the previous example method, GetAuthorTitles, returns a DataTable object. This
return type is possible because the DataTable object supports serialization; it can serialize
itself into XML. As long as the calling client is also based on the .NET Framework, the client
application can deserialize the XML data stream back into a strongly typed DataTable. In this
case, ASP.NET does the serialization for you without you having to really think about it.

To provide for wider interoperability, however, you probably will need to provide instances
of your own classes as return values of your functions or as parameters. You can do so by
creating the object inside the web service application. In this case, the compiler will take
care of making the objects you expose serializable. These objects simply need a default
constructor that does not accept parameters. You can also use the Serializable attribute
class to tag classes outside your web service. This ensures that any public members of
the class can be serialized by ASP.NET.

Consuming an ASP.NET Web Service
You can consume an ASP.NET web service in any application capable of making an HTTP call.
This means that any .NET Framework applications can call web services, including console
applications, applications based on the Windows operating system, and ASP.NET applications
themselves. This section focuses on calling an XML web service from another ASP.NET website.

Referencing a Web Service
ASP.NET provides a simple client model for consuming web services. A proxy object is generated
for you when you reference a web service. You can then program against this proxy object as if
you were calling in-process code. The proxy object takes care of serialization, SOAP messaging,
and the related processes.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 2: Creating and Consuming XML Web Services ChAPTER 10 581

To get started, you need to have access to a published web service. This web service can be
published on a server or can be another project in your solution. Either way, as long as it is a
valid web service, you will be able to set a reference to it (and generate a proxy object to call it).

The first step is to create a web reference from your website to the service. You do this by
right-clicking your project file and choosing Add Web Reference. This opens the Add Web
Reference dialog box. In this dialog box, you define the URL of your service, select the service
(ASMX file), and set a name for the reference. This name will be used by the generated proxy
class to define the namespace for accessing your service. Figure 10-4 shows an example of
connecting to the Authors.asmx service.

FigURE 10-4 Using the Add Web Reference dialog box to generate a proxy for calling a web service.

After you have established the reference (by clicking the Add Reference button, as shown
in Figure 10-4), Visual Studio and ASP.NET generate a Proxy class for working with the service.
This allows you to write code using the service as if the service was just another class local to
your application. This proxy class does all the work of communicating to and from the web
service, serializing and deserializing data, and more.

As an example, the Authors.asmx file has two web methods: GetAuthor and GetAuthorTitles.
The first returns an instance of the Author class as defined by the service. The second returns a
DataTable. To work with the Author class (of which the web application originally knows nothing
before the reference is set), Visual Studio generates this type from the WSDL of the web service
and puts a version of it inside the proxy’s namespace. Figure 10-5 shows an example of the
contents inside the generated proxy namespace for the Author.asmx web service reference.

 582	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Note WsDL.EXE

Visual Studio includes the WSDL.exe command-line tool. You can use this tool to create a
proxy class from an existing web service. You specify the language of the proxy class and
a URL to the web service. The tool will use this information to generate a proxy class file.

FigURE 10-5 The web service client proxy generated for the Authors service.

Calling a Web Service
You call the web service through this generated proxy class. This is as simple as writing code
to call a method. For example, the following code shows how you would call the GetAuthor
method from the Authors.asmx web service discussed previously.

Sample of Visual Basic Code

Dim authSrv As New AuthorsSrv.Authors()
Dim auth As AuthorsSrv.Author = authSrv.GetAuthor("AuthorId")

Label1.Text = auth.FirstName
Label2.Text = auth.LastName

Sample of C# Code

AuthorsSrv.Authors authSrv = new AuthorsSrv.Authors();
AuthorsSrv.Author auth = authSrv.GetAuthor("AuthorId");

Label1.Text = auth.FirstName;
Label2.Text = auth.LastName;

 Lesson 2: Creating and Consuming XML Web Services ChAPTER 10 583

Note that in the preceding example code, only the call to GetAuthor actually invokes the
web service. The object creation and property gets are simply calls to the proxy object and
are thus in-process calls.

You can also bind to the web service call. Remember, the web service is exposed through
a local proxy object. Therefore, you can use object data binding to bind to the web service
(via the proxy). As an example, recall the GetAuthorTitles web service. This service is accessed
via a proxy object method of the same name. You can set this method as the SelectMethod
of an object data source, as shown in the following code. You can then bind the results to a
GridView control.

<asp:ObjectDataSource runat="server"
 ID="ObjectDataSourceAuthors"
 TypeName="AuthorsSrv.Authors">
 SelectMethod="GetAuthorTitles"
 <SelectParameters>
 <asp:QueryStringParameter
 Name="authorId"
 QueryStringField="auId"
 Type="String" />
 </SelectParameters>
</asp:ObjectDataSource>

<asp:GridView ID="GridView1" runat="server"
 DataSourceID="ObjectDataSourceAuthors">
</asp:GridView>

Calling a Web Service from Client Script by Using AJAX
You can use the AJAX functionality built into ASP.NET to call a web service directly from client-
side JavaScript. This is useful if you want to initiate an operation on the server from the user’s
browser. When the results are returned, the user’s browser can then be updated. Of course, this
all takes place asynchronously and without a browser refresh. Refer back to Chapter 9 if you
need a quick review. Also, recall that you saw a partial example in the practice for Lesson 3 of
that chapter (creating a web service and calling it from jQuery).

There are several steps required to set up your web service to enable it to support AJAX
client requests. First, your client-side page and your XML web service (ASMX file) must be in
the same domain. From there, you should be sure to perform all of the following steps:

■ Mark your web service class with the ScriptServiceAttribute class. This indicates that
the web methods inside the web service can be called from client script.

■ Add a ScriptManager control to your client page. The ScriptManager control is required
for all AJAX-enabled pages. However, inside it you need to set a ServiceReference. This
reference should point to the XML web service (ASMX file). Doing so will tell ASP.NET to
generate a JavaScript client proxy to your web service.

 584	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

■ Add a JavaScript method to your page. You can add code inside this method to call your
web service through the client-side proxy generated by ASP.NET. Your web method can
be referenced through the class name of the web service and the method name of the
web method. Of course, you can also opt to pass parameters to the web service.

■ Optionally, you can add another JavaScript method to your client page to serve as the
callback handler. This method will be called by the JavaScript proxy and receive the results
of the web service call. You can use this method to update the page the user is viewing.

As an example, suppose you want to call the Authors web service from AJAX. To begin, you
would mark the web service with the ScriptService attribute. The following shows an example.

Sample of Visual Basic Code

<System.Web.Script.Services.ScriptService()> _
<WebService(Description:="Services related to published authors", _
 Namespace:="http://mydomain.com/")> _
Public Class Authors
 Inherits WebService

Sample of C# Code

[System.Web.Script.Services.ScriptService]
[WebService(Description = "Services related to published authors",
 Namespace = "http://mydomain.com/")]
public class Authors : WebService

Remember, the web service exposes two methods: GetAuthor and GetAuthorTitles. You
can review the practice for this lesson to see more on these methods.

You now need to create a client webpage to call the service. Remember, this webpage
must be in the same domain as the web service. Inside the webpage markup, you add a
ScriptManager control. This control should be set to reference the actual web service (ASMX
file). The following shows an example of this markup.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="Authors.asmx" />
 </Services>
</asp:ScriptManager>

The next step would be to add JavaScript functionality to call the web service, passing the
user’s input. In addition, you need to write a simple callback function that takes the results
and displays them to the user. The following code demonstrates this. The user input is inside
the TextBoxAuthId, and the results are shown by using LabelResults. Both of these controls are
inside a content control of a child page that uses a master page. Therefore, they are referenced
as MainContent_ControlName in the JavaScript.

<script type="text/javascript">
 function GetAuthor() {
 var val = document.getElementById("MainContent_TextBoxAuthId");
 Authors.GetAuthor(val.value, FinishCallback);
 }

 Lesson 2: Creating and Consuming XML Web Services ChAPTER 10 585

 function FinishCallback(result) {
 var results = document.getElementById("MainContent_LabelResults");
 results.innerHTML = result.FirstName + " " + result.LastName;
 }
</script>

Finally, you need to add the remaining markup to the page. This simply consists of the user
input information. The following shows an example of the full MainContent content area control
(the ScriptManager markup is repeated for clarity).

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="Authors.asmx" />
 </Services>
 </asp:ScriptManager>
 <h2>
 Get Author Page
 </h2>
 <asp:TextBox ID="TextBoxAuthId" runat="server"></asp:TextBox>

 <input id="Button1" type="button" value="Get" onclick="GetAuthor()" />
 <hr />
 <asp:Label ID="LabelResults" runat="server" Text=""></asp:Label>
</asp:Content>

Notice that in this markup, the GetAuthor JavaScript method defined earlier is called when
the user clicks the Get button. This triggers the web service. The results are returned to the
FinishCallback JavaScript method and then displayed in the Label control. Figure 10-6 shows
the call in action.

FigURE 10-6 You can call a web service from the web browser by using AJAX.

 586	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Authentication and XML Web Services
You will often need to authenticate callers to your XML web services hosted by ASP.NET.
To do so, you can use one of the standard ASP.NET security methods to authenticate and
authorize users. This is similar to securing any ASP.NET resources, such as webpages, direc-
tories, or other files. Alternatively, you can use Web Services Enhancements (WSE) 3.0 to
build secure XML web services.

Note WsE 3.0

WSE was written as an add-on product to the .NET Framework and provides developers
with an easy solution for securing web services. It is based on standards and hence will
usually work across platforms. If you need to create secure XML web services, WSE 3.0
is a preferred solution. For more details, go to http://msdn.microsoft.com/en-us/library
/ms977317.aspx.

ASP.NET Security
There several ways in which you can use the authentication and authorization methods of
ASP.NET to secure your XML web services. Fortunately, these techniques are not much differ-
ent from those used to secure other ASP.NET resources, because the web service works much
like a webpage. Both web services and webpages have a URL that points to a file. You can
therefore lock down this file as you would any ASP.NET resource.

Configuring and setting up ASP.NET security is similar for both web services and ASP.NET
pages and is covered in Chapter 13, “Implementing User Profiles, Authentication, and
Authorization.”

Note sEE msDn FOR mORE DETAiLs

You can also review the “How to: Configure an XML Web Service for Windows Authentication”
section on MSDN for additional information. See http://msdn.microsoft.com/en-us/library
/bfazk0tb.aspx.

Passing Credentials
To pass basic authentication credentials from your web server to a web service, you first create
a NetworkCredentials class. This class contains the user name, password, and domain informa-
tion. You can then create a CredentialCache object to which you add the NetworkCredentials
instance. You then set the web service’s generated client proxy’s Credentials property to the
newly created CredentialCache object.

If you are using Windows Integrated Security between the web server and the web service,
you set the Credentials property of the web service proxy class to System.Net.CredentialCache.
DefaultCredentials. The web server running your webpage will then pass credentials to the
web service.

 Lesson 2: Creating and Consuming XML Web Services ChAPTER 10 587

Quick Check
	 1. What type of file would you use to create an XML web service?

	 2. What is the name of the attribute class you would apply to your web service?

	 3. How can you identify a method as exposed as part of a web service?

Quick Check Answers
	 1. You would add a new ASMX file to a website to create an XML web service.

	 2. You would use the WebServiceAttribute class to mark a class as an XML web
service.

	 3. You would use the WebMethodAttribute class to tag a method as a web method.

PrActIcE	 Creating and Consuming AsP.nET Web services

In this practice, you create a web service that works with information in the Pubs database.
You then create a web client interface to call that web service.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

Note

This practice uses standard ADO.NET programming to connect to data. You will see how
you can use LINQ to SQL and the Entity Framework in later chapters. You will also see
how you can replace your SQL queries with Language-Integrated Query (LINQ) queries.

ExErcIsE	1	 Creating an ASP.NET XML Web Service

In this exercise, you create the XML web service website and define the web service.

	 1. Open Visual Studio and create a new ASP.NET website by using either C# or Visual
Basic. Name the project Pubsservices.

	 2. Add the pubs.mdf file to the App_Data directory of the web service application. The
database file is provided in the samples installed from this book’s companion CD.

	 3. Add a new service file called Authors.asmx to your site by right-clicking the project
and choosing Add New Item. Select the Web Service template from the Add New Item
dialog box.

 588	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

	 4. The class file for Authors.asmx should open in the code editor. If it does not, open it
from the App_Code directory.

	 5. Delete the HelloWorld web method in the service file template. There is no need to
inherit from the WebService class, because this service does not use the features of
ASP.NET. Therefore, remove this inheritance from the class definition.

	 6. Edit the WebServiceAttribute class and set a default namespace. Your class definition
should look similar to the following.

Sample of Visual Basic Code

<WebService(Namespace:="http://mydomain.org/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
Public Class Authors
 Inherits System.Web.Services.WebService

End Class

Sample of C# Code

[WebService(Namespace = "http://mydomain.com/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Authors {

 public Authors () {
 }

}

	 7. Open the Web.config file. Find the <connectionStrings /> element. Add markup to
define a connection to the pubs.mdf database.

The following shows an example.

<connectionStrings>
 <add name="PubsConnectionString" connectionString="Data Source=.\
 SQLEXPRESS;AttachDbFilename=|DataDirectory|\pubs.mdf;
 Integrated Security=True;User Instance=True"
 providerName="System.Data.SqlClient"/>
</connectionStrings>

	 8. Return to the Authors.cs class file. Add using (Imports in Visual Basic) statements to
the class file for System.Data, System.Data.SqlClient, and System.Configuration.

	 9. Add a private variable at the class level to store the connection string to the Pubs
database. Name this variable _cnnString, as shown in the following code.

Sample of Visual Basic Code

Private _cnnString As String = _
 ConfigurationManager.ConnectionStrings("PubsConnectionString").ToString

Sample of C# Code

private string _cnnString =
 ConfigurationManager.ConnectionStrings["PubsConnectionString"].ToString();

 Lesson 2: Creating and Consuming XML Web Services ChAPTER 10 589

	 10. Add a method to the class to return all titles for a specified author based on the
authorId. These titles can be returned as a DataTable instance. Name this method
GetAuthorTitles.

	 11. Tag the GetAuthorTitles method with the WebMethodAttribute class. Set the
CacheDuration to 300 seconds. Your method should look as follows.

Sample of Visual Basic Code

<WebMethod(CacheDuration:=300)> _
Public Function GetAuthorTitles(ByVal authorId As String) As DataTable

 Dim sql As StringBuilder = New StringBuilder()
 sql.Append("SELECT titles.title, titles.type, titles.price, ")
 sql.Append("titles.pubdate FROM titleauthor INNER JOIN titles ON ")
 sql.Append("titleauthor.title_id = titles.title_id ")
 If authorId <> "0" Then sql.Append("WHERE (titleauthor.au_id = @AuthorId) ")

 Dim cnn As New SqlConnection(_cnnString)
 Dim cmd As New SqlCommand(sql.ToString(), cnn)
 cmd.Parameters.Add("AuthorId", SqlDbType.VarChar, 11).Value = authorId

 Dim adp As New SqlDataAdapter(cmd)
 Dim ds As New DataSet()

 adp.Fill(ds)

 Return ds.Tables(0)

End Function

Sample of C# Code

[WebMethod(CacheDuration = 300)]
public DataTable GetAuthorTitles(string authorId)
{
 StringBuilder sql = new StringBuilder();
 sql.Append("SELECT titles.title, titles.type, titles.price, ");
 sql.Append("titles.pubdate FROM titleauthor INNER JOIN titles ON ");
 sql.Append("titleauthor.title_id = titles.title_id ");
 if (authorId != "0")
 sql.Append("WHERE (titleauthor.au_id = @AuthorId) ");

 SqlConnection cnn = new SqlConnection(_cnnString);
 SqlCommand cmd = new SqlCommand(sql.ToString(), cnn);
 cmd.Parameters.Add("AuthorId", SqlDbType.VarChar, 11).Value = authorId;

 SqlDataAdapter adp = new SqlDataAdapter(cmd);
 DataSet ds = new DataSet();

 adp.Fill(ds);

 return ds.Tables[0];
}

 590	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

	 12. Compile your application and make sure there are no errors. Right-click the Authors.asmx
file and choose Set As Start Page. Run your application and use the host generated by
ASP.NET to test your application. You can select an author ID from the Pubs database
for testing, or you can pass the value zero (0) to return all titles. You should see the
results in XML.

ExErcIsE	2	 Consuming an ASP.NET Web Service

In this exercise, you create a client for accessing an ASP.NET web service.

	 1. Continue editing the solution you created in the previous exercise. Alternatively, you can
open the completed Lesson 2, Exercise 1 project in the samples installed from the CD.

	 2. Add a new website to the solution: Right-click the solution and choose Add | New Web
Site. Select the ASP.NET Web Site template. Name the website PubsClient. Right-click
the website and choose Set As StartUp Project.

	 3. Add a web reference to the web service created in Exercise 1. Start by right-clicking the
PubsClient website and then choose Add Web Reference. In the Add Web Reference
dialog box, select the Web Services In This Solution link. This should display the Authors
service. Click the Authors service. On the right side of the dialog box, change the web
reference name to Pubsservice. Finish by clicking Add Reference.

Note viEWing ThE gEnERATED PROXy CLAss

If you want to see the generated proxy class, you should change your project type from
website to web application. When you do so, your code is compiled as DLL files and the
generated code is exposed. For websites, Visual Studio generates code and compiles it
on demand.

	 4. Open the Default.aspx page in the PubsClient website. Delete the content from the
MainContent area.

	 5. From the Toolbox under the Data tab, add an ObjectDataSource control to the page.
Configure it to use the web service proxy class. Set the authorId parameter to contained
in the auId query string value.

	 6. Add a GridView control to the page and set its DataSourceId property to the object
data source. Your markup inside the MainContent area should look as follows.

 Lesson 2: Creating and Consuming XML Web Services ChAPTER 10 591

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <asp:ObjectDataSource runat="server"
 ID="ObjectDataSourceAuthors"
 TypeName="PubsService.Authors"
 SelectMethod="GetAuthorTitles">
 <SelectParameters>
 <asp:QueryStringParameter
 Name="authorId"
 QueryStringField="auId"
 Type="String"
 DefaultValue="0" />
 </SelectParameters>
 </asp:ObjectDataSource>

 <asp:GridView ID="GridView1" runat="server"
 DataSourceID="ObjectDataSourceAuthors">
 </asp:GridView>

</asp:Content>

	 7. Run the application to see the results. Notice that by default, zero (0) is passed to the
web service so that all titles are displayed. Manipulate the query string to show only a
specific author ID (you can get an ID from the database table).

Lesson Summary
■ You create an XML web service in ASP.NET by defining an ASMX file. You use the

WebServiceAttribute attribute class to mark a class as a web service. You use
the WebMethod attribute class to define the methods in that class that should be
exposed as web services. You can also inherit from WebService if you intend to use
the features of ASP.NET (such as session) inside your service.

■ You can consume an XML web service in an ASP.NET website by setting a web reference
to it. This generates a proxy class. You can program against the proxy as if the web
service were actually running on the same server. The proxy class handles the rest.

■ You can call a web service from the client by using ASP.NET AJAX extensions. You first must
mark the web service with the ScriptServiceAttribute. You then use the ScriptManager class
to reference a web service that is in the same domain as the webpage. A JavaScript client
proxy is then generated. You can use this proxy to call your web service. ASP.NET AJAX
takes care of the rest.

■ You secure a web service in ASP.NET as you would any other ASP.NET resource. You
can also define custom web service security through custom SOAP headers.

 592	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Creating and Consuming XML Web Services.” The questions are also available on the com-
panion CD as a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You want to create a new web service that will expose multiple methods that are meant
to work with user-specific data via a transaction. You decide to use ASP.NET session state
to manage the user’s context on the server between web service requests. How should
you define your web service?

	 A. Define a class that inherits from WebServiceAttribute.

	 B. Define a class that inherits from WebService.

	 c. Define a class that inherits from WebMethodAttribute.

	 D. Do not inherit from a base class. Hosting the web service in ASP.NET is sufficient.

	 2. You want to consume an existing web service from your ASP.NET website. What actions
should you take? (Choose all that apply.)

	 A. Use the Add Reference dialog box to set a reference to the WSDL file that contains
the web service.

	 B. Use the Add Web Reference dialog box to point to the URL of the web service.

	 c. Write a method in your website that has the same function signature as your web
service. Do not implement this method. Instead, mark it with the WebMethod
attribute.

	 D. Call a proxy class that represents your web service.

	 3. You need to secure your web service. The service will be accessed over the Internet by
multiple systems of different types. Authentication information should be secured. You
want to trust only those clients who have been verified as trusted. What type of security
should you consider?

	 A. Windows Basic

	 B. Windows Digest

	 c. Client certificates

	 D. Custom SOAP headers

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 593

	 4. You want to create a web service and call it from client-side script. What actions
should you take? (Choose all that apply.)

	 A. Add the ScriptService attribute to the web service class.

	 B. Write client-side JavaScript to call your service through a proxy object.

	 c. Add a ScriptManager class to your webpage. Set the ServiceReference to point to
the ASMX web service.

	 D. Make sure that your webpage and service are in the same domain.

Lesson 3: Creating and Consuming WCF services

In the previous lesson, you learned about creating XML web services with ASP.NET. This is a very
useful, straightforward way to create web services that you intend to host in IIS and call over
HTTP. However, the service model can be extended beyond HTTP. For example, you might want
to write a service that is accessed inside the firewall over Transmission Control Protocol (TCP)
instead of HTTP. Working over TCP within your own application often results in better perfor-
mance than you would attain with services implemented by using HTTP. In earlier versions of
the .NET Framework, this meant that you wrote the service by using Remoting. However, if the
same service code needed to be called over both HTTP and TCP, you had to write and host it
twice. This is one of the many problems that WCF solves.

WCF is a unifying programming model. It defines a single approach to writing services and
thereby unify technologies such as web services (ASMX), .NET Remoting, Microsoft Message
Queue (MSMQ), Enterprise Services (COM+), and Web Services Enhancements (WSE). It does
not replace these technologies on an individual basis. Instead, it provides a single programming
model that you can use to take advantage of all of these technologies at once. With WCF, you
can create a single service that can be exposed as HTTP, TCP, named pipes, and so on. You also
have multiple hosting options.

This lesson covers the basics of WCF to give you a solid footing when working with this
technology. This lesson is not all-encompassing on WCF. Rather, it focuses on those areas
inside WCF that are specific to ASP.NET development: writing, hosting, and calling WCF
services with ASP.NET websites.

After this lesson, you will be able to:
■	 Understand the architecture of WCF.
■	 Create a WCF service in ASP.NET and host it.
■	 Call a WCF service from an ASP.NET webpage.
■	 Create and consume a WCF Data Service.

Estimated lesson time: 45 minutes

 594	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Introducing WCF
Before you build your first Windows Communication Foundation (WCF) service application, it
is important for you to get an overview of how the technology works. WCF enables message-
based communication to and from endpoints. You write your service and then attach, or
configure, the endpoints. A service can have one or more endpoints attached to it. Each WCF
endpoint defines a location to which messages are sent and received. This location includes
an address, a binding, and a contract. This address, binding, and contract concept is often
referred to as the ABCs of WCF. The following list describes each of these in detail:

■ A is for address The endpoint’s address is a Uniform Resource Identifier (URI)
that defines the location of the service. Each endpoint of a service must have a
unique address. Therefore, if you have a service that exposes more than one end-
point (or transport protocol), you will uniquely identify the address based on the
endpoint’s transport protocol. This might mean changing a port number, defining
the address as HTTPS, or taking a similar action.

■ b is for binding The binding defines how the service communicates, via such proto-
cols as HTTP, TCP, MSMQ, Binary HTTP, and so on. The protocol used is referred to as
the binding’s transport. You can add multiple bindings to a single service. Bindings can
include other information, too, such as encoding and security. Each binding must, at a
minimum, define a transport.

■ C is for contract The contract represents the public definition, or interface, of the
service. It defines things such as the namespace of the service, how messages should
be sent, callbacks, and related contract items. There are multiple contract types
in WCF, including service contracts, operation contracts, message contracts, fault
contracts (for error handling), and data contracts. These contracts work together to
indicate to the client code that is consuming the WCF service how it should define
communication messages.

After you have defined your WCF service and configured at least one endpoint, you must
host it. There are a few options for this, which are discussed later in this section. However,
the host that this lesson focuses on is IIS and ASP.NET. To call the service, a client generates
a compatible endpoint. This endpoint indicates where the service is, how communication
should work, and the format of that communication. At run time, clients typically initiate
requests to a hosted service. Like a web service, the WCF service processes the request and
returns results—all by using the defined endpoint information.

The good news is that there are multiple tools and plentiful configuration support options for
creating WCF services. Again, it is still important to understand how this works. As an additional
overview, the following section presents the layers of the WCF architecture.

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 595

The Layers of the WCF Architecture
A WCF application has multiple layers that work together to provide a wide range of
functionality and options for building a service-oriented application (SOA). For the most
part, these layers are behind the scenes, and the configuration of services is done for you
or through configuration tools that make it easy. Figure 10-7 shows an overview of the core
layers of the WCF architecture.

Contract Layer
Service, operation, data, message, policy and binding

Runtime Layer
Transactions, concurrency, dispatch, parameter filtering, throttling,

error, metadata, instance, message inspection

Messaging Layer
HTTP, TCP, named pipes, MSMQ, transaction flow, WS security,

WS reliable messaging, encoding (text, binary, etc.)

Hosting Layer
IIS, Windows Activation Service (WAS), Windows Service,

EXE, COM+ (Enterprise Services)

FigURE 10-7 The layers of the WCF architecture.

It is important to understand these layers and the many options they provide to you for
service development. The following list provides an overview of each layer.

■ Contract layer The contract layer defines the contract your service exposes to end
clients. This includes the message that the service supports for calling operations,
receiving results, and managing errors. In addition, the contract includes the endpoint
information for policy and binding. For example, the contract might indicate that the
service requires HTTP with a binary encoding.

■ Runtime layer The service runtime layer controls how your service is executed and
how the message body is processed. You can configure this layer to support trans-
actions, handle concurrency, and emit error information. For example, you can use
throttling to indicate the number of messages your service can process; you can
use the instance functionality to indicate how many instances of your service
should be created to manage requests.

■ messaging layer The messaging layer represents the WCF channel stack in terms of
transport and protocol. Transport channels work to convert messages to work across
HTTP, named pipes, TCP, and related protocols. Protocol channels work to process
messages for aspects such as reliability and security.

 596	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

■ hosting layer The hosting layer defines the host, or executable file, that runs the service
in process. Services can be self-hosted (that is, they can run in an executable file) or they
can be hosted by IIS, Windows Activation Service (WAS), a Windows Service, or COM+.
Choosing a host for your service depends on a number of factors such as client access,
scalability, reliability, and the need for other services of the host (such as ASP.NET). In
most enterprise application cases, you will want to use an existing host for your service
rather than writing your own.

You can see that there are many options for creating, configuring, and hosting a wide array
of services. Again, this chapter covers building, hosting, and calling WCF services with respect
to ASP.NET (HTTP transport and IIS hosting).

Creating a WCF Service with ASP.NET
Creating and consuming WCF services follows a standard set of programming tasks. You follow
these steps every time you want to create and consume a new WCF service:

	 1. Define the service contract.

	 2. Implement (or write) the service contract.

	 3. Configure a service endpoint or endpoints.

	 4. Host the service in an application.

	 5. Reference and call the service from a client application.

As you can see, a WCF service application starts with the contract. This contract indicates the
features and functionality your service will offer to calling clients. In WCF programming, you
create this contract by first defining an interface and decorating that interface with attributes.
Figure 10-8 shows an overview of the key WCF attribute classes used most commonly.

FigURE 10-8 The basic attribute classes used by WCF services.

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 597

The ServiceContract and OperationContract WCF attribute classes are found in the
System.ServiceModel namespace, and the DataContract and DataMember classes are found
in the System.Runtime.Serialization namespace. These classes are used to define the details
of the contract that your service will have with calling clients. For example, you can indicate
whether your service contract is a one-way, request-reply, or duplex contract. These attributes
also define your service operations and the data that defines these operations. The following
list provides a description for each of these classes.

■ serviceContract The ServiceContract attribute class is used to indicate that an inter-
face (or class) is a WCF service. The ServiceContract attribute class has parameters
for setting things such as whether the service requires a session (SessionMode), the
namespace, the name of the contract, the return contract on a two-way contract
(CallbackContract), and more.

■ OperationContract The OperationContract attribute class is used to mark methods
inside an interface (or class) as service operations. Methods marked with OperationContract
represent those exposed by the service to clients. You can use the parameters of the
OperationContract attribute class to define settings such as whether the contract does
not return a reply (IsOneWay), the message-level security (ProtectionLevel), or whether
the method supports asynchronous calls (AsyncPattern).

■ DataContract The DataContract attribute class is used to mark types (classes,
enumerations, or structures) that you write as participating in WCF serialization via
the DataContractSerializer. Marking your classes with this attribute ensures that they
can be sent efficiently to and from disparate clients.

■ Datamember The DataMember attribute class is used to mark individual fields
and properties that you want to serialize. You use this class in conjunction with
the DataContract class.

The WCF Service Templates
Visual Studio and ASP.NET define the WCF Service Application project template. This template
defines a web project that hosts the WCF service. This project template contains a reference to
System.ServiceModel, which contains the WCF classes. Creating a new instance of this project
template will also generate a default service (Service1.svc) and a related contract interface file
(IService1.vb or IService1.cs).

The contract file is simply a code file that defines an interface to be used to define the inter-
face for your service. You decorate the members of this interface with the service attribute
classes. These include the service (ServiceContract), the operations (OperationContract), and
the data members (DataContract for the class and DataMember for any class members).

The SVC file is a webpage that provides a URL for the service and its related code-behind
file. The webpage uses the @ ServiceHost directive to indicate that the page is a service. The
code-behind file implements the interface defined by the aforementioned contract.

 598	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Finally, a WCF service application is automatically configured to be hosted in IIS and expose
a standard HTTP endpoint. This information can be found inside the <system.servicemodel>
section of the Web.config file.

As you can see, the WCF service application in ASP.NET takes care of many of the common
steps for creating a WCF service. In fact, steps 1, 3, and 4, as discussed previously, are taken
care of by default. That leaves step 2, implementing the service, and step 5, calling the service
from a client application.

Note that you can also add a WCF service to an existing ASP.NET website. You can do so from
the Add New Item dialog box. This will create the SVC file and add both a related interface file
and a class file to the App_Code directory. It will also update the Web.config file to expose the
web service from your website.

Implementing the WCF Service
To implement the service, you start by defining the contract via the interface. For example,
suppose you want to create a service that exposes methods that work with the Shippers table
in the Northwind database. You might start by creating a Shipper class and marking it as a
DataContract, marking its members as DataMembers. This allows you to pass the Shipper
class in and out of the service. The following code shows an example.

Sample of Visual Basic Code

<DataContract()> _
Public Class Shipper

 Private _shipperId As Integer

 <DataMember()> _
 Public Property ShipperId() As Integer
 'implement property (see practice)
 End Property

 'implement remaining properties (see practice)

End Class

Sample of C# Code

[DataContract]
public class Shipper
{
 [DataMember]
 public int ShipperId { get; set; }

 //implement remaining properties (see practice)
}

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 599

The next step is to define the methods of your interface. You mark those with the
OperationContract attribute and mark the interface with the ServiceContract attribute. For
example, suppose that the shipping service exposes operations for retrieving a single shipper
and saving a single shipper. In this case, your interface should look as follows.

Sample of Visual Basic Code

<ServiceContract()> _
Public Interface IShipperService

 <OperationContract()> _
 Function GetShipper(ByVal shipperId As Integer) As Shipper

 <OperationContract()> _
 Sub SaveShipper(ByVal shipper As Shipper)

End Interface

Sample of C# Code

[ServiceContract]
public interface IShipperService
{
 [OperationContract]
 Shipper GetShipper(int shipperId);

 [OperationContract]
 Shipper SaveShipper(Shipper shipper);
}

This interface will be used by WCF to expose a service. Of course, the service will be
configured based on the information inside the Web.config file. You still need to implement
the service interface, which you do inside the code-behind file for the SVC file. For example,
if you were to implement the interface contract defined previously for working with the
Shipper data, you would do so as shown in the following code.

Sample of Visual Basic Code

Public Class ShipperService
 Implements IShipperService

 Public Function GetShipper(ByVal shipperId As Integer) As Shipper _
 Implements IShipperService.GetShipper

 'code to get the shipper from the database and return it (see practice)

 End Function

 Public Function SaveShipper(ByVal shipper As Shipper) As Shipper _
 Implements IShipperService.SaveShipper

 'code to save the shipper to the database (see practice)

 End Sub

End Class

 600	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Sample of C# Code

public class ShipperService : IShipperService
{
 public Shipper GetShipper(int shipperId)
 {
 //code to get the shipper from the database and return it (see practice)
 }

 public Shipper SaveShipper(Shipper shipper)
 {
 //code to save the shipper to the database (see practice)
 }
}

Consuming a WCF Service in an ASP.NET Page
After exporting your service methods, you can add a reference from a client to the service. In
this case, we assume that the client is another ASP.NET website. However, it could easily be a
Windows application or another application on a different platform.

Recall that the WCF service created previously has a contract defined via the IShipperService
interface. The contract is implemented inside the ShipperService.svc file. An endpoint is config-
ured via the default HTTP endpoint set up inside the Web.config file. The service is hosted by IIS
and ASP.NET (or your local web server).

To create the client, you need to generate a proxy class for calling the WCF service. This
can be done by using Visual Studio. You right-click your client website and select Add Service
Reference. This opens the Add Service Reference dialog box, as shown in Figure 10-9.

FigURE 10-9 The Add Service Reference dialog box for generating a WCF service client proxy.

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 601

This dialog box allows you to define an address for your service. Again, this is based on
the endpoint that your service exposes. In this example, a connection is being made to the
ShipperService.svc file created in the previous section. Notice that the contract is shown via
the service’s interface.

Also, notice in Figure 10-9 that a namespace was provided. The namespace defines the name
for the proxy class that is generated by Visual Studio. This proxy class is a WCF service client that
allows you to program against the service without having to deal with the intricacies of WCF.
This is similar to how you worked with XML web services in the previous lesson.

You can view the contents of the service reference by selecting its source file in Solution
Explorer. Figure 10-10 shows the many files of this service reference.

FigURE 10-10 The service reference expanded inside of Solution Explorer.

The Reference.cs (or Reference.vb) file contains the actual proxy class (which is not shown for
a website, only for web application projects). The other files are used by this proxy class when
working with the service. This proxy class communicates with the web service. In fact, it contains
classes and methods that look just like those of the service, because of the service contract.
Figure 10-11 shows an overview of the types found inside Reference.cs (or Reference.vb).
Notice that you can call the ShipperServiceClient code and even pass a local type called
Shipper that contains the same properties defined by the service contract.

 602	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

FigURE 10-11 The generated service client proxy types.

Your client code must also define binding and endpoint information. The Add Service
Reference task generates the appropriate endpoint information automatically when you
add the service reference. This information can be found inside the Web.config file of the
service client website. It is nested under the <system.serviceModel> element. The following
shows an example.

<system.webServer>
 <modules runAllManagedModulesForAllRequests="true"/>
</system.webServer>
<system.serviceModel>
<bindings>
 <basicHttpBinding>
 <binding name="BasicHttpBinding_IShipperService" closeTimeout="00:01:00"
 openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
 allowCookies="false" bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 maxBufferSize="65536" maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
 messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
 useDefaultWebProxy="true">
 <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384"

 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <security mode="None">
 <transport clientCredentialType="None" proxyCredentialType="None"
 realm="" />
 <message clientCredentialType="UserName" algorithmSuite="Default" />
 </security>
 </binding>
 </basicHttpBinding>
</bindings>

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 603

<client>
 <endpoint address="http://localhost:53496/lesson3-cs/ShipperService.svc"
 binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding_IShipperService"
 contract="ShipperServiceRef.IShipperService"
 name="BasicHttpBinding_IShipperService" />
</client>
</system.serviceModel>

All that remains is to write a webpage that works with the proxy class to call the service.
You will look at an example of doing just that in the practice for this lesson.

Calling a WCF Service from Client Script by Using AJAX
(REST and JSON)
WCF allows you to create and work with many different types of services. Remember, it is
a technology used to define service endpoints that have an address, binding, and contract.
This level of flexibility built into the framework allows it to support various message types
and communication protocols.

One such service type is based on representational state transfer (REST) and JavaScript
Object Notation (JSON). Services based on these concepts have become very popular as
AJAX programming has become more prevalent. Programming with AJAX becomes easier
with a simple service (REST) based on a simple message format (JSON). WCF and the .NET
Framework have built-in support for both.

A REST service is a web service you create that responds to HTTP GET requests. Clients can
therefore call a REST service the same way they would access a page: by using a URL and a
query string. The server then responds with text, as it would for any HTTP GET request. This
way, a REST service does not require knowledge of the XML schema used to call the service.
Instead, it simply sends the request and processes the text-based response (usually JSON
formatted data).

Note sECURing A REsT-bAsED sERviCE

REST-based services do not use SOAP. Many service-based security models are based on
SOAP. Therefore, if the security of the data being passed is a concern, you should use
HTTPS between the client and server for all RESTful services.

The response of a REST service is typically in the form of JSON data. JSON is a message
data format that evolved from the heavy use of AJAX. The message format is not based on
XML. Instead, it is simple, lightweight, and text based. A JSON message can be processed
easily by the JavaScript engine that exists inside nearly all web browsers. This makes it ideal
when you are calling services from JavaScript. In fact, a JSON message can be parsed by
using the JavaScript eval function, because basically it is syntactically formatted JavaScript.

 604	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

The following is an example of a JSON-formatted message.

{
 "productName": "Computer Monitor",
 "price": "229.00",
 "specifications": {
 "size": 22,
 "type": "LCD",
 "colors": ["black", "red", "white"]
 }
}

Writing a WCF Service Based on REST and JSON
Creating a WCF service based on REST and JSON is somewhat simplified in ASP.NET. This is due
in part to the AJAX support built into ASP.NET. Because of this, there is a WCF template that you
can use to quickly create a service that takes advantage of the REST calling mechanism and the
JSON data format.

This AJAX-WCF item template is called the AJAX-Enabled WCF Service template. It can be
found in the Add New Item dialog box for a website project. The template defines a class that
can be used to create a WCF service for use with AJAX.

As an example, suppose you were creating a service to calculate a product’s full price
based on the item ID and the postal code to which you are shipping the item. The following
code shows an example of an AJAX-enabled WCF service that simulates such a method.

Sample of Visual Basic Code

<ServiceContract(Namespace:="PricingServices")> _
<AspNetCompatibilityRequirements(_
 RequirementsMode:=AspNetCompatibilityRequirementsMode.Allowed)> _
Public Class PricingService

 <OperationContract()> _
 <WebInvoke()> _
 Public Function CalculatePrice(ByVal itemId As String, _
 ByVal shipToPostalCode As String) As Double

 Dim price As Double

 'simulate product price lookup based on item ID
 price = 45

 'simulate calculation of sales tax based on shipping postal code
 price = price * 1.06

 'simulate calculation of shipping based on shipping postal code
 price = price * 1.1

 Return price

 End Function

End Class

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 605

Sample of C# Code

namespace PricingServices
{
 [ServiceContract(Namespace = "PricingServices")]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class PricingService
 {
 [OperationContract]
 [WebInvoke]
 public double CalculatePrice(string itemId, string shipToPostalCode)
 {
 double price;

 //simulate product price lookup based on item ID
 price = 45;

 //simulate calculation of sales tax based on shipping postal code
 price = price * 1.06;

 //simulate calculation of shipping based on shipping postal code
 price = price * 1.1;

 return price;
 }
 }
}

Notice that the service method is marked with the WebInvoke attribute. This indicates that
the method can be called by an HTTP request. Methods marked with WebInvoke are called by
using HTTP POST. This can be important if you are sending data to the server to be written or if
you do not want your request to be cached by a browser or the server. If, however, your service
typically returns data that is somewhat static, you might mark the method with the WebGet
attribute. This indicates an HTTP GET request is supported and the results can be cached. This
is the only reason to use the WebGet attribute. The ASP.NET AJAX ScriptManager control can
work with both HTTP GET and POST services.

Visual Studio also updates the site’s Web.config file when the AJAX-enabled WCF service is
added to the project. The following shows an example. Notice the <enableWeb-Script /> element.
This indicates that the endpoint is a RESTful service that uses the JSON data format and can
therefore be consumed by AJAX. Also notice that the binding is set to webHttpBinding, indi-
cating again that this service is called via HTTP (and not SOAP).

<system.serviceModel>
 <services>
 <service name="PricingService">
 <endpoint address=""
 behaviorConfiguration="PricingServiceAspNetAjaxBehavior"
 binding="webHttpBinding" contract="PricingService" />
 </service>
 </services>

 606	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

 <behaviors>
 <endpointBehaviors>
 <behavior name="PricingServiceAspNetAjaxBehavior">
 <enableWebScript />
 </behavior>
 </endpointBehaviors>
 <serviceBehaviors>
 <behavior name="">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"
 multipleSiteBindingsEnabled="true" />
</system.serviceModel>

As you can see, ASP.NET simplifies the creation of WCF services based on REST and JSON.
You can also use the features of WCF and the .NET Framework to define REST services and
JSON-based messages outside of ASP.NET. In fact, the .NET Framework supports serialization
between .NET Framework types and JSON data structures.

Calling a JSON-Based WCF Service from AJAX
The AJAX support in ASP.NET also makes calling a REST-based service from AJAX a relatively
straightforward process. The ScriptManager control allows you to set a service reference to
the specified RESTful WCF service. It then defines a JavaScript proxy class for you to call. This
proxy class manages the call from the AJAX-enabled page to the WCF service.

For example, to call the service defined previously, you start by adding a ScriptManager
control to your page. You then define a ServiceReference to the actual service. The following
markup shows an example.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="PricingService.svc" />
 </Services>
</asp:ScriptManager>

You can then define a script block on your page to call the proxy class that is generated
based on this service reference. In the example, the service takes a product ID and a postal
code. The following JavaScript assumes that these values are entered by a user in a couple of
text box controls. The code also responds when the user clicks a button on the page.

<script language="javascript" type="text/javascript">
 function ButtonCalculate_onclick() {
 var service = new PricingServices.PricingService();
 service.CalculatePrice(document.forms[0].MainContent_TextBoxProduct.value,
 document.forms[0].MainContent_TextBoxPostCode.value,
 onSuccess, onFail, null);
 }

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 607

 function onSuccess(result){
 LabelPrice.innerText = result;
 }

 function onFail(result){
 alert(result);
 }
</script>

Notice that the call to the CalculatePrice method goes through a proxy that defines some
additional parameters. This allows you to pass in a JavaScript method name to be called by
the ScriptManager after the service is called. You can define a method both for success and
for failure. In this case, a successful call writes the results to a Label control.

The following code shows the markup for the page’s controls, to complete the example.

<div>
 Product:

 <asp:TextBox ID="TextBoxProduct" runat="server"></asp:TextBox>

 Ship to (postal code):

 <asp:TextBox ID="TextBoxPostCode" runat="server"></asp:TextBox>

 <input name="ButtonCalculate" type="button" value="Get Price"
 onclick="ButtonCalculate_onclick()" />

 <asp:Label ID="LabelPrice" runat="server"></asp:Label>
</div>

Note COmPLEX TyPEs AnD AjAX

There are times when you will want to pass complex types between the server and a
JavaScript function. Fortunately, the ScriptManager control already supports this. It con-
verts your complex type into a JSON message structure. After the call completes, you can
access the individual values of the complex type by using the result.member syntax, where
result is the name of your complex type and member is a property name of the complex type.

Creating WCF Data Services
WCF Data Services allow you to expose and work with data by using the Open Data Protocol
(OData). Data is exposed over REST-based services to allow for standard HTTP GET and POST
requests. The data can be accessed based on a URL and standard query string formats for
accessing tables and filtering data. These formats allow access from any client that can receive
XML or JSON message notations.

 608	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

There is a standard set of steps to follow when creating OData services with ASP.NET. These
steps include the following:

	 1. Define a data model that uses an Entity Data Model (EDM) by using the ADO.NET
Entity Data Model template. For more information on EDM, see Chapter 12, “Working
with Data Source Controls and Data-Bound Controls.”

	 2. Create a data service by using the WCF Data Service template.

	 3. Add code to the data service to enable access to the EDM.

	 4. Create a client application to access the exposed data service.

	 5. Add a service reference to the client application to call the data service. This will
generate a WCF proxy for calling the service.

	 6. Write code to work with the exposed data. You can query the data by using LINQ (see
Chapter 11, “Connecting to and Querying Data with LINQ”), bind the data to controls
(see Chapter 12), and use the proxy class to save any changes.

Let’s look at an example. Suppose you want to expose portions of the Northwind sample
database using WCF Data Services. You would start by creating an ADO.NET Entity Data Model
based on the Northwind database. Assume that this model is called NwdModel.edmx.

Next, you would create the WCF Data Services-based service by using Visual Studio’s Add
New Item dialog box. You could call this file NwdDataService.svc. Like other WCF services in
ASP.NET, this service includes an SVC file that is used as a URI for the services. The file contains
the @ ServiceHost directive, which points to the actual service class and indicates that this
service is a data service. The following shows sample markup.

<%@ ServiceHost Language="C#" Factory="System.Data.Services.DataServiceHostFactory"
 Service="NwdDataService" %>

The actual service class is inside the App_Code directory for the website. This class inherits
from System.Data.Serivces.DataService. This is a generic class. Here you indicate the Entity
Data Model you intend your service to expose—in this case, northwndModel.NwdEntities.
The following code shows an example.

Sample of Visual Basic Code

Public Class NwdDataService
 Inherits DataService(Of northwndModel.northwndEntities)

Sample of C# Code

public class NwdDataService : DataService<northwndModel.NwdEntities>
{

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 609

You then add rules to the data service inside the InitializeService method to indicate which
entities in your model are visible and can be updated. The following code indicates that the
customer table is exposed as a data service. This also provides for the ability to write and to
read the entire table. This code is called once to initialize the service.

Sample of Visual Basic Code

Public Shared Sub InitializeService(ByVal config As DataServiceConfiguration)

 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2

 config.SetEntitySetAccessRule("Customers", EntitySetRights.AllRead _
 Or EntitySetRights.AllWrite)
End Sub

Sample of C# Code

public static void InitializeService(DataServiceConfiguration config)
{
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;

 config.SetEntitySetAccessRule("Customers", EntitySetRights.AllRead
 | EntitySetRights.AllWrite);
}

The service itself is now complete. In fact, it can be accessed by using the OData querystring
syntax. For example, the following request returns a single customer based on ID.

http://localhost:53908/WcfDataSrv-cs/NwdDataService.svc/Customers('ALFKI')

Note ODATA URi COnvEnTiOns

The OData specification provides several ways in which you can access and filter data by
using the query string. For more details, review the specification at http://www.odata.org
/developers/protocols/uri-conventions.

The results of this REST call are shown in Figure 10-12. Note that you must turn off the
feed reader view in Windows Internet Explorer to see the actual XML (Tools | Internet Options
| Content | Feeds And Web Slices Settings).

 610	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

FigURE 10-12 Calling a WCF data service by using basic REST protocol and OData syntax.

The final step is to write a client application and add a service reference to the WCF Data
Service. This will generate a WCF Data Services client proxy that will allow you to work with the
data directly. Your client application could be a Windows application, a console application,
Microsoft Silverlight, ASP.NET, or any other client capable of calling a service. In this example,
we will create an ASP.NET website client.

After the client has been created, you right-click the project and choose Add Service
Reference as you would for any WCF service. You give the service a namespace to be used
for the proxy, which in this case will be NwdEntitiesSrv. You can then use this reference,
along with the WCF Data Services client libraries, to work with the WCF Data Services. As
an example, the following code instantiates a reference to the service, gets all customers
back from the service, and binds the results to a GridView control.

Sample of Visual Basic Code

Dim svcUri As Uri = New Uri("http://localhost:53908/WcfDataSrv/NwdDataService.svc")

Dim nwd As NwdEntitiesSrv.northwndEntities =
 New NwdEntitiesSrv.northwndEntities(svcUri)

Dim q As DataServiceQuery(Of NwdEntitiesSrv.Customer) = nwd.Customers

Me.GridViewCustomers.DataSource = q
Me.GridViewCustomers.DataBind()

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 611

Sample of C# Code

Uri svcUri = new Uri("http://localhost:53908/WcfDataSrv/NwdDataService.svc");
NwdEntitiesSrv.NwdEntities nwd =
 new NwdEntitiesSrv.NwdEntities(svcUri);

DataServiceQuery<NwdEntitiesSrv.Customer> q = nwd.Customers;

this.GridViewCustomers.DataSource = q;
this.GridViewCustomers.DataBind();

This is simply an overview of the WCF Data Services client library (System.Data.Services.Client).
This library can do many things. For more information, see “Using a Data Service in a Client
Application” (http://msdn.microsoft.com/en-us/library/dd728282.aspx).

Quick Check
	 1. How do you mark a class or interface as a WCF service?

	 2. How do you mark methods in an interface or class so that they are exposed as
part of the class’s service contract?

	 3. Which attribute do you add to a WCF service to indicate that it can be called by
an HTTP request that uses REST?

	 4. From what class should your WCF Data Services derive?

Quick Check Answers
	 1. You use the ServiceContractAttribute class to tag an interface or class as a

WCF service.

	 2. You use the OperationContractAttribute class to tag a method as a service
method.

	 3. You mark the service with the WebInvokeAttribute class.

	 4. You should derive from the DataService class found in the System.Data.Services
namespace.

PrActIcE	 Creating and Consuming a WCF service

In this practice, you create a WCF service that works with information in the Northwind database.
You then create a webpage to call that WCF service.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

 612	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

ExErcIsE	1	 Creating a WCF Service Application

In this exercise, you create the WCF Service application project and define the WCF service.

	 1. Open Visual Studio and create a new website by using either C# or Visual Basic. Name
the site northwindservices.

	 2. Copy the Northwind database (Northwnd.mdf) into the App_Data directory of your
project. You can find the file in the samples installed from the CD.

	 3. Add a new WCF service to the application: right-click the project and choose Add |
New Item. Select the WCF Service template. Name the service shipperservice.svc.

Notice that three files are created: an interface file named IShipperService, a class file
named ShipperService, and a ShipperService.svc file. The former two files should be in
the App_Code directory; the latter should be in the root of the site.

	 4. Open the Web.config file. Navigate to the <connectionStrings> node. Add a connec-
tion string for the Northwind database. This connection string should read as follows
(formatted here to fit on the printed page).

<connectionStrings>
 <add name="NwConnectionString" connectionString="Data Source=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\northwnd.mdf;Integrated Security=True;
 User Instance=True" providerName="System.Data.SqlClient"/>
</connectionStrings>

	 5. Open IShipperService.vb (or IShipperService.cs). Define a data contract class at the
bottom of the file to represent a Shipper object. Remember to use the DataContract
and DataMember attributes. Your code should read as follows.

Sample of Visual Basic Code

<DataContract()> _
Public Class Shipper

 <DataMember()> _
 Public Property ShipperId() As Integer

 <DataMember()> _
 Public Property CompanyName As String

 <DataMember()> _
 Public Property Phone As String

End Class

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 613

Sample of C# Code

[DataContract]
public class Shipper
{
 [DataMember]
 public int ShipperId { get; set; }

 [DataMember]
 public string CompanyName { get; set; }

 [DataMember]
 public string Phone { get; set; }
}

	 6. Add a using (Imports in Visual Basic) statement for System.Runtime.Serialization (it may
already be present in your C# file).

	 7. Next, define the interface for the Shipper class. Create one method for returning a Shipper
instance and another for accepting a Shipper instance for updating. Remember to use the
ServiceContract and OperationContract attributes. Your code should look as follows.

Sample of Visual Basic Code

<ServiceContract()> _
Public Interface IShipperService

 <OperationContract()> _
 Function GetShipper(ByVal shipperId As Integer) As Shipper

 <OperationContract()> _
 Sub SaveShipper(ByVal shipper As Shipper)

End Interface

Sample of C# Code

[ServiceContract]
public interface IShipperService
{
 [OperationContract]
 Shipper GetShipper(int shipperId);

 [OperationContract]
 void SaveShipper(Shipper shipper);
}

	 8. Open the ShipperService.cs (or ShipperService.vb) code. Add using (Imports in Visual
Basic) statements for System.Data, System.Data.SqlClient, and System.Configuration.

	 9. Add code to the top of the interface implementation source file to get the connection
string from the database.

	 10. Implement the GetShipper method by calling the database to retrieve a record from the
Shipper table. Copy this data into a Shipper instance and return it as a result of the function.

 614	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

	 11. Implement the SaveShipper method by updating a shipping record with data inside a
Shipper instance. Your code for the service implementation should read as follows.

Sample of Visual Basic Code

Public Class ShipperService
 Implements IShipperService

 Private _cnnString As String = _
 ConfigurationManager.ConnectionStrings("NwConnectionString").ToString

 Public Function GetShipper(ByVal shipperId As Integer) As Shipper _
 Implements IShipperService.GetShipper

 Dim sql As New StringBuilder()
 sql.Append("SELECT shipperId, companyName, phone ")
 sql.Append("FROM shippers WHERE (shipperId = @ShipperId) ")

 Dim cnn As New SqlConnection(_cnnString)
 Dim cmd As New SqlCommand(sql.ToString(), cnn)
 cmd.Parameters.Add("ShipperId", SqlDbType.Int, 0).Value = shipperId

 Dim adp As New SqlDataAdapter(cmd)
 Dim ds As New DataSet()

 adp.Fill(ds)

 Dim s As New Shipper()
 s.ShipperId = shipperId
 s.CompanyName = ds.Tables(0).Rows(0)("companyName").ToString()
 s.Phone = ds.Tables(0).Rows(0)("phone").ToString()

 Return s

 End Function

 Public Sub SaveShipper(ByVal shipper As Shipper) _
 Implements IShipperService.SaveShipper

 Dim sql As New StringBuilder()
 sql.Append("UPDATE Shippers SET phone=@Phone, ")
 sql.Append("companyName=@CompanyName WHERE shipperId = @ShipperId ")

 Dim cnn As New SqlConnection(_cnnString)
 Dim cmd As New SqlCommand(sql.ToString(), cnn)
 cmd.Parameters.Add("Phone", SqlDbType.NVarChar, 24).Value = shipper.Phone
 cmd.Parameters.Add("CompanyName", SqlDbType.NVarChar, 40).Value = _
 shipper.CompanyName
 cmd.Parameters.Add("ShipperId", SqlDbType.Int, 0).Value = shipper.ShipperId
 cnn.Open()
 cmd.ExecuteNonQuery()
 cnn.Close()

 End Sub

End Class

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 615

Sample of C# Code

public class ShipperService : IShipperService
{
 private string _cnnString =
 ConfigurationManager.ConnectionStrings["NwConnectionString"].ToString();

 public Shipper GetShipper(int shipperId)
 {
 StringBuilder sql = new StringBuilder();
 sql.Append("SELECT shipperId, companyName, phone ");
 sql.Append("FROM shippers WHERE (shipperId = @ShipperId) ");
 SqlConnection cnn = new SqlConnection(_cnnString);

 SqlCommand cmd = new SqlCommand(sql.ToString(), cnn);
 cmd.Parameters.Add("ShipperId", SqlDbType.Int, 0).Value = shipperId;

 SqlDataAdapter adp = new SqlDataAdapter(cmd);
 DataSet ds = new DataSet();

 adp.Fill(ds);

 Shipper s = new Shipper();
 s.ShipperId = shipperId;
 s.CompanyName = ds.Tables[0].Rows[0]["companyName"].ToString();
 s.Phone = ds.Tables[0].Rows[0]["phone"].ToString();

 return s;
 }

 public void SaveShipper(Shipper shipper)
 {
 StringBuilder sql = new StringBuilder();
 sql.Append("UPDATE Shippers set phone=@Phone, ");
 sql.Append("companyName=@CompanyName WHERE shipperId = @ShipperId ");

 SqlConnection cnn = new SqlConnection(_cnnString);
 SqlCommand cmd = new SqlCommand(sql.ToString(), cnn);
 cmd.Parameters.Add("Phone", SqlDbType.NVarChar, 24).Value =
 shipper.Phone;
 cmd.Parameters.Add("CompanyName", SqlDbType.NVarChar, 40).Value =
 shipper.CompanyName;
 cmd.Parameters.Add("ShipperId", SqlDbType.Int, 0).Value =
 shipper.ShipperId;

 cnn.Open();
 cmd.ExecuteNonQuery();
 cnn.Close();
 }
}

 616	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

	 12. Right-click your ShipperService.svc file and choose Set As Start Page. Compile and run
your service application. Doing so should launch the service in a web browser. Here you
will see details on how your WCF service should be called.

	 13. Click the link at the top of the webpage to see the WSDL for your WCF service. Click
the back button to return to the page. Copy the line that starts with svcutil.exe.

	 14.	 Generate a test client for your WCF service by using Svcutil.exe. Start by opening a
Visual Studio command prompt (Start | All Programs | Microsoft Visual Studio 2010
| Visual Studio Tools). Use commands to navigate to a directory to which you want
to generate the test client. Paste the command copied from the top of the webpage
into the command window, and press Enter. Exit the command prompt.

	 15. Navigate to the files you generated. Open these files and examine them. There should be
a configuration file that defines an endpoint for communicating with the service. There
should also be a code file that shows how to call the WCF service. This is the proxy class
you can use to write an actual client. These are also the same files that get generated
when you set a service reference to a WCF service.

ExErcIsE	2	 Consuming a WCF Service

In this exercise, you create a web client for accessing the WCF service created in the previous
exercise.

	 1. Continue editing the solution you created in the previous exercise. Alternatively, you can
open the completed Lesson 3, Exercise 1 solution in the samples installed from the CD.

	 2. Add a new website to the solution: right-click the solution and choose Add | New Web
Site. Select ASP.NET Web Site. Name the website shipperClient. Right-click the website
and choose Set As StartUp Project.

	 3. Right-click the newly added website and choose Add Service Reference. Click Discover
in the Add Service Reference dialog box. Select the ShipperService. Set the namespace
to nwservices. Click OK to close the dialog box.

	 4. Open the Default.aspx page of the ShipperClient site. Add controls to the page to
allow the user to select a shipper based on ID, display the details of that shipper, edit
the shipper details, and save the details back to the WCF service. Your form layout
should be similar to that shown in Figure 10-13.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 617

FigURE 10-13 The client form layout.

	 5. Add code to the Get Shipper button’s click event to call the WCF service and put the
results into the Shipper Data form. Your code should look as follows.

Sample of Visual Basic Code

Protected Sub ButtonGet_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonGetShipper.Click

 'todo: add validation & error handling
 Dim shipperId As Integer = Integer.Parse(TextBoxShipperCode.Text)

 Dim nwShipper As New NwServices.ShipperServiceClient()

 Dim shipper As NwServices.Shipper
 shipper = nwShipper.GetShipper(shipperId)

 TextBoxShipperId.Text = shipper.ShipperId.ToString()
 TextBoxCompany.Text = shipper.CompanyName
 TextBoxPhone.Text = shipper.Phone

End Sub

 618	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Sample of C# Code

protected void ButtonGet_Click(object sender, EventArgs e)
{
 //todo: add validation & error handling
 int shipperId = int.Parse(TextBoxShipperCode.Text);

 NwServices.ShipperServiceClient nwShipper =
 new NwServices.ShipperServiceClient();

 NwServices.Shipper shipper = new NwServices.Shipper();
 shipper = nwShipper.GetShipper(shipperId);

 TextBoxShipperId.Text = shipper.ShipperId.ToString();
 TextBoxCompany.Text = shipper.CompanyName;
 TextBoxPhone.Text = shipper.Phone;
}

	 6. Add code to the Save button’s click event to call the WCF service with the values from
the various TextBox controls. Your code should look as follows.

Sample of Visual Basic Code

Protected Sub ButtonSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonSave.Click

 'todo: add validation & error handling
 Dim shipper As New NwServices.Shipper()
 shipper.ShipperId = Integer.Parse(TextBoxShipperId.Text)
 shipper.CompanyName = TextBoxCompany.Text
 shipper.Phone = TextBoxPhone.Text

 Dim nwShipper As New NwServices.ShipperServiceClient()
 nwShipper.SaveShipper(shipper)

End Sub

Sample of C# Code

protected void ButtonSave_Click(object sender, EventArgs e)
{
 //todo: add validation & error handling
 NwServices.Shipper shipper = new NwServices.Shipper();
 shipper.ShipperId = int.Parse(TextBoxShipperId.Text);
 shipper.CompanyName = TextBoxCompany.Text;
 shipper.Phone = TextBoxPhone.Text;

 NwServices.ShipperServiceClient nwShipper = new NwServices.ShipperServiceClient();
 nwShipper.SaveShipper(shipper);
}

	 7. Run the application. Enter a Shipper ID (1, 2, or 3). Edit the data and save it back to the
database.

 Lesson 3: Creating and Consuming WCF Services ChAPTER 10 619

Lesson Summary
■ WCF is a unifying programming model for creating service-oriented applications.

With WCF, you can create services that work with HTTP, TCP, MSMQ, and named
pipes.

■ ASP.NET and IIS allow you to host WCF services that you want to expose as HTTP.
You can use this model to write services that take advantage of ASP.NET features
such as session state and security.

■ You write a WCF service by first defining a contract (typically as an interface). The
contract uses the ServiceContract and OperationContract attribute classes to define
the service and its methods, respectively.

■ You can write WCF services that can be called from AJAX by using the REST pro-
tocol and JSON message format. You do so by decorating your service with the
WebInvokeAttribute class.

■ You can create WCF Data Services to be used with the Open Data Protocol (OData). You
do so by inheriting from the DataServices class and using the DataServiceConfiguration
class to indicate which items of your data model you intend to expose.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 3,
“Creating and Consuming WCF Services.” The questions are also available on the companion
CD as a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You want to write a WCF service application. You intend to host the service in IIS and
use ASP.NET to build the service. What type of project should you create?

	 A. A WCF Service library

	 B. A WCF service application

	 c. An ASP.NET Web Service application

	 D. A Windows Service application

 620	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

	 2. You define your own custom type to be used with your WCF service. This type represents
a product at your company. It contains several public properties. You want to expose this
type so that it can be serialized and defined by an XML Schema Definition (XSD) schema.
What actions should you take? (Choose all that apply.)

	 A. Mark your product class with the DataContract attribute.

	 B. Mark your product class with the ServiceContract attribute.

	 c. Mark the public members of your product class with the OperationContract attribute.

	 D. Mark the public members of your product class with the DataMember attribute.

	 3. You want to expose a portion of your data model as a service by using OData. Which
actions should you take? (Choose all that apply.)

	 A. Create a service class that inherits from DataService.

	 B. Create a service class that inherits from DataContract.

	 c. Indicate what the service should expose inside the InitializeService method.

	 D. Indicate what the service should expose inside the Init method.

	 4. You want to write a client to work with a WCF Data Service. Which actions should you
take? (Choose all that apply.)

	 A. Set a web reference to the data service.

	 B. Set a service reference to the data service.

	 c. Create an instance of the data service proxy and pass a URI object to point to the
data service.

	 D. Use the classes in System.Data.Services.Client to write code to access the data
exposed by the service.

Case scenarios

In the following case scenarios, you apply what you’ve learned in this chapter. If you have
difficulty completing this work, review the material in this chapter before beginning the next
chapter. You can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Working with HTTP Requests
You are a web developer working for Contoso, Ltd, a financial services company. You have
been asked to create a feature that returns a custom-generated financial document based on
a request made for a report. Requests are made to the reports by using the format report.xps.
The data is time sensitive, so it needs to be generated dynamically upon request and then
returned to the user as an XPS document.

This feature needs to be secured by a custom security model implemented in code. In fact,
all requests to the site that hosts the feature should be authenticated based on this model and
logged to a custom event log.

 Suggested Practices ChAPTER 10 621

Thinking about how you will build this feature, answer the following questions:

	 1. How would you intercept requests for all XPS documents, execute the code to dynamically
create the report, and return the results to the user?

	 2. What would you do to implement the custom security and logging feature for all requests
to the site?

Case Scenario 2: Selecting a Service Model
You are a web developer for Fabrikam Inc., a specialty retail company. You have been asked to
write a set of services that allow your partners to view your product catalog and inventory. This
information updates daily and is shared across partners.

You and your partners work exclusively over the web and have no special communication
infrastructure outside of the Internet.

You should also expose services that allow these partners to process a user through the
shopping experience: cart, checkout, shipping, order history, and so on. You need to be able
to track users through the process without committing their details to the transaction system
until they submit their order.

Thinking about how you will build these services, answer the following questions:

	 1. What type of service programming model should you implement?

	 2. Where should you host your service application?

	 3. How might you manage access to common data such as catalog and product
information?

	 4. How might you handle user information through the checkout process?

suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Work with XML HTTP Handlers and Modules
For this task, you should complete Practice 1 for additional experience in configuring HTTP han-
dlers for IIS 6.0 and IIS 7.0. Complete Practice 2 to gain more experience in handling application
events with an HTTP module.

■ Practice 1 Create a custom HTTP handler for managing requests for a custom file type
of your choosing. Configure this handler as if using IIS 6.0. Publish the site to IIS 7.0 run-
ning in integrated mode. Reconfigure the handler to work with IIS 7.0. You should do this
both in the Web.config file and from the management console (for practice).

■ Practice 2 Create a basic HTTP module that logs events. You can follow the text in the
chapter to create this. When your module is working, re-create the same functionality by
using the Global.asax file.

 622	 ChAPTER 10	 Writing and Working with HTTP Modules and Web Services

Work with XML Web Services
For this task, you should complete Practices 1 and 2 to practice basic skills for working with
XML web services. Complete Practice 3 to get experience with ASP.NET security. Complete
Practice 4 for more work with AJAX.

■ Practice 1 Return to the practice code created in Lesson 1. Extend the Authors.asmx
service by adding support for returning a single author as a serialized, custom class that
you write. Also, add support for receiving an instance of this class through a service and
updating the database.

■ Practice 2 Use the code created in Practice 1 to add client support for working with
the custom object returned from the service. Notice how Visual Studio generates a
version of the Author class as part of the Proxy reference class.

■ Practice 3 Add security to the web service defined in the practice for Lesson 1. Set the
service to use Windows Integrated Security. Change the calling client to pass credentials
to the service by using the NetworkCredentials class.

■ Practice 4 Use the example code in Lesson 1 for calling a web service by using AJAX
to create your own web service and client-side call.

Work with WCF Services
For this task, you should complete Practice 1. Complete Practice 2 for more work with AJAX.

■ Practice 1 Return to the practice code for Lesson 3. Add another WCF service for
returning all shippers in a single call to be displayed in a list. Change the WCF client
code to show all shippers, and change the search feature to work against the list of
shippers returned by the WCF services.

■ Practice 2 Call a WCF service from client script by using ASP.NET AJAX. Follow the
pattern discussed in Lesson 1, and apply it to WCF.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you can
look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 11 623

C h A P T E R 1 1

Connecting to and Querying
Data with LINQ
Microsoft Language-Integrated Query (LINQ) is both a language feature and an exten-

sion to the Microsoft .NET Framework. It was introduced with the .NET Framework
version 3.5 to help bridge the gap between programming objects and working with data.
LINQ turns data access and queries into language constructs in Microsoft Visual Basic and
Microsoft Visual C#. This provides a consistent model for working with data no matter
where that data comes from. It also allows you to write .NET Framework code (in lieu of
SQL syntax). This means that you can use compile-time syntax checking against your data,
static typing, and IntelliSense in the code editor. All of these features make programming
data retrieval functionality easier and more consistent, regardless of the origin of the data.

This chapter starts by introducing the core language concepts of programming with
LINQ and discusses how to write queries and transform data by using LINQ to Objects
and LINQ to XML. Lesson 2 focuses in on the connection between LINQ and Microsoft
ADO.NET, covering LINQ to SQL, LINQ to DataSet, and LINQ to Entities.

Exam objective in this chapter:
■	 Displaying and Manipulating Data

■ Query and manipulate data by using LINQ.

Lessons in this chapter:
■	 Lesson 1: Getting Started with LINQ 625
■	 Lesson 2: LINQ and ADO.NET 649

 Contents

 ChAPTER 11 623

 Connecting to and Querying Data with LinQ 623
Before You Begin . 624

Lesson 1: Getting Started with LINQ . 625

Introducing LINQ 625

Querying Data with LINQ 628

Transforming Data with LINQ 637

Lesson Summary 647

Lesson Review 647

Lesson 2: LINQ and ADO.NET . 649

LINQ to DataSet 649

LINQ to SQL 664

LINQ to Entities 672

Lesson Summary 680

Lesson Review 681

Case Scenarios . 682

Case Scenario 1: Writing LINQ Queries 682

Case Scenario 2: Working with LINQ and ADO.NET 682

Suggested Practices . 683

Write LINQ Queries 683

Work with LINQ and ADO.NET 683

Take a Practice Test .684

 624	 ChAPTER 11	 Connecting to and Querying Data with LINQ

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
with Microsoft Visual Studio 2010 by using Visual Basic or C#. In addition, you should be
comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Using Hypertext Markup Language (HTML) and client-side scripting

■ Creating ASP.NET websites and forms

■ Adding web server controls to a webpage

■ Understanding how generic types work in C# or Visual Basic

■ Understanding the concepts behind ADO.NET, including DataTable, DataRow,
and System.Data.SqlClient

real World

Mike Snell

I ’ve been writing webpages against databases since the first version of ASP and
Microsoft Visual InterDev. This means that I’ve witnessed the evolution of DBO

to ADO to ADO.NET and beyond. Things have certainly come a long way since
the ADO Recordset object. There was always a disconnect between the wonderful
world of object-oriented programming and having to code against a relational
database. Colleagues and I have discussed over the years the possibility that we
would someday all be using an object-oriented database. Although these tech-
nologies have existed for some time, there is just too much existing code and
knowledge surrounding the use of relational databases (and they work very well).
Fortunately, the current evolution has brought us the Microsoft ADO.NET Entity
Framework and LINQ to Entities. This finally makes writing database code almost
an afterthought compared to working with previous technologies. For many
scenarios, application developers can focus on the business domain and let the
database persistence work just happen.

 Lesson 1: Getting Started with LINQ ChAPTER 11 625

Lesson 1: getting started with LinQ

This lesson helps you get started in programming with LINQ. The lesson begins by introducing
the LINQ concepts and programming style. It then covers querying data with LINQ and finishes
with using LINQ to transform data into different formats, including XML and JavaScript Object
Notation (JSON).

After this lesson, you will be able to:
■	 Understand the concepts of programming with LINQ.
■	 Use LINQ to query data sources by filtering, grouping, joining, and

ordering data.
■	 Transform data you access with LINQ into other formats, including

XML and JSON.

Estimated lesson time: 30 minutes

Introducing LINQ
LINQ changes the way you access and query data. Before LINQ was created, most queries were
expressed as text that was executed against a database. This SQL text was often specific to the
underlying technology of the database being queried. LINQ elevates the process of querying
for data to actual language constructs and keywords. This has two primary advantages: First, it
provides type checking of your query code at compile time; this means that you are likely to
encounter fewer errors, you can use IntelliSense, and it will be easier to write code. Second,
it provides a consistent model for querying against all database technologies and all data,
including lists, XML, arrays, database tables, and more.

LINQ and IEnumerable
LINQ queries introduce several contracts and keywords to Visual Basic and C#. These are dis-
cussed in detail in the next section. These keywords allow you to write queries against anything
that supports the base interface, IEnumerable or IEnumerable<T>. In the .NET Framework, this
means nearly all collections of data, including DataSet, List<T>, Array, and many more. For
example, assuming that you have a list of Employee objects named employees, the following
LINQ query code would return all employees working in the IT department from that list.

Sample of Visual Basic Code

Dim empQuery As IEnumerable(Of Employee) = From emp In employees
 Where emp.Department = "IT Department"
 Select emp

Sample of C# Code

IEnumerable<Employee> empQuery = from emp in employees
 where emp.Department == "IT Department"
 select emp;

 626	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Notice that the LINQ query is actually saved to a typed variable, in this case
IEnumerable<Employee>. You can save your query to what are called queryable types.
The common ones are IEnumerable<T> and IQueryable<T>. These allow the query to
actually automatically examine (“iterate over”) each piece of data when executed. You
can skip using this typed syntax and simply use the var keyword in C# or no type value
in Visual Basic to declare your query variable. The following shows an example.

Sample of Visual Basic Code

Dim empQuery = From emp In employees
 Where (emp.Department = "IT Department")
 Select emp

Sample of C# Code

var empQuery = from emp in employees
 where emp.Department == "IT Department"
 select emp;

In this case, the compiler will infer the IEnumerable<Employee> type by looking at
the actual data source. However, this shortcut can make your code difficult to read. There
are times, however, when you will need to use the var keyword (or no type declaration in
Visual Basic): when you are assigning a query result to a new, anonymous type that you
are creating. You can’t strongly type the result set when the type itself is anonymous
and not created until run time.

Note too that when the LINQ query is assigned to a variable it is only saved to the variable;
the query does not actually execute until it is iterated over. This means that you have to
do something with the data before LINQ will expend the processing required to actually
execute the query. One way to iterate over the query is with a simple For…Each statement.
The following shows an example.

Sample of Visual Basic Code

For Each emp As Employee In empQuery
 Response.Write(emp.Department)
Next

Sample of C# Code

foreach (var emp in empQuery)
{
 Console.WriteLine(emp.Department);
}

Of course, there are other ways to force your query to run. You can use the Count, Max,
Average, or First methods to return an aggregate value. This will ensure that the query runs
immediately. The following code shows an example.

Sample of Visual Basic Code

Dim cnt as Integer = empQuery.Count()

Sample of C# Code

int cnt = empQuery.Count();

 Lesson 1: Getting Started with LINQ ChAPTER 11 627

You might also call ToList<T> or ToArray<T> to execute the query and cache the results in a
list object or an array. The following code shows an example.

Sample of Visual Basic Code

Dim empQuery As List(Of Employee) = (From emp In employees
 Where (emp.Department = "IT Department")
 Select emp).ToList()

Sample of C# Code

List<Employee> empQuery = (from emp in employees
 where emp.Department == "IT Department"
 select emp).ToList();

Introducing LINQ Data Providers
The LINQ language extensions allow you to query data in a consistent manner. You will see
more on this in the next section. However, LINQ also includes additions to the .NET Framework
itself for working with specific types of data such as relational databases, XML, and objects.
These additions allow you to connect to this data, query against it, and insert, update, and
delete items within the data all by using strongly typed objects. The following lists the core
data types LINQ supports in the .NET Framework:

■ LinQ to sQL This addition allows you to connect to a SQL database and query data.
You can create an object model to represent your database. You can then use LINQ to
insert, update, and delete records as well as query this strongly typed object model.

■ LinQ to Dataset This addition allows you to query against an in-memory, ADO.NET
DataSet object. You can use the power of LINQ along with the ubiquity of DataSet
objects to simplify working with cached data.

■ LinQ to Entities This addition allows you to write queries against data modeled
by using the Entity Framework (EF). The EF is a conceptual model of a database that
typically involves an object-to-database mapping layer. LINQ to Entities allows you to
query against this object layer by using the power of LINQ.

■ LinQ to XmL This addition provides a LINQ-based interface for working with XML
data structures. You can use LINQ to XML to create XML, load an XML file, query
XML data, manipulate the XML, and transform the XML into another shape.

■ LinQ to Objects This is the base level of LINQ programming. With LINQ to Objects,
you are not writing queries by using an intermediate LINQ provider (such as LINQ to
SQL or LINQ to XML). Instead, LINQ to Objects is simply the term for querying directly
against any collection that implements the IEnumerable or IEnumerable<T> interface.
Possible collections of this kind include List<T>, Array, Dictionary<TKey, TValue>, or
even a string array.

Most of the data types LINQ supports are covered in detail throughout the rest of this
chapter. The next section covers some of the basics of writing queries against LINQ to
Objects, whereas Lesson 2 focuses on LINQ to DataSet, LINQ to SQL, and LINQ to Entities.

 628	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Querying Data with LINQ
You saw in the previous section that querying data in LINQ uses some basic keywords such as
From, Where, and Select. You use these keywords (along with others) to write LINQ queries
against a data source. Of course, the first step is to actually define a data source against which
you can query. Recall that this might be any object that implements the IEnumerable interface
(or a derivative of that interface). After you have your data source, you then can define a strongly
typed query against that data. The final step is to execute that query and return the results. The
following sections focus on the core concepts of writing LINQ queries against a data source.

exaM tIp

The LINQ language constructs can seem odd at first. They do not look like traditional .NET
Framework code, and they do not quite follow standard SQL syntax. Be sure you know how
to read LINQ for the exam.

Defining a Data Source
You must have a data source defined before you can write a query against it. LINQ can query
nearly all collections of data in the .NET Framework. This means that your data source could
be an XML document loaded into an object, an entity model defined with either the Entity
Framework or a LINQ to SQL model, or simply an array of values.

The following sections provide a few examples of defining different types of data sources
and writing basic LINQ queries against them.

DATA IN AN ARRAY
You can write LINQ queries against the .NET Framework arrays. The following example shows
an array of strings. You can then see the LINQ query that is written against this array. Notice
that the range variable (emp) used in the From clause gets automatically defined as a string
because the array includes string values. You can iterate over the underlying collection
defined by the LINQ query by using an iterative technique such as For…Each.

Sample of Visual Basic Code

Dim employees As String() = {"Michael", "Hank", "Benjamin", "Gail"}

 Dim empQuery = From emp In employees
 Where emp.Length > 5
 Select emp

Sample of C# Code

string[] employees = {"Michael", "Hank", "Benjamin", "Gail"};

var empQuery = from emp in employees
 where emp.Length > 5
 select emp;

 Lesson 1: Getting Started with LINQ ChAPTER 11 629

LIST DATA
You can use LINQ to query against data stored in a collection class, such as the List<T> class
(among many others). The following code creates a new List<Employee> collection. The
Employee class is simply a custom class that was written to hold a few properties. The code
then defines a simple LINQ query against the class. You can then iterate over the collection
defined by the query.

Sample of Visual Basic Code

Dim employees As List(Of Employee) = New List(Of Employee) From
 {New Employee With {.First = "Michael",
 .ID = 111,
 .Department = "IT Department",
 .City = "Pittsburgh"},
 New Employee With {.First = "Hank",
 .ID = 112,
 .Department = "IT Department",
 .City = "Redmond"},
 New Employee With {.First = "Benjamin",
 .ID = 113,
 .Department = "Human Resources",
 .City = "Chicago"},
 New Employee With {.First = "Gail",
 .ID = 113,
 .Department = "Marketing",
 .City = "Ann Arbor"}
 }

Dim empQuery As IEnumerable(Of Employee) = From emp In employees
 Where emp.First.Length > 5
 Select emp

Sample of C# Code

List<Employee> employees = new List<Employee>()
{
 new Employee {First="Michael",
 ID=111,
 Department="IT Department",
 City="Pittsburgh"},
 new Employee {First="Hank",
 ID=112,
 Department="IT Department",
 City="Redmond"},
 new Employee {First="Benjamin",
 ID=113,
 Department="Human Resources",
 City="Chicago"},
 new Employee {First="Gail",
 ID=114,
 Department="Marketing",
 City="Ann Arbor"},
};

IEnumerable<Employee> empQuery = from emp in employees
 where emp.First.Length > 5
 select emp;

 630	 ChAPTER 11	 Connecting to and Querying Data with LINQ

XML DATA
You can use LINQ to query XML data sources too. In this case, you actually use the language
features of LINQ to write your queries. However, to work with the data, you use LINQ to XML
(defined in System.Xml.Linq). This namespace makes working with XML data easier and exposes
your XML so that LINQ can query the XML data. For example, the following code uses the
XElement class to load an XML file that can easily be queried by LINQ.

Sample of Visual Basic Code

Dim empXml As XElement = XElement.Load("c:\code\employees.xml")

Sample of C# Code

XElement empXml = XElement.Load(@"c:\code\employees.xml");

You can also use the XElement class to actually create XML on the fly. The following code
shows just that. Notice that the Visual Basic code uses the Visual Basic XML literals feature to
create the XML in code. The C# example relies on the XElement constructors for creating the
XML. Notice also the LINQ query against the XML. This is a query of a collection of XElement
objects. To access actual items within the XML, you use the Descendants or Element properties.

Sample of Visual Basic Code

Dim empXml As XElement = New XElement(
 <Employees>
 <Employee>
 <ID>111</ID>
 <FirstName>Michael</FirstName>
 <Department>IT Department</Department>
 <City>Pittsburgh</City>
 </Employee>
 <Employee>
 <ID>112</ID>
 <FirstName>Hank</FirstName>
 <Department>IT Department</Department>
 <City>Redmond</City>
 </Employee>
 <Employee>
 <ID>113</ID>
 <FirstName>Benjamin</FirstName>
 <Department>Human Resources</Department>
 <City>Chicago</City>
 </Employee>
 <Employee>
 <ID>114</ID>
 <FirstName>Gail</FirstName>
 <Department>Marketing</Department>
 <City>Ann Arbor</City>
 </Employee>
 </Employees>)

Dim empQuery As IEnumerable(Of XElement) =
 From emp In empXml.Descendants("Employee")
 Where emp.Element("FirstName").Value.Length > 5
 Select emp

 Lesson 1: Getting Started with LINQ ChAPTER 11 631

Sample of C# Code

XElement empXml = new XElement("Employees",
 new XElement("Employee",
 new XElement("ID", "111"),
 new XElement("FirstName", "Michael"),
 new XElement("Department", "IT Department"),
 new XElement("City", "Pittsburgh")
),
 new XElement("Employee",
 new XElement("ID", "112"),
 new XElement("FirstName", "Hank"),
 new XElement("Department", "IT Department"),
 new XElement("City", "Redmond")
),
 new XElement("Employee",
 new XElement("ID", "113"),
 new XElement("FirstName", "Benjamin"),
 new XElement("Department", "Human Resources"),
 new XElement("City", "Chicago")
),
 new XElement("Employee",
 new XElement("ID", "114"),
 new XElement("FirstName", "Gail"),
 new XElement("Department", "Marketing"),
 new XElement("City", "Ann Arbor")
)
);

IEnumerable<XElement> empQuery =
 from emp in empXml.Descendants("Employee")
 where emp.Element("FirstName").Value.Length > 5
 select emp;

DATABASE DATA
You will learn a lot about querying database data with XML in the next lesson. However,
the code in this section provides a basic demonstration of using LINQ to SQL (found in the
System.Data.Linq namespace).

The first step is to create an object model that maps to your data structures. Visual
Studio provides tools for this, but you can also use code. The System.Data.Linq.Mapping
namespace provides attribute classes for defining objects that map your data structures.
For example, the following Employee class is marked to map to the employee table in the
pubs sample database. Notice that two columns are mapped to two properties (emp_id to
EmployeeId and fname to FirstName) by using the Column attribute.

Sample of Visual Basic Code

<Table(Name:="employee")> _
Public Class Employee

 Private _empID As String

 <Column(IsPrimaryKey:=True, Storage:="_empID", Name:="emp_id")> _
 Public Property EmployeeId() As String

 632	 ChAPTER 11	 Connecting to and Querying Data with LINQ

 Get
 Return _empId
 End Get
 Set(ByVal value As String)
 _empId = value
 End Set
 End Property

 Private _firstName As String

 <Column(Storage:="_firstName", Name:="fname")> _
 Public Property FirstName() As String
 Get
 Return _firstName
 End Get
 Set(ByVal value As String)
 _firstName = value
 End Set
 End Property

End Class

Sample of C# Code

[Table(Name = "employee")]
public class Employee
{
 private string _empID;
 [Column(IsPrimaryKey = true, Storage = "_empID", Name = "emp_id")]
 public string EmployeeId
 {
 get
 {
 return this._empID;
 }
 set
 {
 this._empID = value;
 }
 }

 private string _firstName;
 [Column(Storage = "_firstName", Name = "fname")]
 public string FirstName
 {
 get
 {
 return this._firstName;
 }
 set
 {
 this._firstName = value;
 }
 }
}

 Lesson 1: Getting Started with LINQ ChAPTER 11 633

The next step is to define a connection to the database. If you are using a file-based database,
you can simply point to the file. If you are using a server, you would use a connection string.
In either case, your connection is defined as a DataContext object. The following code shows
an example.

Sample of Visual Basic Code

Dim pubs As DataContext = New DataContext("c:\code\pubs.mdf")

Sample of C# Code

DataContext pubs = new DataContext(@"c:\code\pubs.mdf");

You can now set a reference to a table in the database by using the Table<T> object. You can
then run a LINQ query against this table and store the results in a list of Employee objects. LINQ
to SQL will take care of the mapping for you. The following code shows an example.

Sample of Visual Basic Code

Dim Employees As Table(Of Employee) = pubs.GetTable(Of Employee)()

Dim empQuery As IEnumerable(Of Employee) =
 From emp In Employees
 Where emp.FirstName.Length > 5
 Select emp

Sample of C# Code

Table<Employee> Employees = pubs.GetTable<Employee>();

IEnumerable<Employee> empQuery = from emp in Employees
 where emp.FirstName.Length > 5
 select emp;

Of course, you can iterate over the results as you would with any other IEnumerable list of
objects. You can also use LINQ to SQL to insert, update, and delete rows in your database.

Selecting
As you have seen, you use the From keyword to indicate a range variable and a data source for
your LINQ query. The range variable is like the variable in a For…Each loop. The compiler infers
this type, so you need not declare it. In the following example, the From keyword is used with
the emp range variable against a data source, employees.

Sample of Visual Basic Code

Dim empQuery As IEnumerable(Of Employee) =
 From emp In employees
 Select emp

Sample of C# Code

IEnumerable<Employee> empQuery =
 from emp in employees
 select emp;

 634	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Notice also the use of the Select keyword. This indicates what should be selected as the
result of the query. In this example, this is the entire Employee object. In the example that
follows, however, the Select keyword indicates that you want to return only the employee’s
first name. This will create a list of string objects (and not Employee).

Sample of Visual Basic Code

Dim empQuery As IEnumerable(Of String) =
 From emp In employees
 Select emp.First

Sample of C# Code

IEnumerable<string> empQuery =
 from emp in employees
 select emp.First;

This type of selection, one that changes the results, is called a projection in LINQ. You will
see more of this in the upcoming “Transforming Data with LINQ” section.

Filtering
You can use the Where keyword in LINQ to filter your result sets. You pass one or more Boolean
expressions to this clause, and those elements whose evaluations result in true are returned as
part of the query. LINQ also supports multiple Where clauses in a single query. You can combine
Boolean expressions in your Where clause with And (&& in C#) and Or (|| in C#). For example, the
following code returns all employees that work in the IT department and live in Redmond.

Sample of Visual Basic Code

Dim empQuery As IEnumerable(Of Employee) =
 From emp In employees
 Where emp.Department = "IT Department" And
 emp.City = "Redmond"
 Select emp

Sample of C# Code

IEnumerable<Employee> empQuery =
 from emp in employees
 where emp.Department == "IT Department" &&
 emp.City == "Redmond"
 select emp;

Ordering
You can use the Order By keyword to indicate a sort order for the selected elements. Items will
be sorted by their default comparer. In the following example, the type being sorted is a string.
Therefore, items will be sorted from A to Z. You can add the Descending keyword to reverse the
sort order.

 Lesson 1: Getting Started with LINQ ChAPTER 11 635

Sample of Visual Basic Code

Dim empQuery As IEnumerable(Of Employee) =
 From emp In employees
 Order By emp.Department
 Select emp

Sample of C# Code

IEnumerable<Employee> empQuery =
 from emp in employees
 orderby emp.Department
 select emp;

Grouping
The Group keyword allows you to group returned results into separate lists. When you use the
Group keyword, you actually return a list of lists. For example, if you were to group the employee
list in the examples by department, you would get an object with three items, one for each
department (IT Department, Marketing, and Human Resources). Each item in this list would
contain a key. The key would be based on the unique group name (in this case, the depart-
ment). The item would also contain a list of Employee objects in the group.

Visual Basic and C# handle grouping differently. In C#, items are created as actual typed lists
of lists. The following code shows an example. Notice that the query indicates a list (IEnumerable)
of lists (IGrouping). Each IGrouping list contains a key and a list of Employee objects in the group.
Notice too that you can iterate over the two lists by using a nested For…Each loop.

Sample of C# Code

IEnumerable<IGrouping<string, Employee>> empQuery =
 from emp in employees
 group emp by emp.Department;

foreach (IGrouping<string, Employee> group in empQuery)
{
 Response.Write(group.Key);

 foreach (Employee e in group)
 {
 Response.Write(e.First);
 }
}

Visual Basic has the same concept. However, it creates anonymous types based on your
grouping. For example, in the following code, an anonymous type is created to hold each group.
This type is given the department property based on the Group By department statement in the
query. This same anonymous type also includes the EmployeeGroup property, which is based on
the Into EmployeeGroup = Group statement. You can see that this makes it slightly easier to
iterate over these nested lists.

 636	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Sample of Visual Basic Code

Dim empQuery =
 From emp In employees
 Group By department = emp.Department
 Into EmployeeGroup = Group

For Each group In empQuery
 Response.Write(group.department)

 For Each e As Employee In group.EmployeeGroup
 Response.Write(e.First)
 Next
Next

Joining
You can use the Join keyword to join data from two or more data sources. This data can
be joined in the query and then returned as a new object. All joins created with the Join
keyword are equivalent to INNER JOINs in SQL. The join combines the two data sources
based on matching keys. For example, the following code joins both the employees list
and the timesheets list based on the employee ID. A new, anonymous type is created that
has the EmployeeId, EmployeeName, and VacationHours properties . Note that the results
will be a row for each joined item. This means that if one employee has three timesheets
there will be three rows in the results for that employee.

Sample of Visual Basic Code

Dim empQuery = From emp In employees
 Join ts In timesheets On emp.ID Equals ts.EmployeeId
 Select EmployeeId = emp.ID,
 EmployeeName = (emp.First & " " & emp.Last),
 VacationHours = ts.HoursVacation

Sample of C# Code

var empQuery = from emp in employees
 join ts in timesheets on emp.ID equals ts.EmployeeId
 select new { EmployeeId=emp.ID,
 EmployeeName=emp.First + " " + emp.Last,
 VacationHours = ts.HoursVacation};

You can also group your joins into objects. In the following example, the timesheet
object is placed in the tms variable. This variable is then added to the anonymous type.
This results in a list of employees, each of which contains a property called VacationHours
that contains a list of timesheets. In Visual Basic this is accomplished via the Group Join
keyword, along with Into. In C#, all that is required is into. Notice too how you iterate over
the results in a nested For…Each loop.

 Lesson 1: Getting Started with LINQ ChAPTER 11 637

Sample of Visual Basic Code

Dim empQuery = From emp In employees
 Group Join ts In timesheets On
 emp.ID Equals ts.EmployeeId
 Into tms = Group
 Select EmployeeId = emp.ID,
 EmployeeName = (emp.First & " " & emp.Last),
 VacationHours = tms

For Each emp In empQuery
 Console.WriteLine(emp.EmployeeName)
 For Each t As Timesheet In emp.VacationHours
 Console.WriteLine(t.HoursVacation.ToString())
 Next

Sample of C# Code

var empQuery = from emp in employees
 join ts in timesheets on emp.ID equals ts.EmployeeId into tms
 select new { EmployeeId=emp.ID,
 EmployeeName=emp.First + " " + emp.Last,
 VacationHours = tms};

foreach (var emp in empQuery)
{
 Response.Write(emp.EmployeeName);
 foreach (Timesheet t in emp.VacationHours)
 {
 Response.Write(t.HoursVacation.ToString());
 }
}

Transforming Data with LINQ
You can use the features of LINQ to get data from a source such as a database or object and
produce output in another format such as XML, JSON, or a new type altogether. This section
highlights many of these possibilities.

Mapping to Another Type or to an Anonymous Object
LINQ allows you to use the Select keyword to push your results to an instance of a strongly
typed object or even a new, anonymous type. In the following example, a query is executed
against a list of strongly typed Employee objects. The results are a list of strongly typed User
objects; this is accomplished through the Select New User code statement.

 638	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Sample of Visual Basic Code

Dim users As IEnumerable(Of User) = From emp In employees
 Where emp.ID <> 0
 Select New User With
 {.EmployeeId = emp.ID,
 .Name = emp.First & " " & emp.Last}

Sample of C# Code

IEnumerable<User> users = from emp in employees
 where emp.ID != 0
 select new User
 {
 Name = emp.First + " " + emp.Last,
 EmployeeId = emp.ID
 };

Note that you can use the same syntax to create an anonymous type as your result. To do
so, you simply use Select new and do not specify a type. You also need to allow the compiler
to determine your type at run time. This means using var (or an undefined type in Visual Basic).
The following code shows an example.

Sample of Visual Basic Code

Dim users = From emp In employees
 Where emp.ID <> 0
 Select New With
 {.EmployeeId = emp.ID,
 .Name = emp.First & " " & emp.Last}

Sample of C# Code

var users = from emp in employees
 where emp.ID != 0
 select new
 {
 Name = emp.First + " " + emp.Last,
 EmployeeId = emp.ID
 };

Merging Multiple Data Sources
You saw in an earlier section that you could use the join and group join operations to join data
and produce new results. LINQ also lets you merge two similar datasets by using the Concat
method from the list object. The result is a new object made up of both data sources.

The following code example queries the employees list for all employees living in Redmond.
It then queries the consultants list for consultants living in Redmond. It merges the result into a
list of names.

 Lesson 1: Getting Started with LINQ ChAPTER 11 639

Sample of Visual Basic Code

Dim employeesAndConsul = (From emp In employees
 Where emp.City = "Redmond"
 Select (emp.First + " " + emp.Last)).Concat(
 From cn In consultants
 Where cn.Location = "Redmond"
 Select cn.Name)

Sample of C# Code

var employeesAndConsul = (from emp in employees
 where emp.City == "Redmond"
 select emp.First + " " + emp.Last).Concat(
 from cn in consultants
 where cn.Location == "Redmond"
 select cn.Name);

Performing Operations on Results
You can perform mathematical and string operations on your result sets. In fact, you have already
seen examples of concatenating two values to produce a new field. The following code shows
another example. Here, a new field in an anonymous type is created by using String.Format and
concatenation. Another new field is created by adding the values from two fields together.

Sample of Visual Basic Code

Dim users = From emp In employees
 Select New With
 {.Employee = String.Format("Employee ({0}), {1}",
 emp.ID, emp.First & " " & emp.Last),
 .RemainingHoursOff = emp.RemainingVacation + emp.RemainingPersonalTime}

Sample of C# Code

var users = from emp in employees
 select new
 {
 Employee = string.Format("Employee ({0}), {1}",
 emp.ID, emp.First + " " + emp.Last),
 RemainingHoursOff = emp.RemainingVacation + emp.RemainingPersonalTime
 };

Transforming Results into XML
You can use LINQ to XML (System.Xml.Linq) to transform data from a LINQ query into an XML
structure. You do so by using the XElement class and the LINQ Select keyword to create new
elements nested inside one another like an XML tree. As an example, the following code takes
the employee list data and coverts it into an XML tree with the root node of <Employees>
and child nodes of <Employee>.

 640	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Sample of Visual Basic Code

Dim empXml = New _
 XElement("Employees", From emp In employees
 Select New _
 XElement("Employee",
 New XElement("Id", emp.ID),
 New XElement("Name", emp.First & " " & emp.Last),
 New XElement("Department", emp.Department)
)
)

Sample of C# Code

var empXml = new
 XElement("Employees", from emp in employees
 select new
 XElement("Employee",
 new XElement("Id", emp.ID),
 new XElement("Name", emp.First + " " + emp.Last),
 new XElement("Department", emp.Department)
)
);

Transforming Results into JSON
Given the increased use of JQuery and AJAX, you might need to transform your LINQ query
results into JSON format for working with these client-side libraries. You could do so by writing
a custom class that can parse a list of objects into a JSON message. You might also download
one of the LINQ to JSON libraries available from third parties on the Internet. However, the .NET
Framework does provide a serializer for creating JSON messages from IEnumerable lists.

This serializer can be found in the System.Runtime.Serialization.Json namespace. The actual
class name of the serializer is DataContractJsonSerializer. It can be used to serialize types and
lists of types that are marked as DataContract. You can also use this object to take a JSON
message and deserialize it back to objects.

As an example, the following code creates a LINQ query and then uses the
DataContractJsonSerializer class to write the query results to a MemoryStream.
The results are formatted in JSON and then sent to the screen.

Sample of Visual Basic Code

Dim empJson As IEnumerable(Of Employee) =
 From emp In employees
 Where emp.Department = "IT Department"
 Select emp

Dim ser As DataContractJsonSerializer = _
 New DataContractJsonSerializer(GetType(IEnumerable(Of Employee)))

 Lesson 1: Getting Started with LINQ ChAPTER 11 641

Dim ms As MemoryStream = New MemoryStream()

ser.WriteObject(ms, empJson)

Dim json As String = System.Text.Encoding.Default.GetString(ms.ToArray())
ms.Close()

Response.Write(json)

Sample of C# Code

IEnumerable<Employee> empJson = from emp in employees
 where emp.Department == "IT Department"
 select emp;

DataContractJsonSerializer ser =
 new DataContractJsonSerializer(typeof(IEnumerable<Employee>));

MemoryStream ms = new MemoryStream();

ser.WriteObject(ms, empJson);

string json = Encoding.Default.GetString(ms.ToArray());
ms.Close();

Response.Write(json);

The following shows an example of the message displayed in JSON format. Each employee
that belongs to the IT department (see the query) is displayed.

[{"City":"Pittsburgh","Department":"IT Department","First":"Michael","ID":111,
"Last":null,{"City":"Redmond","Department":"IT Department","First":"Hank","ID":112,
"Last":null}]

PrActIcE	 Working with LinQ

In this practice, you create a website and define some XML data. You then use LINQ to XML
and standard LINQ language features to work with this data.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

 642	 ChAPTER 11	 Connecting to and Querying Data with LINQ

ExErcIsE	 Creating the ASP.NET Website and Working with LINQ

In this exercise, you create the website, define the XML file, and write LINQ queries to work
with the XML.

	 1. Open Visual Studio and create a new ASP.NET website called LinqExample by using
either C# or Visual Basic.

	 2. Add the employees.xml file to the App_Data directory of your solution. You can get
this file from the CD for this book. This file contains several Employee elements. Each
Employee element contains the ID, FirstName, LastName, Department, and Location
child elements.

	 3. Add a new class file called Employee to the solution. Visual Studio will ask to create the
App_Code directory and add it to the solution for you; click Yes. This class represents an
employee object and will be used when the XML is turned into a collection of strongly
typed objects. The following code shows an example.

Sample of Visual Basic Code

Public Class Employee

 Public Property Id As String
 Public Property FirstName As String
 Public Property LastName As String
 Public Property Department As String
 Public Property Location As String

End Class

Sample of C# Code

public class Employee
{
 public string Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Department { get; set; }
 public string Location { get; set; }
}

	 4. Add a new class file called EmployeeServices to the solution. This class will expose
methods that use LINQ to work with the XML file.

	 5. Add a using (Imports in Visual Basic) statement at the top of the file for System.Xml.Linq.

	 6. Add a class-level variable that reads the XML file.

 Lesson 1: Getting Started with LINQ ChAPTER 11 643

The following shows an example of what your class should look like. Note that you could
read the XML file’s location from the Web.config file. This sample hard-codes the path to
the XML file; you will most likely need to edit this.

Sample of Visual Basic Code

Imports Microsoft.VisualBasic
Imports System.Xml.Linq

Public Class EmployeeServices

 Dim _empXml As XElement = XElement.Load(_
 "C:\Code\Lesson1-Exercise1-Completed-CS\LinqExample\App_Data\employees.xml")
...

Sample of C# Code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;

public class EmployeeServices
{

 XElement _empXml = XElement.Load(
 @"C:\Code\Lesson1-Exercise1-Completed-CS\LinqExample\App_Data\employees.xml");
...

	 7. Add a method called GetDepartments to the EmployeeServices class. Write a LINQ
query to return just the distinct departments from the XML file. You can do so by
using Group By and then selecting only the first elements in the result. The following
shows an example.

Sample of Visual Basic Code

Public Function GetDepartments() As List(Of String)

 'query the XML and group by department
 ' select only the departments in the group
 Dim deptQuery =
 From emp In _empXml.Descendants("Employee")
 Group emp By emp.Element("Department").Value
 Into empGroup = Group
 Select empGroup.First().Element("Department").Value

 Return deptQuery.ToList()

End Function

 644	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Sample of C# Code

public List<string> GetDepartments()
{
 //query the XML and group by department
 // select only the departments in the group
 var deptQuery =
 from emp in _empXml.Descendants("Employee")
 group emp by emp.Element("Department").Value
 into empGroup
 select empGroup.First().Element("Department").Value;

 return deptQuery.ToList();

}

	 8. Add another method to EmployeeServices. Name this method GetEmployeeByDept. This
method takes a department name as a parameter. It will then query the employee.xml
file and return departments with a matching name. The query will transform the data
into a list of Employee objects. The following code shows an example.

Sample of Visual Basic Code

Public Function GetEmployeesByDept(ByVal department As String) _
 As List(Of Employee)

 'query the XML list by department and return a list of
 ' Employee(objects)
 Dim empQuery As IEnumerable(Of Employee) =
 From emp In _empXml.Descendants("Employee")
 Where emp.Element("Department").Value = department
 Select New Employee With {
 .Id = emp.Element("ID").Value,
 .Department = emp.Element("Department").Value,
 .FirstName = emp.Element("FirstName").Value,
 .LastName = emp.Element("LastName").Value,
 .Location = emp.Element("Location").Value
 }

 Return empQuery.ToList()

End Function

Sample of C# Code

public List<Employee> GetEmployeesByDept(string department)
{

 //query the XML list by department and return a list of Employee objects
 IEnumerable<Employee> empQuery =
 from emp in _empXml.Descendants("Employee")
 where emp.Element("Department").Value == department
 select new Employee

 Lesson 1: Getting Started with LINQ ChAPTER 11 645

 {
 Id = emp.Element("ID").Value,
 Department = emp.Element("Department").Value,
 FirstName = emp.Element("FirstName").Value,
 LastName = emp.Element("LastName").Value,
 Location = emp.Element("Location").Value
 };

 return empQuery.ToList();

}

	 9. Open the Default.aspx page. Add a DropDownList, Button, GridView, and ObjectDataSource
control to the page.

	 10. Configure the ObjectDataSource to point to the EmployeeServices.GetDepartments
method. (See Chapter 12, “Working with Data Source Controls and Data-Bound
Controls” for more information on ObjectDataSource.)

	 11. Configure the DropDownList to use the ObjectDataSource.

Your markup inside the MainContent placeholder should look similar to the following.

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <h2>View Employees by Department</h2>

 Select a Department

 <asp:DropDownList ID="DropDownListDepts" runat="server"
 DataSourceID="ObjectDataSourceDepts">
 </asp:DropDownList>
 <asp:Button ID="ButtonUpdate" runat="server" Text="Update"
 onclick="ButtonUpdate_Click" />
 <hr />

 <asp:GridView ID="GridViewEmployees" runat="server" CellPadding="4"
 ForeColor="#333333" GridLines="None">
 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />
 <EditRowStyle BackColor="#999999" />
 <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <PagerStyle BackColor="#284775" ForeColor="White" HorizontalAlign="Center" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 </asp:GridView>

 <asp:ObjectDataSource ID="ObjectDataSourceDepts" runat="server"
 SelectMethod="GetDepartments"
 TypeName="EmployeeServices"></asp:ObjectDataSource>

</asp:Content>

 646	 ChAPTER 11	 Connecting to and Querying Data with LINQ

	 12. Add a click event to the Button control. Inside the code for the click event, call the
EmployeeServices.GetEmployeesByDept method and pass the selected method from
the DropDownList. Update the data in the GridView control with the results. This
code should look similar to the following.

Sample of Visual Basic Code

Protected Sub ButtonUpdate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonUpdate.Click

 Dim empSrv As EmployeeServices = New EmployeeServices()
 GridViewEmployees.DataSource =
 empSrv.GetEmployeesByDept(DropDownListDepts.SelectedItem.Text)
 GridViewEmployees.DataBind()

End Sub

Sample of C# Code

protected void ButtonUpdate_Click(object sender, EventArgs e)
{
 EmployeeServices empSrv = new EmployeeServices();
 GridViewEmployees.DataSource =
 empSrv.GetEmployeesByDept(DropDownListDepts.SelectedItem.Text);
 GridViewEmployees.DataBind();
}

	 13. Run your application. Select a department and click the Update button. Your results
should look similar to those in Figure 11-1.

FigURE 11-1 The LINQ queries being used on a webpage.

 Lesson 1: Getting Started with LINQ ChAPTER 11 647

Lesson Summary
■ You can write LINQ queries against any objects that support IEnumerable. These include

most collection classes in the .NET Framework.

■ A LINQ query only executes when it is acted upon, as when For…Each is used or ToList
is called.

■ There are several specialized providers that allow LINQ to work with specific data sources.
These include LINQ to SQL, LINQ to DataSet, LINQ to Entities, and LINQ to XML. The use
of standard LINQ to work with collection classes is referred to as LINQ to Objects.

■ LINQ queries are written with the LINQ language extension, which includes keywords
such as From, Select, Where, Group By, Join, Order By, Into, Concat, and others.

■ You can use LINQ to transform data from one format into another. This allows you to
create new types, new anonymous types, XML files, and even JSON-formatted output.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Getting Started with LINQ.” The questions are also available on the companion CD in a practice
test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. Against which of the following classes can you write a LINQ query? (Choose all that apply).

	 A. DataSet

	 B. List<T>

	 c. Array

	 D. Dictionary<TKey, TValue)

	 2. You need to write a LINQ query to retrieve a list of state hospitals. The results should
be sorted and grouped first by county. For each county, the hospitals should be sorted
by city. Which of the following LINQ queries would you write? (Choose all that apply.)

	 A.

Visual Basic Code

Dim hsQ = From hspt In hospitals
 Order By hspt.County, hspt.City
 Group hspt By hspt.County Into hsptGroup = Group

C# Code

var hsQ = from hspt in hospitals
 orderby hspt.County, hspt.City
 group hspt by hspt.County;

 648	 ChAPTER 11	 Connecting to and Querying Data with LINQ

	 B.

Visual Basic Code

Dim hsQ = From hspt In hospitals
 Order By hspt.County
 Group hspt By hspt.County Into hsptGroup = Group
 Order By hsptGroup.Last.City

C# Code

var hsQ = from hspt in hospitals
 orderby hspt.County
 group hspt by hspt.County into hsptGroup
 orderby hsptGroup.Last().City
 select hsptGroup;

	 c.

Visual Basic Code

Dim hsQ = From hspt In hospitals
 Order By hspt.County, hspt.City
 Group hspt By hspt.County Into hsptGroup = Group
 Order By hsptGroup.First.County

C# Code

var hsQ = from hspt in hospitals
 orderby hspt.County
 group hspt by hspt.County into hsptGroup
 orderby hsptGroup.Key
 select hsptGroup;

	 D.

Visual Basic Code

Dim hsQ = From hspt In hospitals
 Order By hspt.City
 Group hspt By hspt.County Into hsptGroup = Group
 Order By hsptGroup.First.County

C# Code

var hsQ = from hspt in hospitals
 orderby hspt.City
 group hspt by hspt.County into hsptGroup
 orderby hsptGroup.First().County
 select hsptGroup;

	 3. You want to merge the results from two separate LINQ queries into a single result set.
How would you accomplish this?

	 A. Use the ToList method.

	 B. Use the DataContractJsonSerializer class.

	 c. Use the XElement class.

	 D. Use the Concat method.

 Lesson 2: LINQ and ADO.NET ChAPTER 11 649

Lesson 2: LinQ and ADO.nET

Business developers write applications that typically work with data. This has traditionally
involved writing different layers of code: database code (such as Transact-SQL) for querying
data, ADO.NET code for connecting to a database and executing statements, and additional
object code for working with the data. Some developers have also written application tiers
whose role is to translate the database code into objects. This makes the database easier to
code against but can require the writing and maintenance of a lot of time-consuming, often
repetitive code.

The LINQ language features and ADO.NET LINQ technologies were created to simplify
writing all of this code. First, you can use LINQ to write strongly typed queries (rather than
SQL scripts) against your data structures. Secondly, you can use technologies such as LINQ
to SQL and LINQ to Entities to generate strongly typed objects that match your database
schema. This lesson explores how you can use these technologies in your applications.

After this lesson, you will be able to:
■	 Load data into a DataSet object and use LINQ to DataSet to query that data.
■	 Define a database schema by using LINQ to SQL and work with that data

(query, insert, update, and delete) by using LINQ to SQL.
■	 Create an entity model by using the Entity Framework and work with data

in that model by using LINQ to Entities.

Estimated lesson time: 40 minutes

real World

Mike Snell

I have noticed a rapid adoption of LINQ to SQL and the Entity Framework by devel-
opers. These technologies really do add big productivity gains when working with

data. It seems that in the long term, the technologies are also a hit. Nearly all of the
developers I speak with would not want to go back to writing all the basic database
code; they already see that as an “old” or “legacy” way of coding against data.

LINQ to DataSet
The DataSet and DataTable objects allow you to store a lot of data in memory and even
share that data between requests (through caching). However, these objects have limited
data query functionality. That is, you cannot query a DataSet the same way you would query
a database. LINQ to DataSet changes this. It allows you to use the standard query features of
LINQ to query data stored in a DataSet.

 650	 ChAPTER 11	 Connecting to and Querying Data with LINQ

A DataSet is a memory-based relational representation of data and is the primary dis-
connected data object used in many ASP.NET applications. A DataSet contains a collection
of DataTable and DataRelation objects, as shown in Figure 11-2 (which was built with the
DataSet designer in Visual Studio).

DataTables collection

DataSet

DataRelations collection

FigURE 11-2 The DataSet object contains a collection of DataTable and DataRelation objects.

The DataTable objects contain the data in the DataSet. The table schema is defined as a
collection of DataColumn objects. The data itself is stored in a collection of DataRow objects.

The DataRelation objects define relationships between DataTable objects in the DataSet.
These relationships are defined through DataColumn objects. Relationships are similar to
foreign-key constraints in a database. These relationships are enforced in the DataSet.

The DataSet class also provides methods for cloning the DataSet schema, copying the
DataSet, merging with other DataSet objects, and retrieving changes from the DataSet.

Defining the DataSet Schema
Before you work with actual data, you need to define the schema—the layout or structure of
the data. You can do so automatically when you load a DataSet from a database (see the
next section, “Populating the DataSet”). You can also define the schema programmatically
or by providing an XML schema definition. The following code demonstrates the creation
of a simple DataSet object in code. This DataSet contains a DataTable for companies and
a DataTable for employees. The two DataTable objects are joined by using a DataRelation
named Company_Employee.

 Lesson 2: LINQ and ADO.NET ChAPTER 11 651

Sample of Visual Basic Code

Private Function GetDataSet() As DataSet

 Dim companyData As New DataSet("CompanyList")

 Dim company As DataTable = companyData.Tables.Add("company")
 company.Columns.Add("Id", GetType(Guid))
 company.Columns.Add("CompanyName", GetType(String))
 company.PrimaryKey = New DataColumn() {company.Columns("Id")}

 Dim employee As DataTable = companyData.Tables.Add("employee")
 employee.Columns.Add("Id", GetType(Guid))
 employee.Columns.Add("companyId", GetType(Guid))
 employee.Columns.Add("LastName", GetType(String))
 employee.Columns.Add("FirstName", GetType(String))
 employee.Columns.Add("Salary", GetType(Decimal))
 employee.PrimaryKey = New DataColumn() {employee.Columns("Id")}

 companyData.Relations.Add(_
 "Company_Employee", _
 company.Columns("Id"), _
 employee.Columns("CompanyId"))

 Return companyData

End Function

Sample of C# Code

private DataSet GetDataSet()
{
 DataSet companyData = new DataSet("CompanyList");

 DataTable company = companyData.Tables.Add("company");
 company.Columns.Add("Id", typeof(Guid));
 company.Columns.Add("CompanyName", typeof(string));
 company.PrimaryKey = new DataColumn[] { company.Columns["Id"] };

 DataTable employee = companyData.Tables.Add("employee");
 employee.Columns.Add("Id", typeof(Guid));
 employee.Columns.Add("companyId", typeof(Guid));
 employee.Columns.Add("LastName", typeof(string));
 employee.Columns.Add("FirstName", typeof(string));
 employee.Columns.Add("Salary", typeof(decimal));
 employee.PrimaryKey = new DataColumn[] { employee.Columns["Id"] };

 companyData.Relations.Add(
 "Company_Employee",
 company.Columns["Id"],
 employee.Columns["CompanyId"]);

 return companyData;
}

 652	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Populating the DataSet
There are several ways to actually get data into the DataTable objects of a DataSet. Recall that
you first must define the schema. You can then write code to add rows. Alternatively, you can
use a DataAdapter to fill a DataTable from an existing data source (such as a Microsoft SQL
Server database). This section examines both of these options.

ADDING DATA PROGRAMMATICALLY
The following code sample shows how to add rows to existing DataTable objects. These
objects were defined in the previous example. This code uses the DataTable.Rows.Add
method. This method allows you to define a new DataRow object and add it to the Rows
collections. The code populates the Id columns by creating a new globally unique identifier
(GUID). After a company is created and added to the company DataTable, the employee
names for that company are created and added.

Sample of Visual Basic Code

Dim company As DataTable = companyData.Tables("Company")
Dim employee As DataTable = companyData.Tables("Employee")

Dim coId, empId As Guid
coId = Guid.NewGuid()
company.Rows.Add(coId, "Northwind Traders")
empId = Guid.NewGuid()
employee.Rows.Add(empId, coId, "JoeLast", "JoeFirst", 40.00)
empId = Guid.NewGuid()
employee.Rows.Add(empId, coId, "MaryLast", "MaryFirst", 70.00)
empId = Guid.NewGuid()
employee.Rows.Add(empId, coId, "SamLast", "SamFirst", 12.00)

coId = Guid.NewGuid()
company.Rows.Add(coId, "Contoso")
empId = Guid.NewGuid()
employee.Rows.Add(empId, coId, "SueLast", "SueFirst", 20.00)
empId = Guid.NewGuid()
employee.Rows.Add(empId, coId, "TomLast", "TomFirst", 68.00)
empId = Guid.NewGuid()
employee.Rows.Add(empId, coId, "MikeLast", "MikeFirst", 18.99)

Sample of C# Code

DataTable company = companyData.Tables["Company"];
DataTable employee = companyData.Tables["Employee"];

Guid coId, empId;
coId = Guid.NewGuid();
company.Rows.Add(coId, "Northwind Traders");
empId = Guid.NewGuid();
employee.Rows.Add(empId, coId, "JoeLast", "JoeFirst", 40.00);
empId = Guid.NewGuid();
employee.Rows.Add(empId, coId, "MaryLast", "MaryFirst", 70.00);
empId = Guid.NewGuid();
employee.Rows.Add(empId, coId, "SamLast", "SamFirst", 12.00);

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 2: LINQ and ADO.NET ChAPTER 11 653

coId = Guid.NewGuid();
company.Rows.Add(coId, "Contoso");
empId = Guid.NewGuid();
employee.Rows.Add(empId, coId, "SueLast", "SueFirst", 20.00);
empId = Guid.NewGuid();
employee.Rows.Add(empId, coId, "TomLast", "TomFirst", 68.00);
empId = Guid.NewGuid();
employee.Rows.Add(empId, coId, "MikeLast", "MikeFirst", 18.99);

USING THE DATAADAPTER
The DbDataAdapter object is used to retrieve and update data between a DataTable and a data
store (such as a SQL Server database). The DbDataAdapter is derived from the DataAdapter class
and is the base class of the provider-specific DbDataAdapter classes. Provider-specific versions of
DbDataAdapter are created for each type of provider, such as SQL Server, Oracle, and XML.

The DbDataAdapter class has the SelectCommand property that you use to define how data
is to be retrieved. The SelectCommand must contain a valid DbCommand object, which must
have a valid connection. You can also use DbDataAdapter to update changes to the data source.
You’ll learn more about this in the next section.)

The DataAdapter.Fill method moves data from the data store to the DataTable object that
you pass into this method. The Fill method has several overloads, some of which accept only a
DataSet as a parameter. When a DataSet is passed to the Fill method, a new DataTable object
is created in the DataSet if a source DataTable object is not specified.

The following code uses the System.Configuration.ConfigurationManager to read the
connection string from a Web.config file. It then uses System.Data.Common.DbConnection
to represent a database connection. It also uses System.Data.SqlClient to work directly with
a SQL Server database. Finally, it shows how you can use the DataAdapter.Fill method to
load a DataTable directly from a SQL Server database.

Sample of Visual Basic Code

Dim pubs As ConnectionStringSettings
pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()
connection.ConnectionString = pubs.ConnectionString

Dim cmd As SqlCommand = CType(connection.CreateCommand(), SqlCommand)
cmd.CommandType = CommandType.Text
cmd.CommandText = "SELECT pub_id, pub_name FROM publishers"

Dim pubsDataSet As New DataSet("Pubs")
Dim da As New SqlDataAdapter(cmd)
da.Fill(pubsDataSet, "publishers")

Sample of C# Code

ConnectionStringSettings pubs =
 ConfigurationManager.ConnectionStrings["PubsData"];
DbConnection connection = new SqlConnection(pubs.ConnectionString);

 654	 ChAPTER 11	 Connecting to and Querying Data with LINQ

SqlCommand cmd = (SqlCommand)connection.CreateCommand();
cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT pub_id, pub_name FROM Publishers";

SqlDataAdapter da = new SqlDataAdapter(cmd);
DataSet pubsDataSet = new DataSet("Pubs");
da.Fill(pubsDataSet, "publishers");

Saving Changes to the Database
The DataAdapter.Update method retrieves the changes from a DataTable object and executes
the appropriate InsertCommand, UpdateCommand, or DeleteCommand to send each change
to the data store on a row-by-row basis. The Update method retrieves the DataRow objects
that have been changed by looking at the RowState property of each row. If the RowState is
anything but Unchanged, the Update method sends the change to the database.

For the Update method to work, all four commands (select, insert, update, and delete) must
be assigned to the DbDataAdapter. Normally this means creating individual DbCommand objects
for each command. You can easily create the commands by using the DbDataAdapter configura-
tion wizard, which starts when a DbDataAdapter is dropped onto a webpage. The wizard can
generate stored procedures for all four commands.

Another way to populate the DbDataAdapter object’s commands is to use the
DbCommandBuilder object. This object creates the InsertCommand, UpdateCommand,
and DeleteCommand as long as a valid SelectCommand exists.

SAVING CHANGES TO THE DATABASE IN BATCHES
One way to increase update performance is to send the changes to the database server in
batches instead of sending changes on a row-by-row basis. You can do this by assigning a
value to the DbDataAdapter object’s UpdateBatchSize property. This property defaults to 1,
which causes each change to be sent to the server on a row-by-row basis. Setting the value
to 0 instructs the DbDataAdapter object to create the largest possible batch size for changes,
or you can set the value to the number of changes you want to send to the server in each
batch. Setting the UpdateBatchSize to a number greater than the number of changes that
need to be sent is equivalent to setting it to 0.

You can confirm that the changes are being sent to the database server in batches by
adding a RowUpdated event to the DbDataAdapter object. The event handler method
exposes the number of rows affected in the last batch. When the UpdateBatchSize is set
to 1, the RecordsAffected property is always 1. In the following code, the Publishers table
contains eight rows. The pubsDataSet is filled, and then the pub_name field is modified on
all eight rows. Before the Update method is executed, the UpdateBatchSize is changed to
3. When the Update method is executed, the changes are sent to the database as a batch
of three changes, another batch of three changes, and, finally, a batch of two changes. This
code contains a RowUpdated event handler to collect batch information, which is displayed
after the Update method is executed.

 Lesson 2: LINQ and ADO.NET ChAPTER 11 655

Sample of Visual Basic Code

Public WithEvents da As New SqlDataAdapter()
Public sb As New System.Text.StringBuilder()

Private Sub rowUpdated(ByVal sender As Object, _
 ByVal e As SqlRowUpdatedEventArgs) Handles da.RowUpdated
 sb.Append("Rows: " & e.RecordsAffected.ToString() & vbCrLf)
End Sub

Protected Sub ButtonUpdate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonUpdate.Click

 Dim pubs As ConnectionStringSettings
 pubs = ConfigurationManager.ConnectionStrings("PubsData")
 Dim connection As DbConnection = New SqlConnection()
 connection.ConnectionString = pubs.ConnectionString
 Dim cmd As SqlCommand = _
 CType(connection.CreateCommand(), SqlCommand)
 cmd.CommandType = CommandType.Text
 cmd.CommandText = "SELECT * FROM publishers"
 Dim pubsDataSet As New DataSet("Pubs")
 da.SelectCommand = cmd
 Dim bldr As New SqlCommandBuilder(da)
 da.Fill(pubsDataSet, "publishers")

 'Modify data here
 For Each dr As DataRow In pubsDataSet.Tables("publishers").Rows
 dr("pub_name") = "Updated Toys " _
 + DateTime.Now.Minute.ToString() _
 + DateTime.Now.Second.ToString()
 Next
 da.UpdateBatchSize = 3
 da.Update(pubsDataSet, "publishers")

 Dim lbl As Label = GetLabel(275, 20)
 lbl.Text = sb.ToString()

End Sub

Sample of C# Code

public SqlDataAdapter da = new SqlDataAdapter();
public System.Text.StringBuilder sb = new System.Text.StringBuilder();

private void rowUpdated(object sender, SqlRowUpdatedEventArgs e)
{
 sb.Append("Rows: " + e.RecordsAffected.ToString() + "\r\n");
}

 656	 ChAPTER 11	 Connecting to and Querying Data with LINQ

protected void ButtonUpdate_Click(object sender, EventArgs e)
{
 //event subscription is normally placed in constructor but is here
 //to encapsulate the sample
 da.RowUpdated += new SqlRowUpdatedEventHandler(rowUpdated);
 ConnectionStringSettings pubs =
 ConfigurationManager.ConnectionStrings["PubsData"];
 DbConnection connection = new SqlConnection(pubs.ConnectionString);
 SqlCommand cmd = (SqlCommand)connection.CreateCommand();
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = "SELECT * FROM Publishers";
 da.SelectCommand = cmd;
 DataSet pubsDataSet = new DataSet("Pubs");
 SqlCommandBuilder bldr = new SqlCommandBuilder(da);
 da.Fill(pubsDataSet, "publishers");
 //Modify data here
 foreach (DataRow dr in pubsDataSet.Tables["publishers"].Rows)
 {
 dr["pub_name"] = "Updated Toys "
 + DateTime.Now.Minute.ToString()
 + DateTime.Now.Second.ToString();
 }
 da.UpdateBatchSize = 3;
 da.Update(pubsDataSet, "publishers");

 //if event subscription is in the constructor, no need to
 //remove it here. . ..
 da.RowUpdated -= new SqlRowUpdatedEventHandler(rowUpdated);

 Label lbl = GetLabel(275, 20);
 lbl.Text = sb.ToString();
}

Creating Typed DataSets
A typed DataSet is a DataSet that is based on strongly typed objects that exist at design time
(and are typically auto-generated by Visual Studio). Typed DataSets allow you to program
against the actual table and field schemas for your database instead of relying on strings.
For example, if you have a DataSet called salesData that includes a company table, you can
access this table as follows.

Sample of Visual Basic Code

Dim companyTable as DataTable = salesData.Tables("Company")

Sample of C# Code

DataTable companyTable = salesData.Tables["Company"];

However, if you misspell the name of the table, an exception is thrown at run time. This can
be problematic. The same is true for fields in the table. Each is typically accessed through a
string value. In addition, each field is only type-checked at run time. You can overcome all of
these issues at compile time by creating a typed DataSet.

 Lesson 2: LINQ and ADO.NET ChAPTER 11 657

A typed DataSet inherits from the DataSet object. You define a property for each of the
tables in the DataSet. You do the same for each field in the table. For example, a typed DataSet
class might contain a property called Company that represents the Company table and has its
schema as properties. You can access this table as shown in the following code. In this example,
a compile-time error is generated if Company is not spelled correctly.

Sample of Visual Basic Code

Dim companyTable as DataTable = vendorData.Company

Sample of C# Code

DataTable companyTable = vendorData.Company;

You can provide an XML Schema Definition (XSD) file to generate a typed DataSet class. You
can also use the DataSet Editor to graphically create and modify an XSD file, which, in turn, can
be used to generate the typed DataSet class. Figure 11-3 shows the DataSet Editor working with
the pubs database. You can drag tables from the database onto the design surface. Visual Studio
then generates the appropriate typed DataSet class for you to work with.

FigURE 11-3 The DataSet template contains an XML schema definition and generates source code to
create a typed DataSet.

 658	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Code is written differently against typed DataSets. With typed DataSets, you can write against
strongly typed objects. As you will see in an upcoming section, this also changes the way you
write your LINQ queries.

Querying with LINQ to DataSet
The DataSet object already exposes DataTable objects as IEnumerable collections of data. There-
fore, writing LINQ queries against a DataSet or DataTable are not much different than writing
against other collections of data. As an example, imagine that you have a large DataTable that
contains employee records. Assume that you have to write a LINQ query against it. You first
define your query variable of a type that implements the IEnumerable(T) interface. This ensures
that the query can execute and iterate over the data. You then define this variable by using the
From <element> In <collection> LINQ syntax. You can then define a Where clause, Order By
clause, and more. The following code shows an example of defining a query against a single
database table (employee) stored in a DataSet object.

Sample of Visual Basic Code

Dim employees As DataTable = _
 MyDataProvider.GetEmployeeData()

Dim query As EnumerableRowCollection(Of DataRow) = _
 From employee In employees.AsEnumerable() _
 Where employee.Field(Of Decimal)("salary") > 20 _
 Order By employee.Field(Of Decimal)("salary") _
 Select employee

For Each emp As DataRow In query
 Response.Write(emp.Field(Of String)("LastName") & ": ")
 Response.Write(emp.Field(Of Decimal)("salary") & "
")
Next

Sample of C# Code

DataTable employees =
 MyDataProvider.GetEmployeeData();

EnumerableRowCollection<DataRow> query =
 from employee in employees.AsEnumerable()
 where employee.Field<Decimal>("salary") > 20
 orderby employee.Field<Decimal>("salary")
 select employee;

foreach (DataRow emp in query)
{
 Response.Write(emp.Field<String>("LastName") + ": ");
 Response.Write(emp.Field<Decimal>("salary") + "
");
}

 Lesson 2: LINQ and ADO.NET ChAPTER 11 659

The query in the example is a deferred query (like all LINQ queries). It does not actually
execute until it is iterated over with For...Each, ToList, or a similar method that forces the
query to execute.

Notice the call to AsEnumerable. This returns an IEnumerable list for the query to work with.
Next, notice that table fields are referenced by their data type and name. This is because the
query is going against a generic DataSet rather than a strongly typed DataSet.

You can use LINQ to DataSet to perform many different queries against your data, including
adding calculated fields to the data based on data groupings. As an example, suppose you want
to calculate the average salary in the employee DataSet. You can group the DataSet as a single
group (and thus return a single row). You then use the Select New construct to define new fields.
You can then use the group definition to calculate the average of a specified field. The following
code shows an example.

Sample of Visual Basic Code

Dim queryAvg = _
 From employee In employees.AsEnumerable() _
 Group employee By empId = "" Into g = Group _
 Select New With _
 { _
 .AvgSalary = g.Average(Function(employee) _
 employee.Field(Of Decimal)("Salary")) _
 }

For Each emp In queryAvg
 Response.Write(emp.AvgSalary & "
")
Next

Sample of C# Code

var queryAvg =
 from employee in employees.AsEnumerable()
 group employee by "" into g
 select new
 {
 AvgSalary = g.Average(employee =>
 employee.Field<Decimal>("Salary"))
 };

foreach (var emp in queryAvg)
{
 Response.Write(emp.AvgSalary.ToString() + "
");
}

LINQ provides an easier way to get at this same data. You can use the methods of the
enumerator to get at counts, maximum values, averages, and more. This type of query is also
called a singleton query, because it returns a single value. The following code uses a lambda
expression to pass the salary field from the employee table into the Average function.

 660	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Sample of Visual Basic Code

Dim avgSalary As Decimal = _
 employees.AsEnumerable.Average(Function(employee) _
 employee.Field(Of Decimal)("Salary"))

Response.Write(avgSalary.ToString())

Sample of C# Code

Decimal avgSalary =
 employees.AsEnumerable().Average(
 employee => employee.Field<Decimal>("Salary"));

Response.Write(avgSalary.ToString());

Querying with Typed DataSet Objects
Recall that a typed DataSet inherits from the DataSet class, so it functionally is a DataSet that
contains multiple DataTable objects. However, these DataTable objects are exposed as strongly
typed objects, collections, and fields. This makes the LINQ queries you write strongly typed
too. You do not need to use the Field method. Instead, you can query directly against the
Tablename.Fieldname construct.

As an example, suppose you created the typed DataSet shown back in Figure 11-3. You
can load this typed DataSet by passing it to a DataAdapter instance. You can then use LINQ
to DataSet to write a strongly typed LINQ query against the cached results. The following
code shows just that. The results are then bound to a GridView control.

Sample of Visual Basic Code

Dim pubsCnn As ConnectionStringSettings = _
 ConfigurationManager.ConnectionStrings("PubsData")

Dim pubs As PubsDataSet = New PubsDataSet()

Dim adp As SqlDataAdapter = New SqlDataAdapter(
 "select * from publishers;", pubsCnn.ConnectionString)

adp.Fill(pubs, "publishers")

Dim pubsQuery As IEnumerable(Of DataRow) =
 From p In pubs.publishers
 Where p.country = "USA"
 Select p

GridView1.DataSource = pubsQuery
GridView1.DataBind()

Sample of C# Code

ConnectionStringSettings pubsCnn =
 ConfigurationManager.ConnectionStrings["PubsData"];

 Lesson 2: LINQ and ADO.NET ChAPTER 11 661

PubsDataSet pubs = new PubsDataSet();

SqlDataAdapter adp = new SqlDataAdapter(
 "select * from publishers;", pubsCnn.ConnectionString);

adp.Fill(pubs, "publishers");

IEnumerable<DataRow> pubsQuery = from p in pubs.publishers
 where p.country == "USA"
 select p;

GridView1.DataSource = pubsQuery;
GridView1.DataBind();

Cross-Table LINQ to DataSet Queries
You can use the LINQ join feature discussed in Lesson 1 to join two different DataSet objects
in a single query and produce a new result set. The following code shows an example.

First, the DataSet is loaded with two tables from the pubs database (publishers and titles).
Note that this code is not shown but simply uses a DataAdapter to fill two different tables in
the same DataSet.

Next, both DataTable objects are set to variables. These variables are used in the LINQ query
in the join clause. Notice that the tables are simply joined on the pub_id field. The results of the
query are then pushed into a new anonymous type. Finally, the query is bound to a GridView
control for display to a user.

Sample of Visual Basic Code

Dim dbSchema As DatabaseSchema = New DatabaseSchema()

Dim pubs As DataSet = dbSchema.GetPubsData()

Dim publishers As DataTable = pubs.Tables("publishers")
Dim titles As DataTable = pubs.Tables("titles")

Dim pubQuery =
 From title In titles.AsEnumerable()
 Join pub In publishers.AsEnumerable()
 On title.Field(Of String)("pub_id") Equals
 pub.Field(Of String)("pub_id")
 Where title.Field(Of Decimal)("price") < 10
 Order By title.Field(Of String)("title")
 Select New With
 {
 .Publisher = pub.Field(Of String)("pub_name"),
 .Title = title.Field(Of String)("title"),
 .Price = title.Field(Of Decimal)("price")
 }

GridView1.DataSource = pubQuery
GridView1.DataBind()

 662	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Sample of C# Code

DatabaseSchema dbSchema = new DatabaseSchema();

DataSet pubs = dbSchema.GetPubsData();

DataTable publishers = pubs.Tables["publishers"];
DataTable titles = pubs.Tables["titles"];

var pubQuery =
 from title in titles.AsEnumerable()
 join pub in publishers.AsEnumerable()
 on title.Field<string>("pub_id") equals
 pub.Field<string>("pub_id")
 where title.Field<decimal>("price") < 10
 orderby title.Field<string>("title")
 select new
 {
 Publisher = pub.Field<string>("pub_name"),
 Title = title.Field<string>("title"),
 Price = title.Field<decimal>("price")
 };

GridView1.DataSource = pubQuery;
GridView1.DataBind();

Comparing Data in DataSet Objects
You can use LINQ features to compare data contained in one or more DataTables. These features
include the following operators:

■ Distinct Used to return distinct DataRows in a collection
■ Union Joins two like DataTable objects together
■ intersect Returns a collection of DataRow objects that appear in both DataTable objects
■ Except Returns those DataRow objects that are different between two DataTable objects

You use the DataRowComparer when using these operators. This ensures that DataRows are
compared against one another for equal values across columns.

In the following example, a DataSet is created from the titles table in the pubs database. A
LINQ query then runs to get all price values for books that have sold more than 1000 copies.
The Distinct method is then used to show a list of distinct prices across this list of books.
Sample of Visual Basic Code

Dim dbSchema As DatabaseSchema = New DatabaseSchema()

Dim titlesDs As DataSet = dbSchema.GetTitles()
Dim titleQuery = From title In titlesDs.Tables("titles")
 Where title.Field(Of Integer)("ytd_sales") > 1000
 Order By title.Field(Of Decimal)("price")
 Select title.Field(Of Decimal)("price")

Dim prices = titleQuery.Distinct()

GridView1.DataSource = prices
GridView1.DataBind()

 Lesson 2: LINQ and ADO.NET ChAPTER 11 663

Sample of C# Code

DatabaseSchema dbSchema = new DatabaseSchema();

DataSet titlesDs = dbSchema.GetTitles();
var titleQuery = from title in titlesDs.Tables["titles"].AsEnumerable()
 where title.Field<int>("ytd_sales") > 1000
 orderby title.Field<decimal>("price")
 select title.Field<decimal>("price");

var prices = titleQuery.Distinct();

GridView1.DataSource = prices;
GridView1.DataBind();

As another example, the following code executes two queries against the titles DataSet. The
first query returns all titles that were written with an advance of $5,000 or more. The second
query returns all titles with year-to-date sales greater than $3,000. These queries are each
converted into separate DataTable objects by using the CopyToDataTable method. Finally,
the Intersect method is called to return all titles that match between the two DataSet objects.

Sample of Visual Basic Code

Dim dbSchema As DatabaseSchema = New DatabaseSchema()

Dim titlesDs As DataSet = dbSchema.GetTitles()

Dim titleAdvQuery = From title In titlesDs.Tables("titles")
 Where title.Field(Of Decimal)("advance") > 5000
 Select title

Dim titleSalesQuery = From title In titlesDs.Tables("titles")
 Where title.Field(Of Integer)("ytd_sales") > 3000
 Select title

Dim dtAdvance As DataTable = titleAdvQuery.CopyToDataTable()
Dim dtSales As DataTable = titleSalesQuery.CopyToDataTable()

Dim advanceSales As IEnumerable(Of DataRow) = _
 dtAdvance.AsEnumerable().Intersect(_
 dtSales.AsEnumerable(), DataRowComparer.Default)

GridView1.DataSource = advanceSales.CopyToDataTable()
GridView1.DataBind()

Sample of C# Code

DatabaseSchema dbSchema = new DatabaseSchema();

DataSet titlesDs = dbSchema.GetTitles();

var titleAdvQuery = from title in titlesDs.Tables["titles"].AsEnumerable()
 where title.Field<decimal>("advance") > 5000
 select title;

 664	 ChAPTER 11	 Connecting to and Querying Data with LINQ

var titleSalesQuery = from title in titlesDs.Tables["titles"].AsEnumerable()
 where title.Field<int>("ytd_sales") > 3000
 select title;

DataTable dtAdvance = titleAdvQuery.CopyToDataTable();
DataTable dtSales = titleSalesQuery.CopyToDataTable();

IEnumerable<DataRow> advanceSales = dtAdvance.AsEnumerable().Intersect(
 dtSales.AsEnumerable(), DataRowComparer.Default);

GridView1.DataSource = advanceSales.CopyToDataTable();
GridView1.DataBind();

LINQ to SQL
LINQ to SQL is a technology in ADO.NET built to work directly with a SQL Server database to
enable LINQ-style programming against it. With LINQ to SQL, you build an object-relational (O/R)
map that connects .NET classes to database elements. This O/R map can be built in several ways
(which will be discussed later in this section). After the map is built, you can program against your
database as if you were writing code against objects (because you are). This greatly simplifies and
accelerates database development. Instead of writing SQL script and code that is not strongly
typed, you are able to write .NET, object-oriented code to work with your database.

Note LinQ TO sQL vs. LinQ TO EnTiTiEs

Microsoft has released the Entity Framework, which provides similar features as LINQ
to SQL but is not so directly tied to SQL Server. If you are writing a new application, you
might want to consider the Entity Framework as an alternative to LINQ to SQL. The Entity
Framework is covered in the next section.

To enable LINQ to SQL programming, you must follow a few basic steps before you can
get started writing LINQ code against your database. The following is an overview:

	 1. Add a reference to the System.Data.Linq namespace to your project. This namespace
contains the DataContext object, which is the core object that connects the database
to the O/R map.

	 2. Create an O/R map that connects objects to data tables, columns, and more. There are
multiple ways to create an O/R map in the .NET Framework. We look at three of them
in the next section.

 Lesson 2: LINQ and ADO.NET ChAPTER 11 665

	 3. Connect to your database by using the LINQ to SQL DataContext object. Again, this
object represents the pipeline between the database and your objects.

	 4. Use the features of LINQ and LINQ to SQL to work with your database. For instance,
you can write queries by using strongly typed objects. In addition, you can use the
features of LINQ to SQL to insert, update, and delete data.

It is important to note that LINQ to SQL is part of ADO.NET. Therefore, you can use it with
other ADO.NET components, such as transactions. This allows you to build LINQ to SQL items
but still take advantage of any existing objects you’ve written against ADO.NET. In addition,
LINQ to SQL allows you to use your existing database code, including stored procedures.

Mapping Objects to Relational Data
To program against objects that represent your database, you have to create them. The good
news is that the Visual Studio tools provide two automated code generators that help you create
the O/R map objects. In addition, you can manually code your own O/R map for full control
over the mapping for specific scenarios. This section shows how to use all three options.

MAPPING WITH THE VISUAL STUDIO DESIGNER TOOL
The easiest way to build your O/R map is by using the Visual Studio LINQ to SQL designer. This
provides a design surface on which you can build your classes. To get started, you add a LINQ
to SQL Classes file to your project. You can do so through the Add New Item dialog box.

The LINQ to SQL Classes file is of type DBML, which stands for database markup language.
The file contains XML that defines the metadata of your database. Behind this XML file, you will
find a layout file for use by the designer, and a code file (.vb or .cs). The code file contains the
actual objects against which you write your database code.

You build your map by dragging database entities from Visual Studio’s Server Explorer onto
the design surface. Visual Studio does the rest by generating the code that relates these entities.
The designer also understands foreign key relationships in the database. It implements these
same relationships in the class model. In addition, you can drag stored procedures from the
database into a method window to generate code that allows these stored procedures to act
as .NET methods.

As an example, suppose you are working with the pubs database and want to generate an
O/R map for the author and title database tables. You can do so by opening the DBML file in
the designer, opening the database in Server Explorer, and then dragging tables from Server
Explorer onto the design surface. Figure 11-4 shows an example. Notice the byroyalty stored
procedure (in the upper right) added to the method window of the DBML design surface.

 666	 ChAPTER 11	 Connecting to and Querying Data with LINQ

FigURE 11-4 The LINQ to SQL O/R mapping tool.

What is generated by this designer is XML that represents the metadata of the database
(including the stored procedure) and code that allows a developer to work with the database
by using objects. For example, the top portion of the XML for the pubs DBML file table looks
as follows. Notice that the DBML includes its connection string information. (Only the author
table is shown.)

<?xml version="1.0" encoding="utf-8"?>
<Database Name="pubs" Class="PubsDatabaseModelDataContext"
 xmlns="http://schemas.microsoft.com/linqtosql/dbml/2007">
 <Connection Mode="WebSettings"
 ConnectionString="Data Source=.\SQLEXPRESS;AttachDbFilename=
 |DataDirectory|\pubs.mdf;Integrated Security=True;User Instance=True"
 SettingsObjectName="System.Configuration.ConfigurationManager.
 ConnectionStrings"
 SettingsPropertyName="PubsData" Provider="System.Data.SqlClient" />
 <Table Name="dbo.authors" Member="authors">
 <Type Name="author">
 <Column Name="au_id" Type="System.String" DbType="VarChar(11) NOT NULL"
 IsPrimaryKey="true" CanBeNull="false" />
 <Column Name="au_lname" Type="System.String" DbType="VarChar(40) NOT NULL"
 CanBeNull="false" />
 <Column Name="au_fname" Type="System.String" DbType="VarChar(20) NOT NULL"
 CanBeNull="false" />

 Lesson 2: LINQ and ADO.NET ChAPTER 11 667

 <Column Name="phone" Type="System.String" DbType="Char(12) NOT NULL"
 CanBeNull="false" />
 <Column Name="address" Type="System.String" DbType="VarChar(40)"
 CanBeNull="true" />
 <Column Name="city" Type="System.String" DbType="VarChar(20)"
 CanBeNull="true" />
 <Column Name="state" Type="System.String" DbType="Char(2)"
 CanBeNull="true" />
 <Column Name="zip" Type="System.String" DbType="Char(5)"
 CanBeNull="true" />
 <Column Name="contract" Type="System.Boolean" DbType="Bit NOT NULL"
 CanBeNull="false" />
 <Association Name="author_titleauthor" Member="titleauthors" ThisKey="au_id"
 OtherKey="au_id" Type="titleauthor" />
 </Type>
 </Table>

The code generated by the tool is generated in either Visual Basic or C#, depending on
your preference. The code defines an object for each table and properties within the object
for each field of the table. This code is very readable and easy to understand. You can exam-
ine it in the code-behind file for your DBML model. You will see an example of writing some
of this code yourself in an upcoming section.

MAPPING WITH THE COMMAND-LINE TOOL
You can use the SqlMetal.exe command-line tool to generate both DBML files and O/R code
for a database. This tool is very useful for large databases, for which it might not be practical
to drag objects onto a designer. The files it generates, however, are the same: a DBML file and
a code file (.vb or .cs).

There are many options available from this tool, but there are a few key ones. First, you can
simply point to a database (MDF) file as the basis of the generation. If you are using a SQL Server
database server, you can instead define the /server, /database, /user, and /password options
to set connection information. Alternatively, you can use /conn to define a connection string.
Another option is /language for setting the language of the file you want to generate (the
options are vb or cs).

You typically first generate a DBML file. You can indicate the type of file through the /dbml
option or the /code option. To do so, launch a Visual Studio command prompt (Start | All Programs
| Microsoft Visual Studio 2010 | Visual Studio Tools). You might then want to change the directory
to the location where you want your DBML file to be generated. The following command line
shows an example of generating a DBML file. (For C#, change the language parameter to cs.)

sqlmetal "C:\Code\pubs.mdf" /language:vb /dbml:Pubs.dbml

To create the code, you simply indicate the /code option as follows.

sqlmetal "C:\Code\pubs.mdf" /language:vb /code:Pubs.vb

You can then add these files to the App_Code directory of your project. You work with
them in the same way as with any other DBML file.

 668	 ChAPTER 11	 Connecting to and Querying Data with LINQ

MAPPING OBJECTS TO ENTITIES IN THE CODE EDITOR
The third option for connecting classes to database objects is to write the code yourself. This
can provide granular control, but it can also be a lot of work. It is recommended that you use
an automated tool, but this section demonstrates how you can define your own O/R map.

To get started, you first create a class file. At the top of the class file, you should define an
Imports statement (a using statement in C#) to include the following namespaces.

Sample of Visual Basic Code

Imports System.Data.Linq
Imports System.Data.Linq.Mapping

Sample of C# Code

using System.Data.Linq;
using System.Data.Linq.Mapping;

The next step is to link your class to a table in the database through the Table attribute.
The following code shows an example.

Sample of Visual Basic Code

<Table(Name:="Authors")> _
Public Class Author

Sample of C# Code

 [Table(Name="Authors")]
public class Author
{

The next step is to create properties on the object, with the Column attribute applied to
each, that map the database table columns to the specified property. This class lets you set
the name of the database field (if it is different from the name of the property), the variable
you intend to use to store the field’s value, the data type, whether the item is a primary key,
and more. The following code shows an example of two properties mapped to columns in
the authors table of the pubs database.

Sample of Visual Basic Code

 Private _authorId As String
 <Column(IsPrimaryKey:=True, Storage:="_authorId", name:="au_id")> _
 Public Property Id() As String
 Get
 Return _authorId
 End Get
 Set(ByVal value As String)
 _authorId = value
 End Set
 End Property

 Private _lastName As String
 <Column(Storage:="_lastName", name:="au_lname")> _
 Public Property LastName() As String
 Get
 Return _lastName

 Lesson 2: LINQ and ADO.NET ChAPTER 11 669

 End Get
 Set(ByVal value As String)
 _lastName = value
 End Set
 End Property

Sample of C# Code

private string _authorId;
[Column(IsPrimaryKey=true, Storage="_authorId", Name="au_id")]
public string Id
{
 get
 {
 return _authorId;
 }
 set
 {
 _authorId = value;
 }
}

private string _lastName;
[Column(Storage = "_lastName", Name = "au_lname")]
public string LastName
{
 get
 {
 return _lastName;
 }
 set
 {
 _lastName = value;
 }
}

The final step is to create a class that exposes your tables. You do so by inheriting from the
DataContext object. This object acts as the go-between for your database and your objects.
You then expose your database and its tables as properties of this class. You can define the
class to automatically get a connection to the database when it is created. Alternatively, you
can pass a database connection string to it. The following example shows how to provide the
connection string to the constructor of the class.

Sample of Visual Basic Code

Public Class PubsDb
 Inherits DataContext

 Public Authors As Table(Of Author)
 Public Titles As Table(Of Title)

 Public Sub New(ByVal connection As String)
 MyBase.New(connection)
 End Sub

End Class

 670	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Sample of C# Code

public class PubsDb: DataContext
{
 public Table<Author> Authors;
 public Table<Title> Titles;

 public PubsDb(string connection) : base(connection)
 {
 }
}

When your code is complete, you can use your custom O/R map class as you would one that
was generated from a code generator. If you add other (nonmapped) properties, fields, and
methods, they are ignored at run time. In this way, you control the logic you intend to put in
your classes when you write your O/R map.

Querying Data with LINQ to SQL
You query data with LINQ to SQL much like you write any LINQ query. The big difference is the
simplified way in which you connect to the actual data and the fact that you can write your
queries by using the O/R mapped objects.

If you are using an auto-generated DBML file, the file will inherit from DataContext and will
already be set up to get a connection to the database. You simply need to create an instance of
this file and write your query. As an example, the following code shows how to define a query
against the authors table and then bind the results to a GridView.

Sample of Visual Basic Code

Dim pubs As PubsDatabaseModelDataContext = _
 New PubsDatabaseModelDataContext()

 Dim authQuery = From auth In pubs.authors
 Where auth.state = "CA"
 Order By auth.au_lname
 Select auth

 GridView1.DataSource = authQuery
 GridView1.DataBind()

Sample of C# Code

PubsDatabaseModelDataContext pubs =
 new PubsDatabaseModelDataContext();

var authQuery = from auth in pubs.authors
 where auth.state == "CA"
 orderby auth.au_lname
 select auth;

GridView1.DataSource = authQuery;
GridView1.DataBind();

 Lesson 2: LINQ and ADO.NET ChAPTER 11 671

Notice in this example that you are using the strong types for tables, collections, and fields.
This makes the programming easier, faster, and more readable because types are checked at
compile time.

Inserting, Updating, and Deleting with LINQ to SQL
LINQ to SQL makes inserting, updating, and deleting data in your database a very simple process.
It creates the connections between your O/R map and your database. You simply need to make
a modification to object instances and then save the changes. You work with your object model
to add a new instance to a collection, modify an object, or remove an object from the collection.
When your change is complete, you call the SubmitChanges method of the DataContext object
to write the results back to the database.

For example, if you want to add a new author to the pubs database, you start by creating a
new author object. You then add it to the Authors table by using the InsertOnSubmit method.
When you are ready to submit all changes, you call SubmitChanges. The following code shows
this example.

Sample of Visual Basic Code

Dim pubs As PubsDatabaseModelDataContext = _
 New PubsDatabaseModelDataContext()

Dim auth As New author
auth.au_id = "000-00-0001"
auth.au_fname = "Monica"
auth.au_lname = "Brink"
auth.address = "555 Some St."
auth.state = "WA"
auth.city = "Redmond"
auth.contract = False
auth.phone = "555-1212"
auth.zip = "12345"

pubs.authors.InsertOnSubmit(auth)
pubs.SubmitChanges()

Sample of C# Code

PubsDatabaseModelDataContext pubs =
 new PubsDatabaseModelDataContext();

author auth = new author();
auth.au_id = "000-00-0001";
auth.au_fname = "Monica";
auth.au_lname = "Brink";
auth.address = "555 Some St.";
auth.state = "WA";
auth.city = "Redmond";
auth.contract = false;
auth.phone = "555-1212";
auth.zip = "12345";

pubs.authors.InsertOnSubmit(auth);
pubs.SubmitChanges();

 672	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Deleting data works much the same way. You call the DeleteOnSubmit method instead. You
pass the instance you want to delete to this method. You then call SubmitChanges.

To update data, you first retrieve the data by using a query (or by using the GetTable
method of the DataContext object). You then update the data and call SubmitChanges to
save your changes to the database.

LINQ to Entities
LINQ to Entities works in a manner that is similar to that of LINQ to SQL. You define a model
to represent your application domain. You then create a map between this model and your
actual data source. You can then load data into the model and query against it by using LINQ.
However, LINQ to Entities uses the ADO.NET Entity Framework as a basis for the models. These
models can be created for any data source (not just for SQL Server).

The ADO.NET Entity Framework allows you to create a conceptual model of your application
domain. This ensures that you write application code against the conceptual domain objects
rather than directly against a relational database. This allows your model and database to
evolve independently. If changes need to be made to either, you only need to change the
mappings. In this way, you can even change your storage schemas without having to change
your actual application code. You would just change the mapping.

Creating an Entity Model
You create an Entity Framework model by using the ADO.NET Entity Data Model template
from the Add New Item dialog box in Visual Studio. This file is an EDMX file. Like a LINQ to
SQL DBML file, this file has an XML representation of the schema (which can be edited in the
designer). It also includes a code-behind class file that contains the actual entity objects in
your model as well as the database connectivity and the table and column mappings.

When you add a new ADO.NET Entity Data Model to your website, Visual Studio walks you
through the Entity Data Model Wizard. Here you can choose to create your model from scratch
or generate it from an existing database structure. You can also select the connection to an
actual database. Finally, you select the items you want to include in your model. Figure 11-5
shows an example. Notice that you can also pluralize or singularize object names to make sure
individual objects are singular and collections of those objects have plural names.

When you have finished using the wizard to associate your entities with their data source
counterparts, Visual Studio generates the EDMX file. Again, this includes a definition of the
current database structure, an object structure, and a mapping between these two structures.
Figure 11-6 shows an example of the pubs database generated as an Entity Framework model.

 Lesson 2: LINQ and ADO.NET ChAPTER 11 673

FigURE 11-5 Using the Entity Data Model Wizard to create an Entity Framework model of an existing
data source.

FigURE 11-6 The Entity Data Model as laid out in Visual Studio.

 674	 ChAPTER 11	 Connecting to and Querying Data with LINQ

You can use the Visual Studio tools to edit this model and the related mapping. For example,
by default, the object model is generated as a 1:1 mapping with the database. The object model
includes the name of classes and properties. Figure 11-7 shows the Author class selected with
the mapping editor open. Notice that the class has been renamed along with all the properties
of the class. However, the map is still defined to connect this object and these properties to their
counterparts in the database.

FigURE 11-7 Using the entity model editor to change the structure of an application model but maintain
the mapping back to the database.

These tools allow you to do several additional things, such as generate a database from
the model, validate the model mapping against a data source, map to stored procedures,
and update the database portion of the model from an actual database. Notice the Model
Browser in Figure 11-7 (on the right side). You can clearly see here that the model (top) is
independent of the database information (bottom).

 Lesson 2: LINQ and ADO.NET ChAPTER 11 675

Writing LINQ to Entities Queries
You can use what you’ve learned thus far to write LINQ to Entities queries. You simply
create a new instance of your entity model, and then you can write queries against the
data it represents.

An entity model inherits from System.Data.Objects.ObjectContext. This context object
provides access to your application model and provides functionality to map that model to the
data source. The following code shows a basic example of creating a new instance of an entity
model and then writing a query against the Authors collection. Note that the ObjectContext is
wrapped in a using statement. This is not required but is good practice, to make sure that the
context is properly disposed the data retrieval is finished.

Sample of Visual Basic Code

Using pubs As New PubsModel.pubsEntities()

 Dim authQuery = From a In pubs.Authors
 Where a.State = "CA"
 Order By a.LastName
 Select a

 GridView1.DataSource = authQuery
 GridView1.DataBind()

End Using

Sample of C# Code

using (PubsModel.pubsEntities pubs = new PubsModel.pubsEntities())
{
 var authQuery = from a in pubs.Authors
 where a.state == "CA"
 orderby a.LastName
 select a;

 GridView1.DataSource = authQuery;
 GridView1.DataBind();
}

Of course, you can write more complex queries with LINQ to Entities (as you can with all
LINQ data sources). You can also take advantage of the entity model relationships between
objects. You will see an example of this in the upcoming practice.

 676	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Quick Check
	 1. When writing a LINQ query against a standard DataSet, how do you access the

DataTable and the column or columns you want to query against?

	 2. What are three ways to create an O/R map by using LINQ to SQL?

	 3. From what class does a LINQ to Entities model inherit?

Quick Check Answers
	 1. Because a standard DataSet is not strongly typed, you must use the DataSet.Tables

and DataTable.Field properties to access the table and its columns in a LINQ query.
You pass the names (as string values) to these methods.

	 2. You can use the LINQ to SQL Classes template to create a DBML file and
drag tables onto the design surface. You can also use the command-line tool,
SqlMetal. Finally, you can code your entities manually as class files that use the
System.Data.Linq.Mapping attributes to identify tables and columns.

	 3. An entity model inherits from the System.Data.Objects.ObjectContext class. This
class provides the mapping from an application model to a data source.

PrActIcE	 Working with LinQ to Entities

In this practice, you create a website and define an entity model. You then use LINQ to Entities
to work with this data on a webpage.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Creating the ASP.NET Website and Entity Model

In this exercise, you create the website, define the XML file, and write LINQ queries to work
with the XML.

	 1. Open Visual Studio and create a new ASP.NET website called LinqEntitymodelExample
by using either C# or Visual Basic.

	 2. Add the pubs.mdf file to the App_Data directory of your solution. You can get this file
from the CD for this book.

	 3. Add a new ADO.NET Entity Data Model to your solution. You can do so by right-clicking
the website and choosing Add New Item. Name this model PubsEntitymodel.edmx.

 Lesson 2: LINQ and ADO.NET ChAPTER 11 677

Allow Visual Studio to create the App_Code directory and add the file into that directory
for you. This will launch the Entity Data Model Wizard.

	 a. On the first page, select Generate From Database and click the Next button.

	 b. On the second page, select pubs.mdf as the database. Allow the wizard to save
your connection string in the Web.config file as PubsEntities. Click Next.

	 c. On the third page, expand the Tables collection. Select publishers and titles. You can
select other tables; however, this example only uses these two tables. Make sure that
the check boxes are selected. Set the model namespace to PubsEntityModel. Click
Finish to complete the wizard.

	 4. The entity designer should now be open in Visual Studio. One at a time, right-click each
entity name in the model and rename it to capitalize both class names. Next, do the
same for each property to rename these properties with capital letters and, optionally,
more descriptive names. (Figure 11-8 provides suggested names.)

	 5. Open the Model Browser by right-clicking the design surface and choosing Model
Browser. Expand the EntityContainer.PubsEntities folder. Expand Entity Sets. Right-
click each item (Publishers1 and Title1) in turn and choose Properties. Use the Name
property to eliminate the numeral 1 from each name.

Figure 11-8 shows an example of what your model should look like.

FigURE 11-8 Renaming the classes and properties in an application model.

 678	 ChAPTER 11	 Connecting to and Querying Data with LINQ

	 6. Note that this will not impact the table mapping. To verify, right-click an entity and
choose Table Mapping to review.

	 7. You now have an entity model with which to work. You can examine the code for this
model by opening the code-behind file for the model from Solution Explorer. You can
also look at the EDMX markup by right-clicking the file and choosing Open With. From
there you can select the Xml (Text) Editor.

ExErcIsE	2	 Writing the LINQ Queries and Connecting to a Webpage

In this exercise, you write queries against the entity model created previously and bind the
results to controls on a webpage.

	 1. Continue editing the solution you created in the previous exercise. Alternatively, you can
open the completed Lesson 2, Exercise 1 project in the samples installed from the CD.

	 2. Open the Default.aspx page. Lay out a form to include DropDownList, Button, and
GridView controls. Your markup inside the MainContent content placeholder should
look similar to the following.

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <h2>View Publisher Titles</h2>
 Select a publisher from the list:

 <asp:DropDownList ID="DropDownListPublishers" runat="server">
 </asp:DropDownList>
 <asp:Button ID="ButtonShowTitles" runat="server" Text="Show Titles"
 onclick="ButtonShowTitles_Click" />
 <hr />
 <asp:GridView ID="GridViewTitles" runat="server">
 </asp:GridView>
</asp:Content>

	 3. Open the code-behind file for the Default.aspx page. Define a Page_Load event that
populates the DropDownList control with publishers from the entity model. You should
only call this code if the page is a get request (not a postback). Your code should look
similar to the following.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Not IsPostBack Then

 Dim pubs As PubsEntityModel.PubsEntities = _
 New PubsEntityModel.PubsEntities()

 Dim pubQuery = From p In pubs.Publishers
 Order By p.PublisherName
 Select p

 Lesson 2: LINQ and ADO.NET ChAPTER 11 679

 DropDownListPublishers.DataTextField = "PublisherName"
 DropDownListPublishers.DataValueField = "PublisherId"
 DropDownListPublishers.DataSource = pubQuery
 DropDownListPublishers.DataBind()

 End If

End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 PubsEntityModel.PubsEntities pubs = new PubsEntityModel.PubsEntities();

 var pubQuery = from p in pubs.Publishers
 orderby p.PublisherName
 select p;

 DropDownListPublishers.DataTextField = "PublisherName";
 DropDownListPublishers.DataValueField = "PublisherId";
 DropDownListPublishers.DataSource = pubQuery;
 DropDownListPublishers.DataBind();
 }
}

	 4. Add a click event for the Button control. Add code to this control to select titles based
on the selected publisher. Bind the results to the GridView control. Your code should
look as follows.

Sample of Visual Basic Code

Protected Sub ButtonShowTitles_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonShowTitles.Click

 Using pubs As New PubsEntityModel.PubsEntities()

 Dim titleQuery = From t In pubs.Titles
 Where t.PublisherId =
 DropDownListPublishers.SelectedValue
 Order By t.TitleName
 Select t

 GridViewTitles.DataSource = titleQuery
 GridViewTitles.DataBind()

 End Using
End Sub

 680	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Sample of C# Code

protected void ButtonShowTitles_Click(object sender, EventArgs e)
{
 using (PubsEntityModel.PubsEntities pubs = new
 PubsEntityModel.PubsEntities())
 {
 var titleQuery = from t in pubs.Titles
 where t.PublisherId ==
 DropDownListPublishers.SelectedValue
 orderby t.TitleName
 select t;

 GridViewTitles.DataSource = titleQuery;
 GridViewTitles.DataBind();

 }
}

	 5. Run the application and view the results.

Lesson Summary
■	 You can use LINQ to DataSet to write queries against in-memory representations of

data tables. You use the DataAdapter object to fill a DataSet with data. You can then
use the DataTable.Tables method and DataTable.Field method to reference the table
and column you want to use in your query. You can also fill a strongly typed DataSet
object and thus write queries against strongly typed object collections instead of just
DataRow collections.

■	 LINQ to SQL allows you to define an O/R map as a DBML file that creates objects to
represent your database tables. You can then write LINQ queries against these objects
as well as insert, update, and delete data in the database.

■	 You can create an Entity Data Model (EDMX file) to work with LINQ to Entities. This
model includes an application model, a database schema, and a map to keep the
two in sync. You can then write LINQ queries against the application model objects
without concerning yourself with the ADO.NET code.

 Lesson 2: LINQ and ADO.NET ChAPTER 11 681

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“LINQ and ADO.NET.” The questions are also available on the companion CD in a practice
test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You need to write a where clause in a LINQ query against a strongly typed DataSet of
universities (from u in universities). The where clause should select all universities with
more than 10,000 enrolled students. Which where clause would you write?

	 A. where u.Field("EnrolledStudents") > 10000

	 B. where u.EnrolledStudents > 10000

	 c. C#: where u[“EnrolledStudents”] > 10000

visual basic: where u(“EnrolledStudents”) > 10000

	 D. where university.Fields.EnrolledStudents > 10000

	 2. Which of the following objects represents a LINQ to SQL O/R map?

	 A. DataSet

	 B. XElement

	 c. ObjectContext

	 D. DataContext

	 3. You are using an Entity Data Model object. Which of the following lines of code will
initialize this object and connect to the associated database? (Choose all that apply.)

	 A. MyModel.myEntities model = new MyModel.myEntitites()

	 B. MyModel.myEntities model = new MyModel.myEntitites(cnnString)

	 c. PubsModel.pubsEntities pubs = new PubsModel.pubsEntities(

 new System.Data.EntityClient.EntityConnection(cnnString))

	 D. MyModel.myEntities model = new MyModel.myEntitites(

 new DataContext(cnnString))

 682	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Case scenarios

In the following case scenarios, you apply what you’ve learned in this chapter. If you have
difficulty completing this work, review the material in this chapter before beginning the
next chapter. You can find answers to these questions in the “Answers” section at the end
of this book.

Case Scenario 1: Writing LINQ Queries
You are a developer working for the School of Fine Art. You have been asked to write a
new application for working with high school transcripts of incoming freshman. Many
of these transcripts are available from a central high school reporting XML web service.
Others have been sent to the university as XML files to be placed into a standard directory
using a standard format.

You have been asked to write a few reports that use this data. One report classifies incoming
freshman according to their high school grade point average. Another report identifies new
students based on high school size.

Thinking about how you will write these queries, answer the following questions:

	 1. What will you use to combine the results of both data sources?

	 2. How will you write your queries?

Case Scenario 2: Working with LINQ and ADO.NET
You are a developer working for Contoso, Ltd., a propane supplier. The company includes multi-
ple subsidiaries that came about by acquisition. Each subsidiary has similar data. However, each
database technology and schema is different. You have been asked to write a new application
that each subsidiary will install to run its business. However, too much is tied to each subsidiary’s
database schema. Therefore, the individual databases will not be re-written.

Thinking about how you will write this application, answer the following question.

■ What data access technology should you use?

 Suggested Practices ChAPTER 11 683

suggested Practices

To successfully master the exam objective presented in this chapter, complete the following tasks.

Write LINQ Queries
For this task, you should complete at least Practice 1 for a better understanding of writing LINQ
queries. You can complete Practice 2 to gain more advanced experience.

■ Practice 1 Create a set of custom objects as class files. Create list instances of these
custom objects. Use these lists to practice writing basic LINQ queries, including joins
and groups. Display your results to a webpage.

■ Practice 2 Return to the practice for Lesson 1. Modify the code to expose the XML
data as a web service formatted as JSON. Implement the button click event as a JQuery
request that calls this new service without refreshing the page.

Work with LINQ and ADO.NET
You should complete Practice 1 to gain experience writing queries against LINQ to DataSets.
Practice 2 will give you experience with LINQ to SQL. Complete Practice 3 to gain experience
with LINQ to Entities.

■ Practice 1 Add the Northwind database to a website project. Create and fill DataSet
objects with data from the database. Write LINQ queries against this data, including
transformations, joins, and groups.

■ Practice 2 Add the Northwind database to a website project. Create a LINQ to SQL
Classes DBML file for the database. Write LINQ queries against this data, including
transformations, joins, and groups.

■ Practice 3 Add the Northwind database to a website project. Create an ADO.NET
Entity Data Model EDMX file by using the database. Modify the application schema to
be different than the database schema. Write LINQ queries against this data, including
transformations, joins, and groups.

 684	 ChAPTER 11	 Connecting to and Querying Data with LINQ

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you can
look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 12 685

C h A P T E R 1 2

Working with
Data Source Controls
and Data-Bound Controls
Microsoft ASP.NET provides several server controls that build on top of the features

of Microsoft ADO.NET, LINQ to SQL, and LINQ to Entities. These controls simplify
the development of data-driven websites. They make it easier to build webpages that
access, display, manipulate, and save data. Using these controls can provide development
efficiency when you are building business applications that rely heavily on data.

This chapter first presents the ASP.NET data source controls. You use these controls
to configure access to data that you intend to use on a webpage. A data source can be a
relational database, data stored inside of in-memory objects (such as a DataSet or an Entity
Data Model), XML-based data, or data you retrieve via Microsoft Language-Integrated
Query (LINQ). The second lesson in this chapter demonstrates how you can bind to data to
allow users to interact with it. The lesson covers using web server controls such as GridView,
Repeater, DetailsView, and many more. The last lesson presents the new Dynamic Data
features of ASP.NET that allow you to easily create websites for working with the create,
read, update, and delete (CRUD) operations of an entire data model that exists as either
a DataContext (such as LINQ to SQL) or an ObjectContext (such as LINQ to Entities).

Exam objectives in this chapter:
■	 Displaying and Manipulating Data

■ Implement DataSource controls.
■ Implement data-bound controls.
■ Create and configure a Dynamic Data project.

Lessons in this chapter:
■	 Lesson 1: Connecting to Data with Data Source Controls 687
■	 Lesson 2: Working with Data-Bound Web Server Controls 721
■	 Lesson 3: Working with ASP.NET Dynamic Data 755

 Contents

 ChAPTER 12 685

 Working with Data source Controls and Data-bound Con-
trols 685

Before You Begin . 686

Lesson 1: Connecting to Data with Data Source Controls 687

Understanding the Data Source Controls 687

Using Objects as Data Sources with ObjectDataSource 690

Connecting to Relational Databases by Using SqlDataSource 698

Working with Access Data Files and AccessDataSource Controls 702

Connecting to an Entity Model by Using EntityDataSource 703

Connecting to XML Data by Using XmlDataSource 707

Connecting to LINQ-Based Data by Using LinqDataSource 711

Connecting to Site Navigation Data by Using SiteMapDataSource 712

Lesson Summary 719

Lesson Review 720

Lesson 2: Working with Data-Bound Web Server Controls 721

Introducing Data-Bound Controls 721

Simple Data-Bound Controls 724

Composite Data-Bound Controls 728

Hierarchical Data-Bound Controls 741

Lesson Summary 753

Lesson Review 754

Lesson 3: Working with ASP.NET Dynamic Data . 755

Getting Started with Dynamic Data Websites 756

Extending and Customizing Dynamic Data 763

Using Dynamic Controls in Existing Sites 777

Lesson Summary 781

Lesson Review 782

Case Scenarios . 783

Case Scenario 1: Choosing Data Source Controls 783

Case Scenario 2: Implementing a Master-Detail Solution 783

Case Scenario 3: Adding ASP.NET Dynamic Data to a Website 784

Suggested Practices . 784

Take a Practice Test . 785

 686	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
with Microsoft Visual Studio 2010 by using Microsoft Visual Basic or Microsoft Visual C#. In
addition, you should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Using Hypertext Markup Language (HTML) and client-side scripting

■ Creating ASP.NET websites and forms

■ Adding web server controls to a webpage

■ Understanding how generic types work in C# or Visual Basic

■ Understanding how to use ADO.NET to connect to and work with data

■ Writing LINQ queries and working with LINQ data–specific providers

real World

Mike Snell

Not all applications require developers to write custom, abstracted data layers and
reusable frameworks. I’ve seen many simple business applications that suffered

from over-engineering. Many of these smaller applications can take advantage of
the simple data-binding techniques built into the Visual Studio ASP.NET tools. These
applications can be created quickly, typically do not require much testing, and allow
developers to focus on solving business problems rather than building frameworks
and reusable objects that might never realize the goal of reusability. In fact, ASP.NET
and ADO.NET can now generate a data layer for you by using LINQ to Entities.

Applications that can benefit from this approach often have a common profile: they
typically have compressed schedules, are meant to be websites from beginning
to end, and might fill a somewhat temporary need. When optimizing for these
considerations, you might find that building data-bound applications by using
the server controls in ASP.NET is fast, easy, and economical.

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 687

Lesson 1: Connecting to Data with Data source
Controls

Data source controls are server controls that you can drag onto your page at design time.
A data source control does not have a direct visual component (you use data-bound controls
for actual data display, as discussed in the next lesson). Instead, they allow you to declaratively
define access to data found in objects, XML, and databases. This lesson examines how you
can use data source controls to make connecting to and working with data in an ASP.NET
webpage a fast and straightforward development process.

After this lesson, you will be able to:
■	 Use the data source controls (LinqDataSource, ObjectDataSource, SqlDataSource,

AccessDataSource, XmlDataSource, SiteMapDataSource, and EntityDataSource) to
select data and bind it to a data-bound control.

■	 Pass parameter values to data source controls to allow data filtering.
■	 Enable data sorting with data source controls.
■	 Modify data and save the changes to a data store by using data source controls.

Estimated lesson time: 40 minutes

Understanding the Data Source Controls
The data source controls in ASP.NET manage the tasks of selecting, updating, inserting, and
deleting data on a webpage. They do so in combination with data-bound controls. The data-
bound controls provide the user interface (UI) elements that allow a user to interact with the
data by triggering events that call the data source controls.

There are multiple data source controls in ASP.NET. Each is meant to provide specialized
access to a certain type of data, such as direct access to a database, objects, XML, or LINQ-
based queries. These controls can be found in the System.Web.UI.WebControls namespace.
Figure 12-1 shows an overview of the data source controls in ASP.NET.

 688	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

FigURE 12-1 The DataSource web control classes.

Each data source control is used in a similar manner. You can drag the control onto your
webpage from the Toolbox in Visual Studio. You can then use the Configure Data Source
Wizard to connect to your data and generate markup for the data source control. Connecting
to data with markup (instead of code) is referred to as declarative data binding, because you
are declaring your data access rather than writing ADO.NET code. Figure 12-2 shows the step
for selecting data in this wizard.

This wizard creates the declarative markup used to define the data source connection infor-
mation. This markup can contain connection information, data manipulation statements (such
as SQL), and more. The following shows an example of the SqlDataSource control’s markup for
connecting to the Products table in the Northwind database.

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:NorthwindCnnString %>”
 SelectCommand=”SELECT * FROM [Alphabetical list of products]”>
</asp:SqlDataSource>

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 689

FigURE 12-2 The Configure Data Source Wizard in Visual Studio allows you to select the data to be
exposed by your data source control.

exaM tIp

The wizard-based UI is a great tool for defining many of your data source declarations.
However, it is important that you know the markup syntax for working with these controls.
This will help with both programming against the controls and taking the exam. Therefore,
the rest of this lesson focuses on the markup (and not the wizard-based UI).

Each data source control is specialized for the type of data with which it is meant to work.
The following sections provide an overview of what makes each of these controls unique. The
discussion includes some of the common uses of data source controls, such as binding, filtering,
sorting, and modifying data.

 690	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Using Objects as Data Sources with ObjectDataSource
Many web applications work with a middle tier, or business layer, for retrieving and working with
application data. This middle tier encapsulates database code inside classes. Web developers can
then call methods on these classes to select, insert, modify, and delete data. With this structure,
developers do not have to write direct ADO.NET code, because the code is written by whoever
wrote the middle tier. In addition, this middle tier is often reusable across different applications.

You can use the ObjectDataSource control in ASP.NET to connect to and work with middle-
tier objects in much the same way that you would work with the other data source objects. This
control can be added to a page and configured to create an instance of a middle-tier object
and call its methods to retrieve, insert, update, and delete data. The ObjectDataSource control is
responsible for the execution lifetime of the object. It creates it and disposes of it. Therefore, the
business layer code should be written in a stateless manner. Alternatively, if the business layer
uses static methods (or shared methods, in Visual Basic), the ObjectDataSource can use these
methods without creating an instance of the actual business object. In this case, however, keep
in mind that you could end up with performance issues related to thread contention as multiple
requests try to access the same static method.

You configure an ObjectDataSource to connect to a class by setting its TypeName attribute
to a string that represents a valid type to which the web application has access. This class might
be inside your App_Code directory or inside a DLL file to which the website has a reference (it
should not be in your webpage’s code-behind file). You then set the SelectMethod attribute to a
valid method name on the class. The ObjectDataSource control will then call this method when
the data is requested.

As an example, imagine that you need to write an interface to allow a user to manage the
shipper table inside the Northwind database. You might have a business object that can return
all the shippers in the database and that looks as follows.

Sample of Visual Basic Code

Public Class Shipper

 Private Shared _cnnString As String = _
 ConfigurationManager.ConnectionStrings("NorthwindConnectionString").ToString

 Public Shared Function GetAllShippers() As DataTable
 Dim adp As New SqlDataAdapter(_
 "SELECT * FROM shippers", _cnnString)

 Dim ds As New DataSet("shippers")
 adp.Fill(ds, "shippers")

 Return ds.Tables("shippers")
 End Function

End Class

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 691

Sample of C# Code

public class Shipper
{
 private static string _cnnString =
 ConfigurationManager.ConnectionStrings["NorthwindConnectionString"].ToString();

 public static DataTable GetAllShippers()
 {
 SqlDataAdapter adp = new SqlDataAdapter(
 "SELECT * FROM shippers", _cnnString);

 DataSet ds = new DataSet("shippers");
 adp.Fill(ds, "shippers");

 return ds.Tables["shippers"];
 }
}

The Shipper class just listed returns a DataTable as a result of a call to GetAllShippers. You
can configure an ObjectDataSource control to provide this data to a webpage by setting the
TypeName and SelectMethod attributes as in the following code.

<asp:ObjectDataSource
 ID="ObjectDataSource1"
 runat="server"
 TypeName="Shipper"
 SelectMethod="GetAllShippers">
</asp:ObjectDataSource>

You can then use this data source control to bind to a web control (more on this in the
next lesson). For example, the following markup binds the ObjectDataSource to a DetailsView
control to display the information to the user.

<asp:DetailsView
 ID="DetailsView1"
 runat="server"
 DataSourceID="ObjectDataSource1"
 AllowPaging="true">
</asp:DetailsView>

Figure 12-3 shows an example of the output.

 692	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

FigURE 12-3 An ObjectDataSource bound to a DetailsView control.

Notice that the Shipper.GetAllShippers method returns a DataTable. An ObjectDataSource
class can work with any data that implements any of the following interfaces: IEnumerable,
IListSource, IDataSource, or IHierarchicalDatasource. This means that as long as your business
object class returns data as a DataTable, a DataSet, or some form of a collection, you can be
sure that this data can be used with an ObjectDataSource control.

Passing Parameters
The business objects with which you work will undoubtedly define methods that take parameter
values. These parameters might define a filter on the data or indicate values to be used when
inserting or updating data. Fortunately, you can use the ObjectDataSource to map various page-
level elements to parameters to be passed to your objects.

There are multiple sets of parameters you can define for an ObjectDataSource. These
sets include Select, Insert, Update, Delete, and Filter parameters. These parameters work in
conjunction with the method of the same name. For example, the <SelectParameters> set
works with the method defined by the SelectMethod attribute.

The source of a parameter’s value can come from multiple places in your page or site, including
Cookie, Control, Session, QueryString, Form, or Profile objects. These options make defining and
mapping a data source an easier task. You can also define the source value in code.

As an example, suppose that you have a business object name Customer. Assume that
this object contains the GetCustomersByCity method, which takes a city value as string. The
method then returns a list of customers for the specified city parameter. Now suppose that

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 693

you need to create a data source control to map to this class. The ObjectDataSource should
pass the value for the city to the method from the query string. In this case, you would create a
SelectParameters set that includes a QueryStringParameter definition. The QueryStringParameter
definition would map between the name of the query string parameter and the name of the
method’s parameter. The following code shows an example.

<asp:ObjectDataSource
 ID="ObjectDataSource1"
 runat="server"
 TypeName="Customer"
 SelectMethod="GetCustomersByCity">
 <SelectParameters>
 <asp:QueryStringParameter
 Name="city"
 QueryStringField="city"
 Type="String" />
 </SelectParameters>
</asp:ObjectDataSource>

You might then attach this data source to a GridView or similar control. You can then call
the page by passing in the appropriate query string value, as follows.

http://localhost:5652/DataSourceSamples/Customers.aspx?city=London

You can use this same technique to pass multiple parameters of various types and from
various sources. You can also use this same technique to pass parameters meant to handle
inserting, updating, and deleting, as discussed in the next section.

Inserting, Updating, and Deleting
You can also use an ObjectDataSource control to define how data should be inserted, updated,
and deleted. The InsertMethod, UpdateMethod, and DeleteMethod attributes can be mapped
directly to the methods of an object that are to be called when these activities are invoked. You
then use parameter definitions to map values to these method calls.

As an example, recall the Shipper class discussed previously. Now suppose that additional
methods have been added to this object. These method signatures might look as follows.

Sample of Visual Basic Code

Public Shared Function GetAllShippers() As DataTable
Public Shared Sub InsertShipper(ByVal companyName As String, ByVal phone As String)
Public Shared Sub UpdateShipper(ByVal shipperId As Integer, _
 ByVal companyName As String, ByVal phone As String)
Public Shared Sub DeleteShipper(ByVal shipperId As Integer)

Sample of C# Code

public static DataTable GetAllShippers()
public static void InsertShipper(string companyName, string phone)
public static void UpdateShipper(int shipperId, string companyName, string phone)
public static void DeleteShipper(int shipperId)

 694	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

You can map an ObjectDataSource control to each of these methods. In doing so, you need
to define the parameters each method expects. The following markup shows an example.

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server" TypeName="Shipper"
 SelectMethod="GetAllShippers" InsertMethod="InsertShipper"
 UpdateMethod="UpdateShipper" DeleteMethod="DeleteShipper">
 <DeleteParameters>
 <asp:Parameter Name="ShipperId" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="shipperId" Type="Int32" />
 <asp:Parameter Name="companyName" Type="String" />
 <asp:Parameter Name="phone" Type="String" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="companyName" Type="String" />
 <asp:Parameter Name="phone" Type="String" />
 </InsertParameters>
</asp:ObjectDataSource>

You can then use this ObjectDataSource control with a data-bound control such as a
DetailsView. The following markup is an example. In this case, the fields are bound individually.
This allows granular control over the ShipperId field because it is an auto-generated primary
key (identity) in a Microsoft SQL Server database. Therefore, you set the InsertVisible property
to false, to make sure that the DetailsView does not try to pass a value for ShipperId to the
InsertMethod of the ObjectDataSource. You also set the ReadOnly attribute of the same field
to true, to indicate that the value should not be available to change during an edit operation.

<asp:DetailsView ID="DetailsView1" runat="server" AllowPaging="True"
 DataSourceID="ObjectDataSource1" AutoGenerateRows="False" Width="450px"
 DataKeyNames="ShipperID">
 <Fields>
 <asp:BoundField DataField="ShipperID" HeaderText="ShipperId"
 ReadOnly="true" InsertVisible="false" />
 <asp:BoundField DataField="CompanyName" HeaderText="CompanyName" />
 <asp:BoundField DataField="Phone" HeaderText="Phone" />
 <asp:CommandField ShowInsertButton="True" ShowDeleteButton="True"
 ShowEditButton="True" />
 </Fields>
</asp:DetailsView>

Defining a Filter
You can also apply filters to an ObjectDataSource. Filters apply to data returned from the
object’s methods as a DataSet or DataTable. This is because the filter is a valid filter expression
as defined by the ADO.NET DataColumn class.

To define a filter for an ObjectDataSource control, you set the FilterExpression attribute to
a valid filter. This filter will be applied after the data is retrieved from the database. You can
also use FilterParameters to map values from the page to the filter expression by defining a
filter expression that contains parameter mappings as numbers enclosed in braces. You then
add the appropriate filter parameters.

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 695

The following code shows an example. Here, the Customer.GetAllCustomers method is bound
to an ObjectDataSource control. When the data is returned, the filter expression city=’{0}’ is
applied to the result. The query string value for city is then passed as the {0} parameter to the
filter expression.

<asp:ObjectDataSource
 ID="ObjectDataSource1"
 runat="server"
 TypeName="Customer"
 SelectMethod="GetAllCustomers"
 FilterExpression="city='{0}'">
 <FilterParameters>
 <asp:QueryStringParameter
 Name="city"
 QueryStringField="city"
 Type="String" />
 </FilterParameters>
</asp:ObjectDataSource>

Sorting and Paging
The data-bound controls that work with an ObjectDataSource control can be configured to
page and sort the data returned by the data source control. However, it is often better to sort
and page this data when the data is requested from the database. Doing so can reduce the
consumption of resources on your server.

The ObjectDataSource control defines specific attributes for managing sorting and paging.
You set these attributes to parameters of your SelectMethod. The SelectMethod must also
define these properties and use them for sorting and paging. In addition, by using these
specific properties, data-bound controls such as GridView can automatically work with your
data source to provide input for sorting and paging.

As an example, suppose you want to provide a business object method to control how
customer data is sorted and paged as it is retrieved before it is shown to the user. You could
define a business method as follows.

Sample of Visual Basic Code

Public Shared Function GetPagedCustomersSorted(_
 ByVal sortCol As String, ByVal pageStart As Integer, _
 ByVal numRecords As Integer) As DataTable

 If numRecords <= 0 Then numRecords = 10
 If sortCol = "" Then sortCol = "CompanyName"

 Dim cnn As New SqlConnection(_cnnString)

 Dim sql As String = "SELECT * FROM customers"

 Dim cmd As New SqlCommand(sql, cnn)

 Dim adp As New SqlDataAdapter(cmd)
 cnn.Open()

 696	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

 Dim ds As New DataSet("customers")
 adp.Fill(ds, pageStart, numRecords, "customers")

 Dim dsSort = From cust In ds.Tables("customers").AsEnumerable()
 Order By cust.Field(Of String)(sortCol)
 Select cust

 return dsSort.CopyToDataTable()

End Function

Sample of C# Code

public static DataTable GetPagedCustomersSorted(
 string sortCol, int pageStart, int numRecords)
{
 if (numRecords <= 0) numRecords = 10;
 if (sortCol == "") sortCol = "CompanyName";

 SqlConnection cnn = new SqlConnection(_cnnString);

 string sql = "SELECT * from customers";

 SqlCommand cmd = new SqlCommand(sql, cnn);

 SqlDataAdapter adp = new SqlDataAdapter(cmd);
 DataSet ds = new DataSet("customers");
 cnn.Open();
 adp.Fill(ds, pageStart, numRecords, "customers");

 var dsSort = from cust in ds.Tables["customers"].AsEnumerable()
 orderby cust.Field<string>(sortCol)
 select cust;

 return dsSort.CopyToDataTable();
}

Notice that this business method defines three parameters: one for sorting the data, one
for setting the starting record (or page), and one for setting the number of records in a page.
You can then use these parameters when defining an ObjectDataSource. You set the control’s
SortParameterName attribute to the parameter of your business object that is used for sorting
data. You set the StartRowIndexParameterName to the parameter that defines the row number
at which you want to start retrieving data. You then set the MaximumRowsParameterName to
the parameter that is used to define the number of rows you want to include in a data page.
The following markup shows an example.

<asp:ObjectDataSource
 ID="ObjectDataSource1"
 runat="server"
 TypeName="Customer"
 SelectMethod="GetPagedCustomersSorted"
 SortParameterName="sortCol"
 EnablePaging="true"
 StartRowIndexParameterName="pageStart"
 MaximumRowsParameterName="numRecords">
</asp:ObjectDataSource>

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 697

You can then bind this data source to a control such as a GridView. The following markup
shows an example.

<asp:GridView ID="GridView1" runat="server"
 DataSourceID="ObjectDataSource1"
 AllowPaging="True" PageSize="10" AllowSorting="true">
</asp:GridView>

When the page is run, the GridView control passes sorting and paging information to the
data source. However, because the paging is happening before the GridView is bound, the
GridView does not know the number of pages to display. Therefore, you need to implement
your own custom paging in this scenario to advance the PageIndex property of the GridView
control on the user’s request. After you reset this value, the GridView will pass the value on to
the ObjectDataSource.

Caching Data
You can tell ASP.NET to cache your ObjectDataSource control. This will keep the data in memory
between page calls and can increase the performance and scalability of your application if the
data is to be shared and accessed often.

To indicate caching of an ObjectDataSource, you set the EnableCaching attribute to true.
You then set the CacheDuration property to the number of seconds you want to have ASP.NET
cache the data. The following shows an example of these settings.

<asp:ObjectDataSource
 ID="ObjectDataSource1"
 runat="server"
 TypeName="Shipper"
 SelectMethod="GetAllShippers"
 EnableCaching="true"
 CacheDuration="30">
</asp:ObjectDataSource>

The first call to this page will call the object and return its data. Subsequent calls within
30 seconds (such as moving through data pages) will use the cached data (and not call the
underlying object).

Creating a DataObject Class
There are not many restrictions on which objects you can use as the source of ObjectDataSource
controls. If you know that your business object will be used as an ObjectDataSource, you can
define attributes on your class that make consuming your class inside an ObjectDataSource
easier in the designer. These attributes are used to predefine which methods to use as Select,
Insert, Update, and Delete methods.

To get started, you set the DataObject attribute at the top of your class. This simply
indicates that your class is meant to be a DataObject. Again, this is not required for use with
ObjectDataSource controls but simply makes things easier. The following shows an example
of the class declaration and attribute.

 698	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Sample of Visual Basic Code

<System.ComponentModel.DataObject()> _
Public Class Shipper

Sample of C# Code

[DataObject()]
public class Shipper

You then add the DataObjectMethod attribute to the top of each method you intend to use
as a data object method. You pass a DataObjectMethodType enum value to this attribute to
indicate Delete, Insert, Update, or Select. The following code shows an example of the method
signature and attribute.

Sample of Visual Basic Code

<System.ComponentModel.DataObjectMethod(ComponentModel.DataObjectMethodType.Select)> _
Public Shared Function GetAllShippers() As DataTable

Sample of C# Code

 [DataObjectMethod(DataObjectMethodType.Select)]
public static DataTable GetAllShippers()

By defining these attributes, you make the designer aware of your business object’s
intentions. This can ease the burden of configuring an ObjectDataSource control when
large business objects with many methods are involved.

Connecting to Relational Databases by Using
SqlDataSource
The SqlDataSource control is used to configure access to relational databases such as SQL Server
and Oracle. It can also be configured to work with Open Database Connectivity (ODBC) and
Object Linking and Embedding (OLE) Db data connections. You configure the control to connect
to one of these database types. The code inside the control will then use the appropriate data
provider based on your configuration settings, including ADO.NET provider classes for SqlClient,
OracleClient, OleDb, and Odbc.

You configure the SqlDataSource control by first setting its ID property to a unique identi-
fying string value. This property is similar to any other web control ID property. However, the
value is used when referring to the data source during data binding (which will be discussed
later in this section). You then set the ConnectionString property either to a valid connection
string or to page script that reads the connection string from the Web.config file (as shown in
the next code example).

You then set various command properties, including commands for selecting, inserting, up-
dating, and deleting data. The command properties you set are based on how you intend to use
the control. For example, you use the SelectCommand to define an SQL statement that can be
used to retrieve data from a database. In this case, you would use the Text SelectCommandType
(which is the default). You can also set the SelectCommandType to StoredProcedure and then
provide a stored procedure name for the SelectCommand attribute.

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 699

The DataSourceMode attribute is used to define how the SqlDataSource control should
retrieve your data. You have two options: DataSet and DataReader. The former connects to the
database and returns all records as a DataSet instance. It then closes the database connection
before continuing to process the page. The latter, DataReader, keeps an open connection to
the database while it reads each row into the data source control.

The following markup shows an example of connecting to a Microsoft SQL Server Express
Edition database by first reading the connection string from the Web.config file. It uses a text-
based SQL statement and a DataReader. It then binds the data source to a GridView control
for display.

<asp:SqlDataSource
 ID="SqlDataSource1"
 runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommandType="Text"
 SelectCommand="SELECT * FROM [products]"
 DataSourceMode="DataReader">
</asp:SqlDataSource>

<asp:GridView
 ID="GridView1"
 runat="server"
 DataSourceID="SqlDataSource1">
</asp:GridView>

You can also work with the data source controls from code. When doing so, you replace the
markup attribute settings with object property settings. You first create the data source control
inside the Page_Init method. You then add the data source control to the page to ensure that
it is available to be bound to other controls. The following code shows the preceding markup
example translated as code in a code-behind page.

Sample of Visual Basic Code

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Init(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Init

 Dim sqlDs As New SqlDataSource
 sqlDs.ConnectionString = _
 ConfigurationManager.ConnectionStrings("NorthwindConnectionString").ToString
 sqlDs.ID = "SqlDataSource1"
 sqlDs.SelectCommandType = SqlDataSourceCommandType.Text
 sqlDs.SelectCommand = "SELECT * FROM [products]"
 sqlDs.DataSourceMode = SqlDataSourceMode.DataReader
 Me.Controls.Add(sqlDs)
 End Sub

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 GridView1.DataSourceID = "SqlDataSource1"
 End Sub

End Class

 700	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Sample of C# Code

public partial class DefaultCs : System.Web.UI.Page
{
 protected void Page_Init(object sender, EventArgs e)
 {
 SqlDataSource sqlDs = new SqlDataSource();
 sqlDs.ConnectionString =
 ConfigurationManager.ConnectionStrings[
 "NorthwindConnectionString"].ToString();
 sqlDs.ID = "SqlDataSource1";
 sqlDs.SelectCommandType = SqlDataSourceCommandType.Text;
 sqlDs.SelectCommand = "SELECT * FROM [products]";
 sqlDs.DataSourceMode = SqlDataSourceMode.DataReader;
 this.Controls.Add(sqlDs);
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 GridView1.DataSourceID = "SqlDataSource1";
 }
}

Working with data source controls in code is less common than working with them in
markup. Declaring your data source in markup is very straightforward;, the attributes you define
in markup are the same as the properties you set in code. Therefore, the majority of this lesson
assumes that you are working with markup only, and will not provide examples in code.

Using Parameters
The SqlDataSource control can also be configured to use parameters for Select, Insert, Update,
Filter, and Delete commands. This is done by defining parameters inside your SQL statements
by using the @ param syntax. You then map parameter values to these parameter definitions by
using parameter declarations.

As an example, suppose that you are creating a SqlDataSource control to return products
based on their category ID. The category ID will be passed to the page as a value from
the query string. You can define this parameter inside the SelectParameters collection as
a QueryStringParameter. The following shows the markup of this example.

<asp:SqlDataSource
 ID="SqlDataSource1"
 runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommandType="Text"
 SelectCommand="SELECT * FROM [products] WHERE CategoryID=@CategoryId"
 DataSourceMode="DataSet">
 <SelectParameters>
 <asp:QueryStringParameter
 Name="CategoryId"
 QueryStringField="catId"
 Type="Int16" />
 </SelectParameters>
</asp:SqlDataSource>

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 701

You can then bind this control to a GridView (or similar control). When the page is accessed,
the data is filtered based on the query string parameter. The following shows an example Uniform
Resource Locator (URL) for this call:

http://localhost:5652/DataSourceSamples/Products.aspx?catId=2

You use the same method for defining InsertParameters, UpdateParameters, and
DeleteParameters. These parameters are mapped to the respective InsertCommand,
UpdateCommand, and DeleteCommand commands. Controls such as GridView and
DetailsView work to trigger update, insert, and delete actions and, in doing so, pass
parameter values to the appropriate command. This is similar to what was demonstrated
previously in the ObjectDataSource section.

Filtering Data with SqlDataSource
As with the ObjectDataSource control, you can also filter data inside a SqlDataSource control.
Again, the data must be a DataSet because the filter is applied to the ADO.NET DataColumn
or DataView.RowFilter property.

To define a filter, you set the FilterExpression attribute to a valid filter. This filter will be applied
after the data is retrieved from the database. You can also use FilterParameters to map values
from the page to the filter expression by defining a filter expression that contains parameter
mappings as numbers enclosed in braces. You then add the appropriate filter parameters.

The following code shows an example of a SqlDataSource control that first selects all
products from the database. It then applies a FilterExpression to show only those products
that have been discontinued.

<asp:SqlDataSource
 ID="SqlDataSource1"
 runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommandType="Text"
 SelectCommand="SELECT * FROM [products]"
 DataSourceMode="DataSet"
 FilterExpression="Discontinued=true">
</asp:SqlDataSource>

Caching SqlDataSource Data
As with ObjectDataSource, you can also configure a SqlDataSource control to be cached
by the server. When doing so, however, you must set the DataSourceMode property to
DataSet. DataReader sources cannot be cached, because they would hold open a connec-
tion to the server.

You indicate the caching of a SqlDataSource control the same way you would an
ObjectDataSource control: by setting the EnableCaching and CacheDuration attributes.
The following shows an example.

 702	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

<asp:SqlDataSource
 ID="SqlDataSource1"
 runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommandType="Text"
 SelectCommand="SELECT * FROM [products]"
 DataSourceMode="DataSet"
 EnableCaching="True"
 CacheDuration="30">
</asp:SqlDataSource>

Working with Access Data Files and AccessDataSource
Controls
The AccessDataSource control is meant to connect to and work with Microsoft Access file-based
databases (.mdb files). This control is very similar to the SqlDataSource control. In fact, it derives
from the SqlDataSource class. Therefore, you can expect to work with the AccessDataSource
control in a very similar manner when passing parameters, caching, filtering data, and calling
Access stored procedures.

Note ThE nEW ACCEss DATAbAsE EnginE

The Access database engine has been changed in recent versions from Microsoft Jet to
one based on SQL Server. The AccessDataSource control is used to work with Jet-based
databases. These can be identified by the .mdf file extension. Newer Access files have the
.accdb extension. You can connect to these database files by using the SqlDataSource
control (not the AccessDataSource control).

One of the main differences between the AccessDataSource control and the SqlDataSource
control is how they connect to the database. The AccessDataSource control replaces the
SqlDataSource.ConnectionString property with the DataFile property. You pass a path to a
database file to this property to define a connection to an Access database. The following
markup shows how you configure the AccessDataSource control to connect to an .mdb file
in the App_Data folder.

<asp:AccessDataSource
 ID="AccessDataSource1" runat="server"
 DataFile="~/App_Data/AccessNorthwind.mdb"
 SelectCommand="SELECT * FROM [Products]">
</asp:AccessDataSource>

The code inside this data source control uses the ADO.NET System.Data.OleDb provider for
connecting to an Access data file. Of course, this code is abstracted for you by the control itself.
You need only define the markup to begin accessing and working with data in the Access file.

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 703

Note COnFigURing ACCEss TO A FiLE-bAsED DATAbAsE

To ensure that the webpage has access to this file, configure the ASP.NET process identity to
allow file-based access to the .mdb file.

Connecting to an Entity Model by Using EntityDataSource
The EntityDataSource control works much like the SqlDataSource control. However, the
SqlDataSource control is tied to a specific database model, whereas the EntityDataSource
control works with an Entity Data Model that gets mapped to an actual data store (see
Chapter 11, “Connecting to and Querying Data with LINQ,” for more information on
creating and working with Entity Framework’s Entity Data Model).

You configure the EntityDataSource control to provide a connection to the entity model’s
underlying data store, which is done through the ConnectionString property. This value is set
to a named entity model connection string that uses the System.Data.EntityClient provider. The
connection string is generated and stored in the Web.config file when you set up your entity
model (EDMX file).

You can then indicate an EntitySetName to point to the data you want to select and expose
through the data source control. This entity set is a named collection of data in your model.
Alternatively, you can use the CommandText attribute to define a custom LINQ query to define
your selection (more on this later in this section).

The following markup shows an example. This assumes that an entity model named
NorthwindEntities has been created. Notice the connection string reference. This string is
stored in the Web.config file. Also, notice that the EntitySetName is set to Orders. This
is used to establish a default entity set and will return all orders in the data store. Finally,
the results are bound to a GridView control for display.

<asp:EntityDataSource ID="EntityDataSource1"
 runat="server"
 ConnectionString="name=NorthwndEntities"
 DefaultContainerName="NorthwndEntities"
 EnableFlattening="False"
 EntitySetName="Orders">
</asp:EntityDataSource>

<asp:GridView ID="GridView1" runat="server"
 DataSourceID="EntityDataSource1">
</asp:GridView>

 704	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Selecting Data to Return
You saw in the previous example that you can return the entire collection for an entity by using
the EntitySetName attribute. The EntityDataSource allows you to get more specific with your
selection. You can do so through the Select attribute. You define a string in this attribute that
will be passed to ObjectQuery<T>. In this way, you can write LINQ to Entities code against the
data source for the Select, Where, and Order By attributes.

For example, suppose you want to return only specific fields from the OrderDetails collection
in an entity model. You might also want to rename some of these fields and even generate a
field based on a calculation. As with a LINQ to Entities query, you can specify a Select statement
that will do just that. Recall from Chapter 11 that this is called a projection, because you are
projecting the results into a collection of a new, anonymous type. The following markup shows
an example.

<asp:EntityDataSource ID="EntityDataSource1"
 runat="server"
 ConnectionString="name=NorthwndEntities"
 DefaultContainerName="NorthwndEntities"
 EnableFlattening="False"
 EntitySetName="OrderDetails"
 Select="it.OrderId as Id, it.UnitPrice, it.Quantity, it.UnitPrice * it.Quantity as
 LineItemTotal">
</asp:EntityDataSource>

SPECIFYING A CUSTOM QUERY
You can specify an entire query (and not just the Select) by using the CommandText property
of the EntityDataSource. In this case, you need not set the EntitySetName. The query will
indicate the data to select. This query is written as an Entity SQL expression, which uses
different syntax than LINQ for Entities. The following markup shows an example (line
breaks in the CommandText property are added for clarity.

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=NorthwndEntities"
 DefaultContainerName="NorthwndEntities"
 CommandText =
 "Select o.OrderId as Id, o.UnitPrice, o.Quantity,
 o.UnitPrice * o.Quantity as LineItemTotal
 from OrderDetails as o
 where o.Discount > 0
 order by o.ProductId">
</asp:EntityDataSource>

Note that you can write the same query by using the independent Select, Where, and
OrderBy properties of the EntityDataSource control. You will see more on this in upcoming
sections.

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 705

SPECIFYING OBJECTS TO RETURN
You can specify that additional object collections be returned in the result (in addition to the
collection being queried). These additional objects are added to your collection by using
the Include attribute. These objects should exist as a navigation property in the entity data
model. For example, the following markup returns all Orders. For each order object, the
results will also include the OrderDetails collection.

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=NorthwndEntities"
 DefaultContainerName="NorthwndEntities"
 EntitySetName="Orders"
 Include="OrderDetails">
</asp:EntityDataSource>

Ordering Results
You can use the OrderBy property of the EntityDataSource control to specify an order by
statement that will be passed to ObjectQuery<T>. The following markup shows an example
of ordering the OrderDetails entity by ProductId.

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=NorthwndEntities"
 DefaultContainerName="NorthwndEntities"
 EntitySetName="OrderDetails"
 OrderBy="it.ProductId">
</asp:EntityDataSource>

Filtering Data
You can use the Where property of the EntityDataSource control to specify a Where statement
that will be passed to ObjectQuery<T> without modification. The following markup shows an
example of filtering orders for only those that have a discount applied.

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=NorthwndEntities"
 DefaultContainerName="NorthwndEntities"
 EntitySetName="OrderDetails"
 OrderBy="it.ProductId"
 Where="it.Discount > 0">
</asp:EntityDataSource>

Defining Parameters
The EntityDataSource control allows you to define several parameters that can be used with the
@ paramName syntax inside various properties, including Select, Where, and CommandText.
These ParameterCollection objects include CommandParameters, DeleteParameters,
OrderByParameters, SelectParameters, UpdateParameters, and WhereParameters.

 706	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Each of these parameter collections might contain an ASP.NET parameter control
such as ControlParameter, FormParameter, QueryStringParameter, CookieParameter,
and similar parameters. This allows you to pass values from your website dynamically
to the EntityDataSource control.

As an example, suppose you want to filter orders based on their value. You might ask a
user to enter a value into a TextBox control. You could then create a <ControlParameter/>
in the WhereParameters collection of an EntityDataSource control to map the TextBox.Text
field to the Where clause. The following is an example; the parameter is defined as @
OrderValue, which aligns with the parameter name, OrderValue.

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=NorthwndEntities"
 DefaultContainerName="NorthwndEntities"
 EntitySetName="OrderDetails"
 OrderBy="it.ProductId"
 Where="(it.Quantity * it.UnitPrice) > @OrderValue">
 <WhereParameters>
 <asp:ControlParameter
 ControlID="TextBoxValue" Name="OrderValue"
 DbType="Int32" PropertyName="Text"
 DefaultValue="0" />
 </WhereParameters>
</asp:EntityDataSource>

Enter an order value on which to filter:

<asp:TextBox ID="TextBoxValue" runat="server"></asp:TextBox>
<asp:Button ID="ButtonUpdate" runat="server" Text="Button" />

<asp:GridView ID="GridView1" runat="server"
 DataSourceID="EntityDataSource1">
</asp:GridView>

Note that you can set the AutoGenerateWhereClause or AutoGenerateOrderByClause attri-
butes to true if you want to have the EntityDataSource control automatically map a parameter to
a field in the results. The parameter and field must have the same name for this to work.

Paging, Sorting, Editing, and Updating Data
The EntityDataSource control supports a few additional attributes that you can use to enable
specific scenarios. These attributes include AutoPage, AutoSort, EnableInsert, EnableUpdate,
and EnableDelete. These are all Boolean properties that, if set to true, will enable these features
for your EntityDataSource. Of course, the features are provided by the underlying entity model;
they then need to be exposed via a visible control such as a GridView.

The following markup shows an example of both a fully enabled EntityDataSource control
and a GridView control that leverages all of these features. A user can access this page and
view, sort, edit, update, and delete data.

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 707

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=NorthwndEntities"
 DefaultContainerName="NorthwndEntities"
 EntitySetName="OrderDetails"
 AutoPage="true"
 AutoSort="true"
 EnableDelete="true"
 EnableInsert="true"
 EnableUpdate="true">
</asp:EntityDataSource>

<asp:GridView ID="GridView1" runat="server"
 DataSourceID="EntityDataSource1"
 AllowPaging="True"
 AllowSorting="True">
 <Columns>
 <asp:CommandField
 ShowDeleteButton="True"
 ShowEditButton="True"
 ShowSelectButton="True" />
 </Columns>
</asp:GridView>

Connecting to XML Data by Using XmlDataSource
The XmlDataSource control provides a means to create a binding connection between controls
on your page and an XML file. The XmlDataSource control is best used when you want to bind
to XML data that is represented as hierarchical. In these cases, the outer elements of the XML
represent data records. The child elements can themselves be subrecords related to the outer
records. In addition, the child elements and attributes of these outer “record” elements are
typically bound to as fields. You can think of these fields as columns of data on the record.
Due to this hierarchical nature, the XmlDataSource control is typically bound to controls that
show data in a hierarchical manner, such as the TreeView control. However, XmlDataSource
controls can be used to display data in tabular formats, too.

You configure the XmlDataSource control at design time to point to an XML file. XML data
in your project is typically stored in your project’s App_Data folder. To bind to a file, you set the
DataFile attribute on the data source control to point to the path of the XML file. The following
code shows an example of defining an XmlDataSource control that points to a file containing
product data.

<asp:XmlDataSource
 ID="XmlDataSource1"
 runat="server"
 DataFile="~/App_Data/products.xml" >
</asp:XmlDataSource>

You can also bind directly to a string value that represents XML. The XmlDataSource class
provides the Data property for connecting to a string value in your code-behind page.

 708	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Transforming XML with the XmlDataSource Control
You can use the XmlDataSource control to define an Extensible Stylesheet Language (XSL)
transformation to change the shape and content of your XML data. You do so by setting the
TransformFile attribute to a valid XSL file. The XSL file will be applied to your XML data after
your XML is loaded into memory and before the XML is bound for output.

As an example, consider the following XML file that defines a set of products across varied
categories.

<?xml version="1.0" standalone="yes"?>
<Products>
 <Product>
 <Category>Beverages</Category>
 <Name>Chai</Name>
 <QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
 <UnitPrice>18.0000</UnitPrice>
 </Product>
 <Product>
 <Category>Condiments</Category>
 <Name>Aniseed Syrup</Name>
 <QuantityPerUnit>12 - 550 ml bottles</QuantityPerUnit>
 <UnitPrice>10.0000</UnitPrice>
 </Product>
 <Product>
 <Category>Condiments</Category>
 <Name>Chef Anton's Cajun Seasoning</Name>
 <QuantityPerUnit>48 - 6 oz jars</QuantityPerUnit>
 <UnitPrice>22.0000</UnitPrice>
 </Product>
 <Product>
 <Category>Produce</Category>
 <Name>Uncle Bob's Organic Dried Pears</Name>
 <QuantityPerUnit>12 - 1 lb pkgs.</QuantityPerUnit>
 <UnitPrice>30.0000</UnitPrice>
 </Product>
 <Product>
 <Category>Beverages</Category>
 <Name>Guaraná Fantástica</Name>
 <QuantityPerUnit>12 - 355 ml cans</QuantityPerUnit>
 <UnitPrice>4.5000</UnitPrice>
 </Product>
 <Product>
 <Category>Beverages</Category>
 <Name>Sasquatch Ale</Name>
 <QuantityPerUnit>24 - 12 oz bottles</QuantityPerUnit>
 <UnitPrice>14.0000</UnitPrice>
 </Product>
 <Product>
 <Category>Beverages</Category>
 <Name>Steeleye Stout</Name>
 <QuantityPerUnit>24 - 12 oz bottles</QuantityPerUnit>
 <UnitPrice>18.0000</UnitPrice>
 </Product>
</Products>

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 709

Suppose that you have to transform this data by first sorting it and then adding descriptive
text to each field to help a user when viewing the data in a TreeView control. In this case, you
can write an XSL transform file. The following code represents an example.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="Products">
 <Products>
 <xsl:for-each select="Product">
 <xsl:sort select="Name" order="ascending" />
 <Product>
 <Name>
 <xsl:value-of select="Name"/>
 </Name>
 <Category>
 <xsl:text>Category: </xsl:text>
 <xsl:value-of select="Category"/>
 </Category>
 <QuantityPerUnit>
 <xsl:text>Quantity: </xsl:text>
 <xsl:value-of select="QuantityPerUnit"/>
 </QuantityPerUnit>
 <UnitPrice>
 <xsl:text>Price: </xsl:text>
 <xsl:value-of select="UnitPrice"/>
 </UnitPrice>
 </Product>
 </xsl:for-each>
 </Products>
 </xsl:template>
</xsl:stylesheet>

Next, you set the TransformFile attribute of the XmlDataSource control to point to the XSL
file. The following shows an example of how the configured data source control would look
in your markup, followed by an example of how the XmlDataSource control is bound to a
TreeView control in markup.

<asp:XmlDataSource
 ID="XmlDataSource1"
 runat="server"
 DataFile="~/App_Data/products.xml"
 TransformFile="~/App_Data/ProductTransform.xsl" >
</asp:XmlDataSource>

<asp:TreeView
 id="TreeView1"
 runat="server"
 DataSourceID="XmlDataSource1">
 <DataBindings>
 <asp:TreeNodeBinding DataMember="Name" TextField="#InnerText" />
 <asp:TreeNodeBinding DataMember="Category" TextField="#InnerText" />
 <asp:TreeNodeBinding DataMember="QuantityPerUnit" TextField="#InnerText" />
 <asp:TreeNodeBinding DataMember="UnitPrice" TextField="#InnerText" />
 </DataBindings>
</asp:TreeView>

 710	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

When the page is rendered, ASP.NET loads the XML file into memory. It then applies the XSL
file to the XML data. Finally, the result is bound to the TreeView and embedded in the HTTP
response. Figure 12-4 shows this data as it would look in a browser window. Notice that the
data is sorted and the additional descriptive text has been added to several nodes.

FigURE 12-4 The transformed file displayed in a browser window.

Filtering XML with the XmlDataSource Control
The XmlDataSource control also allows you to set a data filter to define a subset of your
XML. This is done via the XPath attribute. You set this attribute to a valid XPath expression
that represents a filter expression. For example, to retrieve a subset of the product data in
the XML file defined in the previous section, you could set the XPath attribute as in the
following markup.

<asp:XmlDataSource
 ID="XmlDataSource1"
 runat="server"
 DataFile="~/App_Data/products.xml"
 TransformFile="~/App_Data/ProductTransform.xsl"
 XPath="/Products/Product[Category='Category: Beverages']" >
</asp:XmlDataSource>

In this example, the data is filtered for only those products with a category value set
to “Beverages.” Notice that the value is actually set to “Category: Beverages.” This is because
the XPath expression is applied following any XSL transformations. Recall that in the previous
example, the “Category: ” text was added to data. Therefore, you have to account for it in the
XPath expression.

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 711

Note insERTing, DELETing, mODiFying, AnD sAving XmL DATA

The XmlDataSource control is typically used to read XML data. Unlike many of the other
data source controls, it does not provide automatic attributes for inserting, deleting,
updating, and saving XML data. Instead, you have to write your own custom code if you
require this behavior.

Connecting to LINQ-Based Data by Using LinqDataSource
You can use the LinqDataSource control to easily connect to data supplied by any data source
that represents a collection of data. This includes lists, arrays, LINQ to SQL objects, and more.
In this way, it is the most flexible data source control and typically requires the least amount
of supporting code.

The LinqDataSource control uses the ContextTypeName attribute to define the database
context of your LINQ-based data. This attribute can be set to point to the name of the class
that represents your database context. As an example, suppose you have created a DBML
DataContext file to represent the Northwind database by using LINQ to SQL (see Chapter
11). This file would include the NorthwindDataContext class, which represents the tables in
your database. The following markup shows how you would connect to this class by using
the LinqDataSource control.

<asp:LinqDataSource
 ID="LinqDataSource1"
 runat="server"
 ContextTypeName="NorthwindDataContext"
 EnableDelete="True"
 EnableInsert="True"
 EnableUpdate="True"
 OrderBy="CompanyName"
 TableName="Suppliers"
 Where="Country == @Country">
 <WhereParameters>
 <asp:QueryStringParameter
 DefaultValue="USA"
 Name="Country"
 QueryStringField="country"
 Type="String" />
 </WhereParameters>
</asp:LinqDataSource>

The LinqDataSource control is similar to other data source controls. It allows you to define
parameters, indicate sorting, enable paging, and more. However, its LINQ-style declarative syn-
tax makes it unique. Consider the preceding markup. Notice that the TableName attribute is set
to Suppliers. You then use attributes to define a query that indicates both a Where clause and
an OrderBy clause. The Where clause uses the WhereParameters parameter, which represents a
query string that filters the data based on the value of country on the query string.

 712	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

You can use LINQ language constructs in the markup of your LinqDataSource control. For
example, by default, if no Select attribute is specified, the data source will return all fields in
the collection. However, you can use a LINQ expression to indicate a new anonymous type.
You can even create calculated fields as you would with any Select statement in a LINQ query.
The following markup shows an example. Notice that the Location field is made up of three
different fields from the data source.

<asp:LinqDataSource ID="LinqDataSource1" runat="server"
 ContextTypeName="NorthwindDataContext"
 EntityTypeName=""
 TableName="Suppliers"
 Where="Country == @Country"
 Select="new(SupplierId As Id,
 CompanyName As Name,
 Address + ' ' + City + ' ' + PostalCode As Location)">
 <WhereParameters>
 <asp:QueryStringParameter DefaultValue="USA" Name="Country"
 QueryStringField="country" Type="String" />
 </WhereParameters>
</asp:LinqDataSource>

You can also bind a LinqDataSource control to a data-bound control, as you would with
any other data source. You can set values on the LinqDataSource to indicate whether to allow
deleting, inserting, and updating of data. The data-bound control will then work with the
LinqDataSource as appropriate.

Connecting to Site Navigation Data by Using
SiteMapDataSource
The SiteMapDataSource control is used to connect to site navigation data for your website. The
data for this control is defined in a special XML file called a web.sitemap. You can define one
sitemap file in the root of your website. The file includes information about the pages in
your site and their hierarchy. It also includes page names, navigational information, and a
description of each page. It is meant as a central place for managing the navigational data
of your site; it is used by controls such as Menu and TreeView to allow users to easily navigate
your application.

As an example, suppose that the following web.sitemap file is defined at the root of your
web application.

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="" title="Home" description="">
 <siteMapNode url="products.aspx" title="Products" description="">
 <siteMapNode url="productDetails.aspx"
 title="Product Details" description="" />
 </siteMapNode>
 <siteMapNode url="services.aspx" title="Services" description="" />
 <siteMapNode url="locations.aspx" title="Locations" description="" />
 <siteMapNode url="about.aspx" title="About Us" description="" />
 </siteMapNode>
</siteMap>

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 713

You can connect to this data by using a SiteMapDataSource control. You simply add the
control to your page. You cannot configure it to point to a specific file. Instead, it automatically
picks up the web.sitemap file defined at the root of your web application. The following markup
shows an example. You bind to this data the same way you bind to the other data source controls.
The following code also demonstrates binding to a Menu control.

<asp:SiteMapDataSource
 ID="SiteMapDataSource1"
 runat="server" />

<asp:Menu ID="Menu1"
 runat="server"
 DataSourceID="SiteMapDataSource1">
</asp:Menu>

The result of this binding is shown in Figure 12-5.

FigURE 12-5 The site map data bound to a Menu control and displayed in a browser.

Filtering the Data Shown in the SiteMapDataSource
Sometimes, you might want to display only a portion of the data in your sitemap data file.
The SiteMapDataSource control provides a couple of attributes that you can use to control
the data that is provided to a visual control for display. The first, StartingNodeUrl, is used to
indicate the node in the sitemap file that should be used as the root of the data source.

 714	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

As an example, consider the sitemap file discussed previously. Suppose you need to display
only the Products node and its subnodes. You can do so by setting the SiteMapDataSource
control’s StartingNodeUrl property to product.aspx, as shown in the following sample markup.

<asp:SiteMapDataSource
 ID="SiteMapDataSource1"
 runat="server"
 StartingNodeUrl="products.aspx" />

You can also use the ShowStartingNode attribute to indicate whether to display the node
where the SiteMapDataSource control is set to start. You set this value to false if you want to
hide the starting node. This property works with the other properties of the SiteMapDataSource
control, such as StartingNodeUrl.

You might find that you want your navigation controls to display navigation data based on
the current active page in the browser. You can do so by setting the StartFromCurrentNode
attribute to true. This evaluates the name of the current page, finds it in the sitemap, and uses
it as the start node for any bound controls on that page. This setting is especially useful if you
embed your navigation and SiteMapDataSource controls inside a master page.

Finally, the StartingNodeOffset attribute is used to move the starting node up or down the
sitemap data tree. You set the value to a negative number to move the start node up the tree
from its current evaluated position. A positive number moves it deeper into the tree hierarchy.

Quick Check
	 1. Which attribute of the SqlDataSource control do you use to define a connection

to the database?

	 2. How do you define an ObjectDataSource to connect to a business object?

	 3. Which attribute of the LinqDataSource control do you use to indicate the O/R
class used for connecting to and working with LINQ-based data?

	 4. Which attribute of the EntityDataSource control do you set to indicate a default
entity set for your control to expose?

Quick Check Answers
	 1. You use the ConnectionString attribute.

	 2. You use the TypeName attribute.

	 3. You use the ContextTypeName attribute.

	 4. You use the EntitySetName attribute.

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 715

PrActIcE	 Using a Data source Control on a Webpage

In this practice, you work with Visual Studio to create a website to work with an EntityDataSource
control that exposes data from the Northwind database.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Creating the Website and Defining the Entity Model

In this exercise, you create a new website and define the Entity Model.

	 1. Open Visual Studio and create a new website called DatasourceLab by using your
preferred programming language.

	 2. Add the northwnd.mdf file to your App_Data directory. You can copy the file from
the sample files installed from this book’s CD.

	 3. Add a new ADO.NET Entity Data Model to your website. Name this model
northwind.edmx. When prompted, allow Visual Studio to add the model to
the App_Code directory.

	 4. Using the Entity Data Model Wizard, select Generate from database on the first step
and click Next.

	 5. On the next page, select the northwnd.mdf data file. Make sure to select the check
box to save the connection string in the Web.config file. Name this connection string
northwndEntitiesCnn and click Next.

	 6. On the next page, select the Customers, Order Details, and Orders tables. Make sure
that both check boxes are selected, and set the Model Namespace to northwndmodel.
Click Finish to complete the wizard and generate your database model.

	 7. Rename items in the model to better identify them. First, select the Order_Detail entity
in the model, right-click it, and choose Rename. Rename the entity to OrderDetail. Then
select the Order_Details navigation property from the Order entity and rename it to
OrderDetails.

	 8. Save and close the model.

 716	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

ExErcIsE	2	 Binding to the EntityDataSource Control

In this exercise, you create a webpage that defines an EntityDataSource that will be used to
work with the entity model created in the previous exercise.

	 1. Continue editing the project you created in the previous exercise. Alternatively, you can
open the completed Lesson 1, Exercise 1 project in the samples installed from the CD.

	 2. Open the Default.aspx page. Set the title over the grid (<h2>) to Customers, and delete
the default markup content. In Design view, drag an EntityDataSource control onto the
page from the Data tab of the Toolbox. This control will be used to expose a list of
customers in the database.

	 3. Click the smart tag in the upper-right corner of the EntityDataSource control to open
the EntityDataSource Tasks list. Select Configure Data Source to open the Configure
Data Source Wizard.

	 a. On the first page of the wizard, from the Named Connection list, select
NorthwndEntitiesCnn.

	 b. On the second page of the wizard, select the Customers EntitySetName. Set the
Select fields to CustomerID, CompanyName, City, Region, Country, and Phone.

	 c. Finish the wizard, and switch to Source view for your page. Edit the EntityDataSource
markup to include AutoPage and AutoSort. Also, include an OrderBy statement
to order the results by CompanyName (you can do so inside markup or use the
Properties window). Your markup should look similar to the following.

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=NorthwndEntitiesCnn"
 DefaultContainerName="NorthwndEntitiesCnn"
 EnableFlattening="False"
 EntitySetName="Customers"
 AutoPage="true"
 AutoSort="true
 OrderBy="it.CompanyName"
 Select="it.[CustomerID], it.[CompanyName], it.[City], it.[Region],
 it.[Country], it.[Phone]">
</asp:EntityDataSource>

	 4. Add a GridView control to the page. Set the DataSourceID property to point to the
EntityDataSource created previously.

	 5. Define bound columns and change the HeaderText for each field in the result set.

	 6. Enable AllowPaging and AllowSorting.

	 7. Add a HyperLinkField to the GridView to call orders.aspx and pass the customer ID
as a query string parameter.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 717

Your GridView markup should look as follows.

<asp:GridView ID="GridViewCustomers" runat="server" AllowPaging="True"
 AllowSorting="True" AutoGenerateColumns="False"
 DataSourceID="EntityDataSource1">
 <Columns>
 <asp:BoundField DataField="CustomerID" HeaderText="ID"
 ReadOnly="True" SortExpression="CustomerID" />
 <asp:BoundField DataField="CompanyName" HeaderText="Company"
 ReadOnly="True" SortExpression="CompanyName" />
 <asp:BoundField DataField="City" HeaderText="City"
 ReadOnly="True" SortExpression="City" />
 <asp:BoundField DataField="Region" HeaderText="Region"
 ReadOnly="True" SortExpression="Region" />
 <asp:BoundField DataField="Country" HeaderText="Country"
 ReadOnly="True" SortExpression="Country" />
 <asp:BoundField DataField="Phone" HeaderText="Phone"
 ReadOnly="True" SortExpression="Phone" />
 <asp:HyperLinkField DataNavigateUrlFields="CustomerID"
 DataNavigateUrlFormatString="orders.aspx?custId={0}"
 HeaderText="Orders" Text="view orders" />
 </Columns>
</asp:GridView>

	 8. Run the page. Your page should look similar to that shown in Figure 12-6.

FigURE 12-6 The EntityDataSource control bound to a GridView.

	 9. Add an Orders.aspx page to your site.

 718	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

	 10. Add an EntityDataSource control to the page. Set attributes to connect to the Customers
entity. Define a Where clause to select a customer by a specific ID. Set the ID as a
QueryStringParameter. Finally, indicate that the results should include the customer’s
Orders collection. The following markup shows an example.

<asp:EntityDataSource ID="EntityDataSourceCust" runat="server"
 ConnectionString="name=NorthwndEntitiesCnn"
 DefaultContainerName="NorthwndEntitiesCnn"
 EnableFlattening="False"
 EntitySetName="Customers"
 Where="it.CustomerID=@custId"
 Include="Orders">
 <WhereParameters>
 <asp:QueryStringParameter
 QueryStringField="custId"
 Name="custId"
 DbType="String"/>
 </WhereParameters>
</asp:EntityDataSource>

	 11. Next, add a DetailsView control to the page and name it DetailsviewCust. In Design
view, use the smart tag to set the data source to the EntityDataSource set previously.
Select Refresh Schema from the same smart tag task list to generate columns bound
to the data source.

	 12. Add a GridView control under the DetailsView and name it gridviewOrders.
This will be used to show custom orders. You cannot, at present, bind this to the
included collections of the EntityDataSource by using markup. Instead, you must
write some code.

	 13. Add an event handler for the DetailsViewCust DataBound event. This event fires
when the DetailsView control has been bound to data. You can use it to pull the
bound Customer from the control and use its Orders collection for the GridView
control. Your code should read as follows.

Sample of Visual Basic Code

Protected Sub DetailsViewCust_DataBound(_
 ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles DetailsViewCust.DataBound

 Dim cust As NorthwndModel.Customer =
 CType(DetailsViewCust.DataItem, NorthwndModel.Customer)

 Me.GridViewOrders.DataSource = cust.Orders
 Me.GridViewOrders.DataBind()

End Sub

 Lesson 1: Connecting to Data with Data Source Controls ChAPTER 12 719

Sample of C# Code

protected void DetailsViewCust_DataBound(object sender, EventArgs e)
{
 NorthwndModel.Customer cust =
 (NorthwndModel.Customer)DetailsViewCust.DataItem;
 this.GridViewOrders.DataSource = cust.Orders;
 this.GridViewOrders.DataBind();
}

	 14. Run the application. Select different customers. Click the view orders link and view the
results. You should see something similar to the screen shown in Figure 12-7.

FigURE 12-7 The orders.aspx page has two controls that are bound to two different collections
exposed by the same EntityDataSource control.

Lesson Summary
■ ASP.NET provides several data source controls (LinqDataSource, ObjectDataSource,

SqlDataSource, AccessDataSource, EntityDataSource, XmlDataSource, and
SiteMapDataSource) that allow you to easily work with various types of data. These
controls allow you to bind to data by using data-bound web server controls.

■ You can pass parameters to most data source controls. A parameter can be bound to a
value in a cookie, in the session, in a form field, in the query string, or in a similar object.

■ Many of the data source controls allow you to cache data. Those that do include the
ObjectDataSource, SqlDataSource, and AccessDataSource controls.

 720	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Connecting to Data with Data Source Controls.” The questions are also available on the
companion CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You have a data context map for your SQL Server database defined inside a class file. You
need to connect to this data by using a data source control. Which data source control
should you use?

	 A. ObjectDataSource

	 B. SqlDataSource

	 c. SiteMapDataSource

	 D. LinqDataSource

	 2. You are using an ObjectDataSource control to connect to a business object. Which
attributes of the control must you set to return data for the data source? (Choose all
that apply.)

	 A. TypeName

	 B. SelectMethod

	 c. DataSourceId

	 D. SelectParameters

	 3. You want to apply caching to your data source control to increase your scalability for
frequently used data. You want to set the cache to expire every 60 seconds. Which
attributes of your data source control should you set to do so? (Choose all that apply.)

	 A. CacheTimeout

	 B. CacheDuration

	 c. EnableCaching

	 D. DisableCaching

	 4. You are using an EntityDataSource control on your page. You need to write a custom
query that uses a parameter in the Where clause. What actions should you take?
(Choose all that apply.)

	 A. Set the command by using the EntitySetName property.

	 B. Set the command by using the CommandText property.

	 c. Add a WhereParameters section to the EntityDataSource control markup.

	 D. Name the parameter by using the @ ParamName construct inside the Where
parameter definition.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 721

Lesson 2: Working with Data-bound Web server
Controls

Lesson 1 showed you how to connect to various data sources by using the data source controls.
After it has been accessed, the data needs to be displayed to users so that they can interact
with it. ASP.NET provides a large set of controls for doing so. These controls are referred to
as data-bound controls. Data-bound controls are controls that provide web-based UI output
(HTML and JavaScript) and also bind to data on the server.

This lesson presents an overview of data binding in ASP.NET. It then presents the many
data-bound controls found inside ASP.NET.

After this lesson, you will be able to:
■	 Understand the basics of how data-bound controls operate.
■	 Use simple data-bound controls such as DropDownList, ListBox, CheckBoxList,

RadioButtonList, and BulletedList.
■	 Use composite data-bound controls such as GridView, DetailsView, FormView,

DataList, Repeater, ListView, DataPager, and Chart.
■	 Use hierarchical data-bound controls such as TreeView and Menu.
■	 Use the data visualization control, Chart.

Estimated lesson time: 60 minutes

Introducing Data-Bound Controls
The data-bound controls in ASP.NET can be classified as simple, composite, hierarchical, or
visualization controls. Simple data-bound controls are the controls that inherit from ListControl.
Composite data-bound controls are classes that inherit from CompositeDataBoundControl, such
as GridView, DetailsView, FormsView, and similar controls. Hierarchical data-bound controls are
the Menu and TreeView controls. Finally, the Chart control is a data visualization control that
inherits directly from DataBoundControl.

The Microsoft .NET Framework provides several base classes that are used to provide
common properties and behavior for the concrete data-bound controls. These classes form
the basis of many of the data-bound controls. In this way, all of the data-bound controls
work in a similar manner. Figure 12-8 shows the hierarchy of the base classes used for data-
bound controls in ASP.NET.

 722	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

FigURE 12-8 The base data-bound class hierarchy.

The BaseDataBoundControl is the first control in the hierarchy (inheriting from
WebControl). This class contains the DataSource and DataSourceID properties used in data
binding. The DataSource property gets or sets the object that the data-bound control uses
to retrieve its data items. This property is most often used when binding to data in code, and
it was the default binding property in early versions of ASP.NET. However, the DataSourceID
property was introduced later to provide a declarative means of binding to data. You use the
DataSourceID property to get or set the ID of a data source control that contains the source
of the data, such as the data source controls discussed in Lesson 1. You typically set either
the DataSource or the DataSourceID property (not both). If both properties are set, the
DataSourceID takes precedence.

You can bind a data-bound web control to any data that implements IEnumerable,
IListSource, IDataSource, or IHierarchicalDatasource. The data-bound control will auto-
matically connect to the data source at run time by calling the DataBind method (which
also raises the DataBound event). You can also call this method yourself in code to force a
rebinding of data to the control.

The next control in Figure 12-8, HierarchicalDataBoundControl, inherits from the
BaseDataBoundControl. It is the parent class for controls that display hierarchical data
such as the Menu and TreeView controls.

The DataBoundControl inherits from the BaseDataBoundControl and is the parent class
to the CompositeDataBoundControl, ListControl, and Chart. These classes are the parent
classes to controls that display tabular data such as the GridView and DropDownList con-
trols. The DataBoundControl control’s DataMember property is a string data type that is
used when the DataSource contains more than one tabular result set. In this scenario, the
DataMember property is set to the name of the tabular result set that is to be displayed.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 723

Mapping Fields to Templates
Templated binding can be used on controls that support templates. A template control is a
control that has no default UI. The control simply provides the mechanism for binding to data.
The developer supplies the UI in the form of inline templates. The template can contain declara-
tive elements such as HTML and Dynamic Hypertext Markup Language (DHTML). The template
can also contain ASP.NET data-binding syntax to insert data from the data source. Controls
that support templates include GridView, DetailsView, and FormView, among others. A typical
control might allow the following templates to be programmed:

■ headerTemplate This is an optional header, which is rendered at the top of the
control.

■ FooterTemplate This is an optional footer, which is rendered at the bottom of the
control.

■ itemTemplate The item template is rendered for each row in the data source.

■ AlternatingitemTemplate This is an optional template; if it is implemented, every
other row is rendered with this template.

■ selecteditemTemplate This is an optional template; if implemented, the template is
used to render a row that has been selected.

■ separatorTemplate This is an optional template that defines the markup used to
indicate the separation of items from alternate items.

■ EdititemTemplate This is an optional template that is used to render a row that is
in edit mode. This usually involves displaying the data in a TextBox instead of a Label
control.

Some of the upcoming examples look at defining these templates for specific controls. For
the most part, this process is similar regardless of the control with which you are working.

Using the DataBinder Class
In addition to automatically binding data with data-bound controls, you sometimes will need
to have more granular control over which fields get bound to which controls on your page.
For this, ASP.NET provides the DataBinder class. This class can be used to define code inside
your script that controls how a data source is bound.

The DataBinder class provides the static Eval method to help bind data in this manner. The
Eval method uses reflection to perform a lookup of a DataItem property’s underlying type
by looking at the type metadata that is stored in the type’s assembly. After the metadata is
retrieved, the Eval method determines how to connect to the field. This makes writing data
binding syntax on your page an easy task. For example, the following shows binding to the
Vin property of a Car object:

<%# Eval("Vin") %>

 724	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

The Eval method also provides an overloaded method that allows a format string to be
assigned as part of the data binding. As an example, if you were to bind to a field called Price,
you can modify the display of this field by providing currency formatting, as shown here.

<%# Eval("Price", "{0:C}") %>

The Eval method is great for one-way (or read-only) data binding. However, it does not
support read-write data binding and thus cannot be used for insert and edit scenarios. The
Bind method of the DataBinder class, however, can be used for two-way data binding. This
makes Bind preferable when you need to edit or insert records.

Just like the Eval method, the Bind method has two overloads: one without a format and
one with the format parameter. The code for the Bind method looks the same as that for
the Eval method. However, the Bind method does not work with all bound controls. It only
works with controls that support read, insert, update, and delete scenarios, such as GridView,
DetailsView, and FormView.

Simple Data-Bound Controls
Several controls in ASP.NET provide basic, list-based data binding. These controls are not
meant to work with pages of data or provide elaborate editing scenarios. Instead, they allow
you to provide a list of data items with which a user can operate. Figure 12-9 shows these
simple data-bound controls, including their common base class, ListControl.

FigURE 12-9 The ListControl class hierarchy.

The ListControl class is an abstract base class that provides common functionality for the
classes that derive from it. This functionality includes an Items collection, which is a collection
of ListItem data objects. Each ListItem object contains a Text property that is displayed to the
user and a Value property that is posted back to the web server.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 725

You can add items to the ListItems collection in code or declaratively in markup. You can also
bind data to the controls that inherit from ListControl by setting the DataSource property (or
the DataMember property if the source data has more than one table). You can also declara-
tively data-bind a ListControl-derived object by setting the DataSourceID property to the ID
of a valid data source control on your page.

You can also choose the fields in your results that you will bind to the ListItem.Text and
ListItem.Value properties. You can do so in code or through declarative markup by using the
DataTextField and DataValueField properties, respectively. The text displayed for each item
in the list control can also be formatted by setting the DataTextFormatString property. As an
example, the following shows the declarative syntax for a ListBox bound to a SqlDataSource
that provides the Northwind shipper table data.

<asp:ListBox
 ID="ListBox1"
 runat="server"
 DataSourceID="SqlDataSource1"
 DataTextField="CompanyName"
 DataValueField="ShipperID">
</asp:ListBox>

The SelectedIndex property lets you get or set the index of the selected item in the ListControl.
By using the SelectedItem property, you can access the selected ListItem object’s properties. If you
only need to access the value of the selected ListItem, use the SelectedValue property.

The ListControl also contains the property called AppendDataBoundItems, which can be
set to true to keep all items that are currently in the ListControl, in addition to appending the
items from the data binding. Setting this property to false clears the Items property prior to
binding the data.

The ListControl also provides the SelectedIndexChanged event, which is raised when the selec-
tion in the list control changes between posts to the server. Recall that you need to set a control’s
AutoPostback property to true if you intend it to post back to the server for this type of event.

The DropDownList Control
The DropDownList control is used to display a list of items to users to allow them to make a
single selection. The Items collection contains the child ListItem objects that are displayed
in the DropDownList control. To determine the item that the user has selected, you can
retrieve the SelectedValue, SelectedItem, or SelectedIndex property.

In the following example, a DropDownList control is bound to a SqlDataSource control that
returns data from the Territories database table in the Northwind database. Notice that the
DataTextField and DataValueField attributes are set to fields in the database table.

<asp:DropDownList runat="server" Width="250px"
 ID="DropDownList1"
 DataSourceID="SqlDataSource1"
 DataTextField="TerritoryDescription"
 DataValueField="TerritoryID" >
</asp:DropDownList>

 726	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Suppose that this page also contains a button with an event that captures the selected
item from the DropDownList and displays it on a label. This button control’s event code
might look as follows.

Sample of Visual Basic Code

Label1.Text = "You selected TerritoryID: " & DropDownList1.SelectedValue

Sample of C# Code

Label1.Text = "You selected TerritoryID: " + DropDownList1.SelectedValue;

When the page is run and the user makes a selection in the DropDownList control and then
clicks the button, the results are displayed in the label.

The ListBox Control
The ListBox control is used to select and display items from a longer list rather than one at a
time as done in the DropDownList. With the ListBox control, users can see more data at once.
You can also configure the control to allow the selection of a single item or multiple items. To
do so, you set the SelectionMode property. The ListBox control also has the Rows property,
which is used to specify the number of items displayed on the screen. The following shows
an example of a ListBox that is set to allow multiple selections and show up to 13 rows.

<asp:ListBox runat="server" Height="225px" Width="275px"
 ID="ListBox1"
 Rows="13"
 DataSourceID="SqlDataSource1"
 DataTextField="TerritoryDescription"
 DataValueField="TerritoryID"
 SelectionMode="Multiple">
</asp:ListBox>

The Items collection contains the collection of ListItem objects in the ListBox control. To
determine which items the user has selected, you can enumerate the ListItem objects in the
Items collection by examining the Selected value for each ListItem element. The following code
shows an example of processing the selected items and displaying them inside a Label control.

Sample of Visual Basic Code

For Each i As ListItem In ListBox1.Items
 If i.Selected Then
 Label1.Text = Label1.Text & "You selected TerritoryID: " & i.Value & "
"
 End If
Next

Sample of C# Code

foreach (ListItem i in ListBox1.Items)
{
 if(i.Selected)
 Label1.Text = Label1.Text + "You selected TerritoryID: " + i.Value + "
";
}

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 727

The CheckBoxList and RadioButtonList Controls
The CheckBoxList and RadioButtonList controls are very similar. Both are used to display lists
of items to users to allow them to make selections but use a check box or button to make the
selection. The RadioButtonList control is used to make a single selection. The CheckBoxList
control allows users to make multiple selections.

These controls contain a RepeatColumns property that is used to indicate the number of
columns to be displayed horizontally. In addition, the RepeatDirection can be set to Horizontal
or Vertical (the default) to indicate whether the data should be rendered across by rows or
down by columns.

The following shows a CheckBoxList control configured to work with the Territory data and
show data across five columns.

<asp:CheckBoxList runat="server"
 ID="CheckBoxList1"
 DataSourceID="SqlDataSource1"
 DataTextField="TerritoryDescription"
 DataValueField="TerritoryID" RepeatColumns="5">
</asp:CheckBoxList>

The Items collection contains the ListItem objects that are inside the CheckBoxList and the
RadioButtonList controls. Use the SelectedValue property to determine the item that has been
selected for the RadioButtonList. To find the selected CheckBoxList item or items, you can
enumerate the ListItem objects in the Items collection by examining the value of the Selected
property for each ListItem element.

The BulletedList Control
The BulletedList control displays an unordered or ordered list of items that renders as HTML
or elements, respectively. The BulletedList control inherits from the ListControl control. This
control renders as either bulleted or numbered, depending on the BulletStyle property.

If the control is set to render as bulleted, you can select the bullet style to Disc, Circle, or
Square. Note that the BulletStyle settings are not compatible with all browsers. A custom image
can also be displayed instead of the bullet.

If the BulletedList control is set to render numbered, you can set the BulletStyle to
LowerAlpha, UpperAlpha, LowerRoman, and UpperRoman fields. You can also set the
FirstBulletNumber property to specify the starting number for the sequence.

The DisplayMode property can be set to Text, LinkButton, or HyperLink. If set to LinkButton or
HyperLink, the control performs a postback when a user clicks an item to raise the Click event.

The following example shows a data-bound BulletedList control. The control is bound to a
data source control that selects the Shippers table data from the Northwind database.

<asp:BulletedList runat="server"
 ID="BulletedList1"
 DataSourceID="SqlDataSource1"
 DataTextField="CompanyName"
 DataValueField="ShipperID" BulletStyle="Circle">
</asp:BulletedList>

 728	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Composite Data-Bound Controls
There are several data-bound controls that use other ASP.NET controls to display bound data to
the user. For this reason, these controls are referred to as composite data-bound controls. These
controls inherit from the CompositeDataBoundControl base class. This class implements the
INamingContainer interface, which means that an inheritor of this class is a naming container
for child controls.

The classes that inherit from CompositeDataBoundControl directly are FormView, DetailsView,
and GridView, as shown in Figure 12-10. These controls are covered in this section, along with the
related ListView, DataPager, Repeater, Chart, and DataList data-bound controls.

FigURE 12-10 The CompositeDataBoundControl classes (and related controls).

The GridView Control
The GridView control is used to display data in a tabular format (rows and columns). The control
renders in the browser as an HTML table. The GridView control makes it easy to configure
features such as paging, sorting, and editing data without having to write much code.

The basic structure of the GridView is shown in Figure 12-11. The GridView control consists
of a collection of GridViewRow (row) objects and a collection of DataControlField (column)
objects. The GridViewRow object inherits from the TableRow object, which contains the Cells
property. This property is a collection of DataControlFieldCell objects.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 729

Column Column Column

Columns

Rows

Row cells

Row cells

Row cells

Row cells

Cell Cell Cell

Cell Cell Cell

Cell Cell Cell

Cell Cell Cell

Row = GridViewRow
Column = DataControlField
Cell = DataControlFieldCell

FigURE 12-11 The basic GridView control structure.

Although the GridViewRow object holds the collection of cells, each DataControlField
(column) object provides the behavior to initialize cells of a specific type in the DataControlField
object’s InitializeCell method. The column classes that inherit from DataControlField override
the InitializeCell method. The GridView control has an InitializeRow method that is respon-
sible for creating a new GridViewRow and the row’s cells by making calls to the overridden
InitializeCell method when the row is being created.

The DataControlField class hierarchy is shown in Figure 12-12. The derived classes are used
to create a DataControlFieldCell with the proper contents. Remember that you don’t define cell
types for your GridView control; you define column types and your column object supplies a
cell object to the row by using the InitializeCell method. The DataControlField class hierarchy
shows the different column types that are available in a GridView control.

FigURE 12-12 The DataControlField class hierarchy.

 730	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

USING STYLES TO FORMAT THE GRIDVIEW CONTROL
You use styles to format the GridView. There are several styles available for you to manage, in-
cluding an overall GridViewStyle and a HeaderStyle, FooterStyle, RowStyle, AlternatingRowStyle,
SelectedRowStyle, EditRowStyle, and more. You can set these styles declaratively at design time.
In addition, the RowCreated and RowDataBound events can also be used to control the style
programmatically. In these event handlers, the Cells collection on the newly created row can
be used to apply a style to a single cell in the row. The difference between the two events
is that the RowCreated event takes place first, before the data is available. You can use the
RowDataBound event when you need to apply a different style to a cell based on the data in
the cell. These events fire after the styles are applied, which means that you can override any
existing styles. Applying a different style to a cell based on the data in the cell allows you to
apply business rules to determine whether a cell should stand out from other cells (such as
making negative “quantity on hand” numbers red, but only when an item is shipped more
than once per month).

As an example, consider a page that contains a SqlDataSource control bound to the
Products table in the Northwind database. Suppose that this data source control provides
SQL statements for selecting, updating, inserting, and deleting data. You can use this data
source control to configure a GridView control that allows for this editing. The following
markup shows an example of how the GridView would look in Source view.

<asp:GridView ID="GridView1" runat="server"
 AllowPaging="True"
 AllowSorting="True"
 AutoGenerateColumns="False"
 DataKeyNames="ProductID"
 DataSourceID="SqlDataSource1">
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowSelectButton="True" />
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 InsertVisible="False" ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="ProductName" HeaderText="ProductName"
 SortExpression="ProductName" />
 <asp:BoundField DataField="SupplierID" HeaderText="SupplierID"
 SortExpression="SupplierID" />
 <asp:BoundField DataField="CategoryID" HeaderText="CategoryID"
 SortExpression="CategoryID" />
 <asp:BoundField DataField="QuantityPerUnit" HeaderText="QuantityPerUnit"
 SortExpression="QuantityPerUnit" />
 <asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
 SortExpression="UnitPrice" />
 <asp:BoundField DataField="UnitsInStock" HeaderText="UnitsInStock"
 SortExpression="UnitsInStock" />
 <asp:BoundField DataField="UnitsOnOrder" HeaderText="UnitsOnOrder"
 SortExpression="UnitsOnOrder" />
 <asp:BoundField DataField="ReorderLevel" HeaderText="ReorderLevel"
 SortExpression="ReorderLevel" />
 <asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued"
 SortExpression="Discontinued" />
 </Columns>
</asp:GridView>

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 731

Notice the Columns collection in the markup. Each column is defined along with the
DataField and the text to be displayed as the column header (HeaderText). When this web-
page is executed and displayed, each row is shown to the user along with action buttons for
editing, deleting, and selecting the row. A user can click the Edit link on one of the rows to
place the row into edit mode. Figure 12-13 shows an example.

FigURE 12-13 The GridView control showing a row in edit mode.

The DetailsView Control
The DetailsView control is used to display the values of one record at a time from a data
source in an HTML table. The DetailsView control allows you to edit, delete, and insert
records. If the AllowPaging property is set to true, the DetailsView can be used by itself to
navigate the data source. However, the DetailsView can also be used in combination with
other controls such as the GridView, ListBox, or DropDownList, for scenarios in which you
want to display a master-detail form.

The DetailsView control does not directly support sorting, whereas the GridView control
does. However, you can use the DataSource control, as discussed in Lesson 1, to manage data
sorting. You should also note that the GridView does not automatically support inserting new
records, whereas the DetailsView does support this feature.

 732	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

The DetailsView supports the same formatting options that are available with the Grid-
View control. You can format the DetailsView control by using the HeaderStyle, RowStyle,
AlternatingRowStyle, CommandRowStyle, FooterStyle, PagerStyle, and EmptyDataRowStyle
properties.

As an example, again consider a page that has a SqlDataSource control used for defining
selection, insertion, updates, and deletion of product data in the Northwind database. You
can configure a DetailsView to show this product data as pages and allow users to edit this
data, insert new records, and delete existing ones. The following markup shows an example.

<asp:DetailsView runat="server" Width="300px"
 ID="DetailsView1"
 AllowPaging="True"
 AutoGenerateRows="False"
 DataKeyNames="ProductID"
 DataSourceID="SqlDataSource1">
 <Fields>
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 InsertVisible="False" ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="ProductName" HeaderText="ProductName"
 SortExpression="ProductName" />
 <asp:BoundField DataField="SupplierID" HeaderText="SupplierID"
 SortExpression="SupplierID" />
 <asp:BoundField DataField="CategoryID" HeaderText="CategoryID"
 SortExpression="CategoryID" />
 <asp:BoundField DataField="QuantityPerUnit" HeaderText="QuantityPerUnit"
 SortExpression="QuantityPerUnit" />
 <asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
 SortExpression="UnitPrice" />
 <asp:BoundField DataField="UnitsInStock" HeaderText="UnitsInStock"
 SortExpression="UnitsInStock" />
 <asp:BoundField DataField="UnitsOnOrder" HeaderText="UnitsOnOrder"
 SortExpression="UnitsOnOrder" />
 <asp:BoundField DataField="ReorderLevel" HeaderText="ReorderLevel"
 SortExpression="ReorderLevel" />
 <asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued"
 SortExpression="Discontinued" />
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowInsertButton="True" />
 </Fields>
</asp:DetailsView>

Notice that each column in the data table is set inside the Fields collection. The DataField
attribute maps to the name of the column in the data source. The HeaderText property is
used as the label that describes the data field. When the page is executed and displayed, the
DetailsView shows Edit, Delete, and New buttons. When users click the Edit button, they are
taken to edit mode for the selected record, as shown in Figure 12-14.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 733

FigURE 12-14 The DetailsView control in edit mode after the user has clicked the Edit button.

The FormView Control
Like DetailsView, the FormView control is used to display a single record from a data source.
However, the FormView control does not automatically display the data in a predefined HTML
table. Instead, it allows developers to create templates that define how the data should be dis-
played. You can define different templates for viewing, editing, and updating records. Creating
your own templates gives you the greatest flexibility in controlling how data is displayed.

The FormView contains the following template definitions: ItemTemplate, EditItemTemplate,
InsertItemTemplate, EmptyDataTemplate, FooterTemplate, HeaderTemplate, and PagerTemplate.
You define a template by placing markup inside it and adding binding code within this
markup. You then set the appropriate mode of the FormView control to switch to the
specified template.

As an example, consider a page that defines a data source control for selecting the
shipper data from the Northwind database. You can configure a FormView control to work
with this data. For display, you can define the ItemTemplate. Here you set the controls and
HTML used to lay out this data. You use the binding syntax (Eval and Bind) to connect data
from the SqlDataSource to the FormView. The markup on the next page shows an example.

 734	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

<asp:FormView runat="server"
 ID="FormView1"
 AllowPaging="True"
 DataSourceID="SqlDataSource1">
 <ItemTemplate>
 Shipper Identification:
 <asp:Label runat="server" Font-Bold="True"
 ID="Label1"
 Text='<%# Eval("ShipperID") %>'>
 </asp:Label>

 Company Name

 <asp:TextBox runat="server" Width="250px"
 ID="TextBox1"
 Text='<%# Bind("CompanyName") %>'>
 </asp:TextBox>

 Phone Number

 <asp:TextBox runat="server" Width="250px"
 ID="TextBox2"
 Text='<%# Bind("Phone") %>'>
 </asp:TextBox>
 </ItemTemplate>
</asp:FormView>

When you run the page, the custom template is used with the FormView to display data as
defined. Figure 12-15 shows the results in a browser window.

FigURE 12-15 The FormView control showing the ItemTemplate in a browser.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 735

The Repeater Control
The Repeater control also uses templates to define custom binding. However, it does not show
data as individual records. Instead, it repeats the data rows as you specify in your template. This
allows you to create a single row of data and have it repeat across your page.

The Repeater control is a read-only template. That is, it supports only the ItemTemplate.
It does not implicitly support editing, insertion, and deletion. You should consider one of the
other controls if you need this functionality, otherwise you will have to code this yourself for
the Repeater control.

The following markup is similar to that for the FormView control example. It displays shipper
data from the Northwind database as bound to a Label and two TextBox controls.

<asp:Repeater runat="server"
 ID="Repeater1"
 DataSourceID="SqlDataSource1">
 <ItemTemplate>

 Shipper Identification:
 <asp:Label runat="server" Font-Bold="True"
 ID="Label1"
 Text='<%# Eval("ShipperID") %>'>
 </asp:Label>

 Company Name

 <asp:TextBox runat="server" Width="250px"
 ID="TextBox1"
 Text='<%# Bind("CompanyName") %>'>
 </asp:TextBox>

 Phone Number

 <asp:TextBox runat="server" Width="250px"
 ID="TextBox2"
 Text='<%# Bind("Phone") %>'>
 </asp:TextBox>
 </ItemTemplate>
</asp:Repeater>

When this data is displayed, however, it is repeated down the page. Figure 12-16 shows the
results in a browser window.

 736	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

FigURE 12-16 The Repeater control showing the ItemTemplate in a browser.

The ListView Control
The ListView control also uses templates for the display of data. However, it supports many
additional templates that allow for more scenarios when working with your data. These tem-
plates include the LayoutTemplate, which allows you to indicate an overall layout inside of which
rows of your data will be displayed. The rows themselves are defined with the ItemTemplate. At
run time, rows are placed within the LayoutTemplate placeholder identified by a control that
has its ID attribute set to itemPlaceholder.

Another template is the GroupTemplate, which allows you to define groups of data. You can
then set the GroupItemCount value to indicate the number of items in a group, and you can set
the control to lay out groups of data and allow users to page through them.

The ItemSeparatorTemplate allows you to define content that should be placed between
rows of items. This allows you to put graphic separators or other data between rows.

The ListView control (unlike DataList and Repeater) also implicitly supports the ability to
edit, insert, and delete data by using a data source control. You can define individual templates
for each of these scenarios. You can then change the mode of the ListView control through a
server-side call and thus invoke the template for the user.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 737

As an example, consider a page that includes a data source control that exposes the Product
table from the Northwind database. You can create a ListView control to work with this data. The
following markup shows such an example. In this example, a LayoutTemplate defines a <div> tag
that includes the itemPlaceholder setting. The ItemTemplate is then defined by a <div> tag. At
run time, each row will be added as a <div> tag in the placeholder.

<asp:ListView runat="server"
 ID="ListView1"
 DataKeyNames="ProductID"
 DataSourceID="SqlDataSource1">
 <LayoutTemplate>
 <div id="itemPlaceholder" runat="server"></div>

 <div style="text-align: center">
 <asp:DataPager ID="DataPager1" runat="server" PageSize="4">
 <Fields>
 <asp:NextPreviousPagerField
 ButtonType="Button"
 ShowFirstPageButton="True"
 ShowLastPageButton="True" />
 </Fields>
 </asp:DataPager>
 </div>
 </LayoutTemplate>
 <ItemTemplate>
 <div style="text-align: center">
 ProductName:
 <asp:Label ID="ProductNameLabel" runat="server"
 Text='<%# Eval("ProductName") %>' />

 QuantityPerUnit:
 <asp:Label ID="QuantityPerUnitLabel" runat="server"
 Text='<%# Eval("QuantityPerUnit") %>' />

 UnitPrice:
 <asp:Label ID="UnitPriceLabel" runat="server"
 Text='<%# Eval("UnitPrice") %>' />

 </div>
 </ItemTemplate>
 <ItemSeparatorTemplate>
 <hr />
 </ItemSeparatorTemplate>
</asp:ListView>

 738	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Notice also that the ListView control uses the ASP.NET DataPager control. This control
allows you to provide custom data pagers for your data lists. Here the control is embedded
at the end of the LayoutTemplate. The ListView control automatically uses the DataPager to
move the user through data.

Finally, notice the use of the ItemSeparatorTemplate. This is used to put a horizontal rule
between data rows. Figure 12-17 shows the results in a browser window.

FigURE 12-17 The ListView control rendered in the browser.

The Chart Control
The Chart control allows you to display data by using chart visualization. You bind a data
source to this control much like you do for the other data-bound controls. The big difference
is that you then indicate fields from the data source that should be bound to an axis or data
series in a chart.

There are more than 25 different chart types for displaying data. When the chart control runs
on the server, it generate a graphic file (which is a PNG file by default, but you can change this
setting) and then sends this to the browser as part of the response.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 739

There are hundreds of properties you can set to define your chart and how it displays data.
The chart definition typically includes the Series and ChartAreas elements. A Series represents
a group of data to be shown on a chart. A Series element has a ChartType that defines the visu-
alization of the data (choices are Bar, Area, Bubble, Line, Column, Pie, Radar, Range, and many
more). A ChartArea element is used to indicate specifics about areas on your chart, such as an x
and y axis. Here you can set intervals, formatting, and related visual items.

As an example, suppose you have the following SqlDataSource control that exposes sales
by region.

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommand="SELECT SUM([Order Details].UnitPrice * [Order Details].Quantity) AS
Total, Orders.ShipCountry FROM Orders INNER JOIN [Order Details] ON Orders.OrderID =
[Order Details].OrderID GROUP BY Orders.ShipCountry Order By Total"></asp:SqlDataSource>

You could then bind this to a Chart control to display each country and the total sales for
that country. The following markup shows an example.

<asp:Chart ID="Chart1" runat="server"
 DataSourceID="SqlDataSource1"
 Width="702px" Height="581px">
 <Series>
 <asp:Series Name="Series1"
 XValueMember="ShipCountry"
 YValueMembers="Total"
 ChartType=" "Bar"
 XValueType="String"
 IsValueShownAsLabel="True"
 LabelBackColor="White"
 LabelFormat="{c}">
 <SmartLabelStyle CalloutBackColor="White" />
 </asp:Series>
 </Series>
 <ChartAreas>
 <asp:ChartArea Name="ChartArea1">
 <AxisY>
 <LabelStyle Format="{c}" />
 </AxisY>
 <AxisX Interval="1">
 </AxisX>
 </asp:ChartArea>
 </ChartAreas>
</asp:Chart>

Running this page will produce results similar to those shown in Figure 12-18.

 740	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

FigURE 12-18 The Chart control rendered in the browser.

The DataList Control
The DataList control works like the Repeater control. It repeats data for each row in your data set,
and it displays this data according to your defined template. However, it lays out the data defined
in the template within various HTML structures. This includes options for horizontal or vertical
layout, and it also allows you to set how the data should be repeated, as flow or table layout.

The DataList control does not automatically use a data source control to edit data. Instead,
it provides command events in which you can write your own code for these scenarios. To
enable these events, you add a Button control to one of the templates and set the button’s
CommandName property to the edit, delete, update, or cancel keyword. The appropriate
event is then raised by the DataList control.

The following markup shows an example of a DataList control configured to show product
data from the Northwind database. This control’s RepeatDirection is set to show data vertically
by using a RepeatLayout of flow. The product data is bound to the DataList control inside the
ItemTemplate code.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 741

<asp:DataList runat="server"
 DataSourceID="SqlDataSource1"
 RepeatDirection="Vertical"
 ID="DataList1"
 RepeatLayout="flow">
 <ItemTemplate>
 <asp:Label ID="Label1" runat="server"
 Text='<%# Eval("ProductName") %>'
 Font-Bold="True">
 </asp:Label>
 <asp:Label ID="Label2" runat="server"
 Text='<%# Eval("UnitPrice", "{0:C}") %>'>
 </asp:Label>

 </ItemTemplate>
</asp:DataList>

Hierarchical Data-Bound Controls
The HierarchicalDataBoundControl control serves as a base class for controls that render
data in a hierarchical fashion. The classes that inherit from HierarchicalDataBoundControl
are TreeView and Menu, as shown in Figure 12-19.

FigURE 12-19 The HierarchicalDataBoundControl class hierarchy.

The TreeView Control
The TreeView control is a data-bound control that is used to display hierarchical data, such as
a listing of files and folders, or a table of contents in a tree structure. Each entry in the tree is
called a node. The nodes of this control can be bound to XML, tabular, or relational data. This
control can also provide site navigation when used with the SiteMapDataSource control.

You can programmatically access and control the properties of the TreeView control. The
TreeView can also be populated via client-side script by using modern browsers. In addition,
nodes can be displayed as either plaintext or hyperlinks, and you can opt to display a check
box next to each node.

 742	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Each node is represented by a TreeNode object. A node that contains other nodes is called a
parent node. A node that is contained by another node is called a child node. A node can be both
a parent node and a child node. A node that has no children is called a leaf node. A node that is
not contained by any other node but is the ancestor to all the other nodes is the root node.

The typical TreeView tree structure has only one root node, but you can add multiple root
nodes to the tree structure. This means that you can display a tree hierarchy without being
forced to have a single root node.

The TreeNode has a Text property that is populated with the data that is to be displayed.
The TreeNode also has a Value property that is used to store the data that is posted back to
the web server.

You can configure a node to be a selection node or a navigation node by setting the
NavigateUrl property. If the NavigateUrl property is set to an empty string (string.Empty),
it is a selection node, and clicking the node simply selects it. If the NavigateUrl property is
not set to an empty string, the node is a navigation node, and clicking it navigates to the
location specified by the NavigateUrl property.

POPULATING THE TREEVIEW CONTROL
The TreeView control can be populated by using static data or by using data binding. To
populate the TreeView control with static data, you can use declarative syntax by placing
opening and closing <Nodes> tags in the TreeView element and then creating a structure
of nested <TreeNode> elements within the <Nodes> element. Each <TreeNode> has prop-
erties that you can set by adding attributes to the <TreeNode> element.

To use data binding to populate the TreeView control, you can use any data source that
implements the IHierarchicalDataSource interface, such as an XmlDataSource control or a
SiteMapDataSource control. Simply set the DataSourceID property of the TreeView control
to the ID value of the data source control, and the TreeView control automatically binds to
the specified data source control.

You can also bind to an XmlDocument object or a DataSet object that contains DataRelation
objects by setting the DataSource property of the TreeView control to the data source and then
calling the DataBind method.

The TreeView control contains a DataBindings property that is a collection of TreeNodeBinding
objects that define the binding between a data item and the TreeNode. You can specify the
binding criteria and the data item property to display in the node. This is useful when binding
to XML elements when you are interested in binding to an attribute of the element.

Assume that you want to use a TreeView control to display customer data from a file called
Customers.xml, which contains a list of customers, their orders and invoices, and the items for
each order. This data is stored in a hierarchical format in the XML file. The Customers.xml file
looks like the following.

<?xml version="1.0" encoding="utf-8" ?>
<Customers>
 <Customer CustomerId="1" Name="Northwind Traders">

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 743

 <Orders>
 <Order OrderId="1" ShipDate="06-22-2006">
 <OrderItems>
 <OrderItem OrderItemId="1" PartNumber="123"
 PartDescription="Large Widget" Quantity="5"
 Price="22.00" />
 <OrderItem OrderItemId="2" PartNumber="234"
 PartDescription="Medium Widget" Quantity="2"
 Price="12.50" />
 </OrderItems>
 </Order>
 <Order OrderId="2" ShipDate="06-25-2006">
 <OrderItems>
 <OrderItem OrderItemId="5" PartNumber="432"
 PartDescription="Small Widget" Quantity="30"
 Price="8.99" />
 <OrderItem OrderItemId="4" PartNumber="234"
 PartDescription="Medium Widget" Quantity="2"
 Price="12.50" />
 </OrderItems>
 </Order>
 </Orders>
 <Invoices>
 <Invoice InvoiceId="6" Amount="99.37" />
 <Invoice InvoiceId="7" Amount="147.50" />
 </Invoices>
 </Customer>
 <Customer CustomerId="2" Name="Tailspin Toys">
 <Orders>
 <Order OrderId="8" ShipDate="07-11-2006">
 <OrderItems>
 <OrderItem OrderItemId="9" PartNumber="987"
 PartDescription="Combo Widget" Quantity="2"
 Price="87.25" />
 <OrderItem OrderItemId="10" PartNumber="654"
 PartDescription="Ugly Widget" Quantity="1"
 Price="2.00" />
 </OrderItems>
 </Order>
 <Order OrderId="11" ShipDate="08-21-2006">
 <OrderItems>
 <OrderItem OrderItemId="12" PartNumber="999"
 PartDescription="Pretty Widget" Quantity="50"
 Price="78.99" />
 <OrderItem OrderItemId="14" PartNumber="575"
 PartDescription="Tiny Widget" Quantity="100"
 Price="1.20" />
 </OrderItems>
 </Order>
 </Orders>
 <Invoices>
 <Invoice InvoiceId="26" Amount="46.58" />
 <Invoice InvoiceId="27" Amount="279.15" />
 </Invoices>
 </Customer>
</Customers>

 744	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

An XmlDataSource and a TreeView control are added to the webpage and configured. The
following shows the markup for the TreeView control.

<asp:TreeView ID="TreeView1" runat="server"
 DataSourceID="XmlDataSource1"
 ShowLines="True" ExpandDepth="0">
 <DataBindings>
 <asp:TreeNodeBinding DataMember="Customer"
 TextField="Name" ValueField="CustomerId" />
 <asp:TreeNodeBinding DataMember="Order"
 TextField="ShipDate" ValueField="OrderId" />
 <asp:TreeNodeBinding DataMember="OrderItem"
 TextField="PartDescription" ValueField="OrderItemId" />
 <asp:TreeNodeBinding DataMember="Invoice"
 TextField="Amount" ValueField="InvoiceId"
 FormatString="{0:C}" />
 </DataBindings>
</asp:TreeView>

In this example, the configuration is kept to a minimum, but configuration is required to
display information that is more important than the XML element name, such as the customer’s
name instead of the XML element name (Customer). The following code is added to the code-
behind page to simply display the value of the selected node.

Sample of Visual Basic Code

Partial Class TreeView_Control
 Inherits System.Web.UI.Page

 Protected Sub TreeView1_SelectedNodeChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles TreeView1.SelectedNodeChanged
 Response.Write("Value:" + TreeView1.SelectedNode.Value)
 End Sub

End Class

Sample of C# Code

public partial class TreeView_Control : System.Web.UI.Page
{
 protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e)
 {
 Response.Write("Value:" + TreeView1.SelectedNode.Value);
 }
}

When the webpage is displayed, the Customers node is visible. You can also click the plus
(+) sign to expand the nodes, as shown in Figure 12-20.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 745

FigURE 12-20 The TreeView displays the nodes as configured.

The Menu Control
The Menu control is a data-bound control that is used to display hierarchical data in the form
of a menu system. The Menu control is often used in combination with a SiteMapDataSource
control for navigating a website.

The Menu control can be populated by using static data or by using data binding. To populate
the Menu control with static data, you can use declarative syntax by placing opening and closing
<Items> tags in the Menu element, and then you can create a structure of nested <MenuItem>
elements within the <Items> element. Each <MenuItem> has properties that you can set by
adding attributes to the <asp:MenuItem> element.

To use data binding to populate the Menu control, you can use any data source that
implements the IHierarchicalDataSource interface, such as an XmlDataSource control or a
SiteMapDataSource control. Simply set the DataSourceID property of the Menu control to
the ID value of the data source control, and the Menu control automatically binds to the
specified data source control.

You can also bind to an XmlDocument object or a DataSet object that contains DataRelation
objects by setting the DataSource property of the Menu control to the data source, and then
calling the DataBind method.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 746	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

The Menu control contains a DataBindings property that is a collection of MenuItemBinding
objects that define the binding between a data item and the menu item it is binding to in a
Menu control. You can specify the binding criteria and the data item properties to display in
the items. This is useful when binding to XML elements when you are interested in binding to
an attribute of the element.

Assume that you want to use a Menu control to display menu data from a file called
MenuItems.xml, which contains a list of the menu items to be displayed. The data is stored
in a hierarchical format in the XML file. The MenuItems.xml file looks like the following.

<?xml version="1.0" encoding="utf-8" ?>
<MenuItems>
 <Home display="Home" url="~/" />
 <Products display="Products" url="~/products/">
 <SmallWidgets display="Small Widgets"
 url="~/products/smallwidgets.aspx" />
 <MediumWidgets display="Medium Widgets"
 url="~/products/mediumwidgets.aspx" />
 <BigWidgets display="Big Widgets"
 url="~/products/bigwidgets.aspx" />
 </Products>
 <Support display="Support" url="~/Support/">
 <Downloads display="Downloads"
 url="~/support/downloads.aspx" />
 <FAQs display="FAQs"
 url="~/support/faqs.aspx" />
 </Support>
 <AboutUs display="About Us" url="~/aboutus/">
 <Company display="Company"
 url="~/aboutus/company.aspx" />
 <Locations display="Location"
 url="~/aboutus/locations.aspx" />
 </AboutUs>
</MenuItems>

An XmlDataSource, a Menu, and a Label control are added to the webpage. The
XmlDataSource is configured to use the XML file. The Menu control is configured to
use the XmlDataSource. The following is the webpage markup.

<asp:Menu runat="server"
 ID="Menu1"
 DataSourceID="XmlDataSource1"
 OnMenuItemClick="Menu1_MenuItemClick">
</asp:Menu>

In this example, showing the root MenuItems element in the XML file is not desirable, so
an XPath expression is supplied to retrieve the elements that exist under the root MenuItems
element. The following code is added to the code-behind page to simply display the ValuePath
property of the selected MenuItem. When the webpage is displayed, the Menu appears and
you can point to a menu item to see its child menu items.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 747

Sample of Visual Basic Code

Partial Class Menu_Control
 Inherits System.Web.UI.Page

 Protected Sub Menu1_MenuItemClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.MenuEventArgs) _
 Handles Menu1.MenuItemClick
 Label1.Text = e.Item.ValuePath
 End Sub
End Class

Sample of C# Code

public partial class Menu_Control : System.Web.UI.Page
{
 protected void Menu1_MenuItemClick(object sender, MenuEventArgs e)
 {
 Label1.Text = e.Item.ValuePath;
 }
}

Quick Check
	 1. What method should you call on a data-bound control when the data is ready to

be read from the data source?

	 2. What method is used in a FormView to perform two-way data binding?

	 3. What GUI object can provide a data source that allows you to connect middle-
tier objects to data-bound controls?

Quick Check Answers
	 1. You should call the DataBind method.

	 2. The Bind method is used to perform two-way data binding.

	 3. The ObjectDataSource control can provide a data source that allows you to
connect middle-tier objects to data-bound controls.

PrActIcE	 Using the gridview and Detailsview Controls

In this practice, you use the GridView and DetailsView data-bound controls together to create
a master-detail page.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

 748	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

ExErcIsE	 Creating the Website, Adding Controls to the Page, and Configuring the
Controls

In this exercise, you create a new website and add the database and data source control.
You then add the data-bound controls and configure them accordingly.

	 1. Open Visual Studio and create a new website called UsingDataboundControls by
using your preferred programming language.

	 2. Add the northwnd.mdf file to your App_Data directory. You can copy the file from
the samples installed from the CD.

	 3. Open Default.aspx. Delete the default content on the page. Add a SqlDataSource
control to the page from the Toolbox; name it sqlDatasourceReadList. This control
will read data for display by the GridView control.

	 4. In Design view of the Default.aspx page, click the smart tag in the upper-right corner
of the SqlDataSource control to launch the Configure Data Source Wizard.

	 a. On the first page, set the connection to the northwnd.mdf file in the App_Data
directory and click Next.

	 b. When prompted, save the connection string as Connectionstringnorthwind,
and then click Next again.

	 c. On the Configure Select Statement page, select the Customers table from the
Name list box. Select the CustomerID, CompanyName, ContactName, City,
Country, and Phone fields. Click Next, and then click Finish to close the wizard.

Your SqlDataSource markup should look similar to the following.

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:ConnectionStringNorthwind %>"
 SelectCommand="SELECT [CustomerID], [CompanyName], [ContactName], [City],
 [Country], [Phone] FROM [Customers]">
</asp:SqlDataSource>

	 5. Drag a GridView control onto the Default.aspx page. Using either Design or Source
view, configure the GridView control as follows:

■ Set the DataSourceId to SqlDataSourceReadList, created previously.

■ Set Enable Paging (AllowPaging property) to true.

■ Set Enable Sorting (AllowSorting property) to true.

■ Set AutoGenerateColumns to false.

■ Configure the CustomerID, CompanyName, ContactName, City, Country, and Phone
fields to be displayed.

■ Add a CommandField to allow a user to select a row of data (you can do so in Design
view by clicking Enable Selection).

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 749

Your markup should look similar to the following.

<asp:GridView ID="GridView1" runat="server"
 AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False"
 DataKeyNames="CustomerID"
 DataSourceID="SqlDataSource1"
 width="700px">
 <Columns>
 <asp:CommandField ShowSelectButton="True" />
 <asp:BoundField DataField="CustomerID" HeaderText="ID"
 ReadOnly="True" SortExpression="CustomerID" />
 <asp:BoundField DataField="CompanyName" HeaderText="Company"
 SortExpression="CompanyName" />
 <asp:BoundField DataField="ContactName" HeaderText="Contact"
 SortExpression="ContactName" />
 <asp:BoundField DataField="City" HeaderText="City"
 SortExpression="City" />
 <asp:BoundField DataField="Country" HeaderText="Country"
 SortExpression="Country" />
 <asp:BoundField DataField="Phone" HeaderText="Phone"
 SortExpression="Phone" />
 </Columns>
</asp:GridView>

	 6. If you want, select the GridView in Design view and click the AutoFormat link on the
task pane (from the smart tag). Select Professional or another formatting option.

	 7. Run the website; you should be able to page through data, sort data, and select a row.

	 8. Next, add another SqlDataSource control to the Default.aspx page; name it
sqlDatasourceUpdate. Configure this control as before, by using the Configure
Data Source Wizard.

	 a. On the first page, select ConnectionStringNorthwind and click Next.

	 b. The next step is to configure the SELECT statement to pick up the CustomerID
parameter from the selected row on the GridView control. On the Configure The
Select Statement page, select the Customers table. This time, select each field in
the table. Then click the Where button to launch the Add WHERE Clause dialog
box. Set the column to CustomerID. Set the Operator to = (the equal sign). Set the
Source to Control. Under Parameter Properties, set the Control ID to GridView1.
Click the Add button, and then click OK to close the dialog box.

	 c. Click the Advanced button. In the Advanced Sql Generation Options dialog box,
select the Generate INSERT, UPDATE, And DELETE Statements option. Click OK to
close this dialog box. Click Next, and then click Finish to close the wizard.

 750	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Your SqlDataSource control’s markup should look as follows.

<asp:SqlDataSource ID="SqlDataSourceUpdate" runat="server"
 ConnectionString="<%$ ConnectionStrings:ConnectionStringNorthwind %>"
 DeleteCommand="DELETE FROM [Customers] WHERE [CustomerID] = @CustomerID"
 InsertCommand="INSERT INTO [Customers] ([CustomerID], [CompanyName],
 [ContactName], [ContactTitle], [Address], [City], [Region], [PostalCode],
 [Country], [Phone], [Fax]) VALUES (@CustomerID, @CompanyName, @ContactName,
 @ContactTitle, @Address, @City, @Region, @PostalCode, @Country, @Phone, @Fax)"
 SelectCommand="SELECT [CustomerID], [CompanyName], [ContactName],
[ContactTitle],
 [Address], [City], [Region], [PostalCode], [Country], [Phone], [Fax] FROM
 [Customers] WHERE ([CustomerID] = @CustomerID)"
 UpdateCommand="UPDATE [Customers] SET [CompanyName] = @CompanyName,
 [ContactName] = @ContactName, [ContactTitle] = @ContactTitle, [Address] =
 @Address,
 [City] = @City, [Region] = @Region, [PostalCode] = @PostalCode, [Country] =
 @Country, [Phone] = @Phone, [Fax] = @Fax WHERE [CustomerID] = @CustomerID">
 <DeleteParameters>
 <asp:Parameter Name="CustomerID" Type="String" />
 </DeleteParameters>
 <InsertParameters>
 <asp:Parameter Name="CustomerID" Type="String" />
 <asp:Parameter Name="CompanyName" Type="String" />
 <asp:Parameter Name="ContactName" Type="String" />
 <asp:Parameter Name="ContactTitle" Type="String" />
 <asp:Parameter Name="Address" Type="String" />
 <asp:Parameter Name="City" Type="String" />
 <asp:Parameter Name="Region" Type="String" />
 <asp:Parameter Name="PostalCode" Type="String" />
 <asp:Parameter Name="Country" Type="String" />
 <asp:Parameter Name="Phone" Type="String" />
 <asp:Parameter Name="Fax" Type="String" />
 </InsertParameters>
 <SelectParameters>
 <asp:ControlParameter ControlID="GridView1" Name="CustomerID"
 PropertyName="SelectedValue" Type="String" />
 </SelectParameters>
 <UpdateParameters>
 <asp:Parameter Name="CompanyName" Type="String" />
 <asp:Parameter Name="ContactName" Type="String" />
 <asp:Parameter Name="ContactTitle" Type="String" />
 <asp:Parameter Name="Address" Type="String" />
 <asp:Parameter Name="City" Type="String" />
 <asp:Parameter Name="Region" Type="String" />
 <asp:Parameter Name="PostalCode" Type="String" />
 <asp:Parameter Name="Country" Type="String" />
 <asp:Parameter Name="Phone" Type="String" />
 <asp:Parameter Name="Fax" Type="String" />
 <asp:Parameter Name="CustomerID" Type="String" />
 </UpdateParameters>
</asp:SqlDataSource>

	 9. Add a DetailsView control to the page; place it under the GridView control.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 751

	 10. Switch to Design view and configure the DetailsView control by using the smart tag
and related task list.

	 11. Set the control’s data source to SqlDataSourceUpdate.

	 12. Enable inserting and editing. (Deleting requires management of a foreign key con-
straint, so leave that cleared for this example.)

	 13. Click Edit Templates from the task list of the DetailsView control.

	 14. Select the EmptyData Template from the Display list in the task list.

	 15. In the template, type no customer is currently selected.

	 16. Add a LinkButton control to the template. Set the LinkButton control’s CausesValidation
property to false (from the Properties pane). Set its CommandName property to new,
and set its Text property to new.

	 17. In the DetailView Tasks window, click End Template Editing.

Your DetailsView markup should look as follows.
<asp:DetailsView ID="DetailsView1" runat="server" Height="50px" Width="125px"
 AutoGenerateRows="False" DataKeyNames="CustomerID"
 DataSourceID="SqlDataSourceUpdate">
 <EmptyDataTemplate>
 No customer is currently selected

 <asp:LinkButton ID="LinkButton1" runat="server"
 CausesValidation="False"
 CommandName="New">New</asp:LinkButton>

 </EmptyDataTemplate>
 <Fields>
 <asp:BoundField DataField="CustomerID" HeaderText="ID"
 ReadOnly="True" SortExpression="CustomerID" />
 <asp:BoundField DataField="CompanyName" HeaderText="Company"
 SortExpression="CompanyName" />
 <asp:BoundField DataField="ContactName" HeaderText="Contact"
 SortExpression="ContactName" />
 <asp:BoundField DataField="ContactTitle" HeaderText="Contact Title"
 SortExpression="ContactTitle" />
 <asp:BoundField DataField="Address" HeaderText="Address"
 SortExpression="Address" />
 <asp:BoundField DataField="City" HeaderText="City"
 SortExpression="City" />
 <asp:BoundField DataField="Region" HeaderText="Region"
 SortExpression="Region" />
 <asp:BoundField DataField="PostalCode" HeaderText="Postal Code"
 SortExpression="PostalCode" />
 <asp:BoundField DataField="Country" HeaderText="Country"
 SortExpression="Country" />
 <asp:BoundField DataField="Phone" HeaderText="Phone"
 SortExpression="Phone" />
 <asp:BoundField DataField="Fax" HeaderText="Fax"
 SortExpression="Fax" />
 <asp:CommandField ShowEditButton="True"
 ShowInsertButton="True" />
 </Fields>
</asp:DetailsView>

 752	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

	 18. If you want, select the DetailsView control in Design view and click the AutoFormat
link in the task pane (from the smart tag). Select Professional or another formatting
option.

	 19. Next, add code to update the GridView when a record has been inserted or edited in
the DetailsView control. To do so, add event handlers for both the ItemUpdated and
ItemInserted events of the DetailsView control. Inside each event, rebind the GridView
control. The following code shows an example.

Sample of Visual Basic Code

Protected Sub DetailsView1_ItemInserted(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.DetailsViewInsertedEventArgs) _
 Handles DetailsView1.ItemInserted

 GridView1.DataBind()

End Sub

Protected Sub DetailsView1_ItemUpdated(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.DetailsViewUpdatedEventArgs) _
 Handles DetailsView1.ItemUpdated

 GridView1.DataBind()

End Sub

Sample of C# Code

protected void DetailsView1_ItemUpdated(object sender,
 DetailsViewUpdatedEventArgs e)
{
 GridView1.DataBind();
}

protected void DetailsView1_ItemInserted(object sender,
 DetailsViewInsertedEventArgs e)
{
 GridView1.DataBind();
}

	 20. Add a title to the top of the page for manage Customers. Add another title for
Customer Details.

	 21. Run the webpage. Notice that the empty DetailsView control allows you to add a new
record. Select a row from the GridView. Notice that it appears in the DetailsView section,
as shown in Figure 12-21. Click the Edit link (which will appear when a row is selected in
the GridView), and then edit a record.

 Lesson 2: Working with Data-Bound Web Server Controls ChAPTER 12 753

FigURE 12-21 The master-detail form shown in the browser window.

Lesson Summary
■ Simple data-bound controls consist of controls that inherit from the ListControl, such

as DropDownList, ListBox, CheckBoxList, BulletedList, and RadioButtonList. For these
controls, you set the DataTextField to the name of the column that contains the data
you want to display to the user. You set the DataValueField to the column that contains
the value or values you want to return to the server for a selected item.

■ Composite data-bound controls consist of the GridView, DetailsView, FormView,
Repeater, ListView, and DataList controls. The GridView and DetailsView controls
show data as tables. The other controls allow you to define templates for laying
out your data.

■ Hierarchical data-bound controls consist of the Menu and TreeView controls. These
controls are used for displaying data that contains parent-child relationships.

 754	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Working with Data-Bound Web Server Controls.” The questions are also available on the
companion CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You are creating a data-bound CheckBoxList control that allows a user to select
options for configuring a vehicle. When the data is displayed to the user, you want
the OptionName column to display. When the data is posted back to the server,
you need the OptionId column value for all selected items. Which of the following
attribute definitions would you set? (Choose all that apply.)

	 A. DataTextField=OptionId

	 B. DataTextField=OptionName

	 c. DataValueField=OptionId

	 D. DataValueField=OptionName

	 2. You want to display a list of suppliers on a webpage. The supplier list must display 10
suppliers at a time, and you require the ability to edit individual suppliers. Which web
control is the best choice for this scenario? (Choose all that apply.)

	 A. The DetailsView control

	 B. The Repeater control

	 c. The GridView control

	 D. The ListView control

	 3. You want to display a list of parts in a master-detail scenario so that users can select a
part number from a list that takes a minimum amount of space on the webpage. When
the part is selected, a DetailsView control displays all the information about the part
and allows users to edit the part. Which web control is the best choice to display the
part number list for this scenario?

	 A. The DropDownList control

	 B. The RadioButtonList control

	 c. The FormView control

	 D. The TextBox control

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 755

Lesson 3: Working with AsP.nET Dynamic Data

ASP.NET Dynamic Data is a set of user interface templates and controls for creating data-driven
websites. You attach a data context to a Dynamic Data MetaModel object and can then work
with that data to read, filter, insert, update, and delete. Dynamic Data does not generate code
specific to a particular data schema. Rather, it is a series of extensible templates that can work
with any LINQ to SQL, Entity Framework, or custom data context. If you need to customize a
template to change the way data is displayed or behaves, you can do so by following the con-
ventions of ASP.NET Dynamic Data.

This lesson helps you get started with using ASP.NET Dynamic Data to either create a new
website or add these capabilities to an existing one. The lesson covers creating the scaffolding
for using Dynamic Data and customizing the technology, including creating custom routes,
fields, pages, and business logic.

After this lesson, you will be able to:
■	 Create the scaffolding for using Dynamic Data against a data context.
■	 Create custom routing, field templates, page templates, and business logic.
■	 Add Dynamic Data scaffolding and/or features to an existing website.

Estimated lesson time: 40 minutes

real World

Mike Snell

I have personally written a number of custom web store fronts using ASP and
ASP.NET. In each case, most of the work actually involved creating screens to

allow administrators to manage the data in the site. This meant adding and editing
products, orders, customer information, sales, and more. Dynamic Data would have
cut what was weeks (often months) of work down to days.

 756	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Getting Started with Dynamic Data Websites
ASP.NET Dynamic Data works at run time to extract information from your data context and
apply that information to template pages for handling CRUD operations against your data
source. Recall that a data context is created by using LINQ to SQL or LINQ to Entities (see
Chapter 11 for more details).

Dynamic Data uses the information from your model, such as table relationships and field
data types, to create meaningful pages. For example, if you are showing data in a list, Dynamic
Data will use foreign-key relationships to allow you to filter that data (into product categories,
for example). It will also allow you to link to related data from a specified data record (such as
customer orders). In addition, fields will be shown based on their underlying data type, and
when users update or insert data, validation rules will be enforced based on the model.

To start creating a new website with Dynamic Data, you typically follow these steps:

	 1. Create a scaffold site that includes the default presentation layer templates used by
ASP.NET Dynamic Data.

	 2. Define a data context that represents your data source and model by using either
LINQ to SQL, LINQ to Entities, or a custom model.

	 3. Register your data context with the website’s MetaModel instance inside the Global.asax
file.

	 4. Customize the URL routing, page and field templates, business logic, and validation in
the website. (This step is optional.)

You will walk through each of these steps in the upcoming sections.

Creating a Dynamic Data Website
You can create a new ASP.NET Dynamic Data website or add Dynamic Data features to an
existing site. This section covers the former; you will see how to add these features to existing
sites later in the lesson.

Visual Studio ships with two ASP.NET Dynamic Data project templates: ASP.NET Dynamic
Data Entities Web Site and ASP.NET Dynamic Data LINQ to SQL Web Site. The first is used
to create sites that use the Entity Framework as the data context; the second is for sites that
connect to a LINQ to SQL data context. You must choose between the two, because the
templates only support a single data context in a site (as it is defined within the application’s
Global.asax file).

Figure 12-22 shows the structure of a newly created Dynamic Data website. Note that
you do not select a data source when you create the website. Instead, you can connect to a
data source as a later step. The website only contains templates that use your data context
information at run time. The next section covers this website structure in detail.

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 757

FigURE 12-22 The structure of an ASP.NET Dynamic Data website.

DYNAMIC DATA WEBSITE STRUCTURE
The Dynamic Data website contains the DynamicData folder and several files in the root of
the site. You will look at the contents of the DynamicData folder soon. First, the files in the
root of the site are listed here, along with a brief description of each:

■ Default.aspx This file is used to display all tables in the data context. It includes
a GridView control that is bound to the MetaModel.VisibleTables collection. The
MetaModel is exposed through an application variable (from the Global.asax file)
called DefaultModel. It is referenced as follows:

ASP.global_asax.DefaultModel.VisibleTables.

■ global.asax This file contains code that is run for application events, including
Application_Start. Dynamic Data uses this file to call RegisterRoutes at Application_
Start. This method connects your data context to a meta-model and uses ASP.NET
routing to handle page requests for tables and actions (such as List, Details, Edit,
and Insert).

■ site.css This file represents a style sheet used by the master page and related page
templates. You can customize this style sheet to change the look of your Dynamic
Data site.

■ site.master This is the master page for the Dynamic Data site. By default, it defines
navigation for the site, a ScriptManager control, and the main ContentPlaceHolder
control. The Site.master page is used by the page templates.

■ Web.config This is a less verbose version of the Web.config file that is created for
standard ASP.NET websites.

 758	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

The DynamicData folder contains several subfolders and another Web.config file. The
Web.config file registers an HTTP handler for System.Web.HttpNotFoundHandler. The folders
and their naming convention define a pattern that is used by Dynamic Data to route requests
accordingly. Each folder is listed here, along with a brief description of its contents:

■ Content This folder contains content used by Dynamic Data, including images for the
pager control and a custom GridViewPager user control.

■ CustomPages By default, this folder is empty. You use this folder if you need to create
custom templates for displaying or editing data. The convention is to create a new folder
under CustomPages with the name of the item in your data model that you want to
customize (such as Customers). You then typically copy a page template (from the
PageTemplates directory) to this new folder, customize it, and save it. The Dynamic
Data routing will look in this CustomPages folder first for items that are named with
this convention (and thus use those instead of the default templates).

■ EntityTemplates This folder contains user controls that are used by the page
templates for displaying and editing data. These user controls include Default.ascx,
Default_Edit.ascx, and Default_Insert.ascx.

■ FieldTemplates This folder contains a set of user controls (ASCX files) that define
the UI for displaying table fields in either a view or edit mode. There are user controls
based on the type of data being worked with, including Boolean, DateTime, Text, Url,
Decimal, Email, and more. These fields are rendered based on the data type in the data
context or on additional attributes that you add to extend the meta-model. You can
also create custom field templates to display or edit data with other controls (including
third-party controls).

■ Filters This folder contains user controls to define the UI that is used to filter data
that is displayed in a list. These controls include Boolean.ascx, Enumeration.ascx, and
ForeignKey.ascx.

■ PageTemplates This folder contains the default templates for working with data.
These template pages can show a table in a list (List.aspx), allow you to create a new
record (Insert.aspx), edit an existing record (Edit.aspx), view the details of a record
(Details.aspx), and show a list of data and a selected record’s details on the same
page (ListDetails.aspx).

Defining a Data Context
You create a data context by adding either a LINQ to SQL Classes (DBML) file or an ADO.NET
Entity Data Model (EDMX) file to your project (see Chapter 11 for more details). You can also
create a custom model through code.

As an example, suppose that the Northwind database is in the App_Data directory of your
site. You can then create a LINQ to SQL DBML file based on tables found inside this database.
Figure 12-23 shows an example.

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 759

FigURE 12-23 An example LINQ to SQL DBML model.

Registering Your Data Context with the MetaModel
The next step is to register your data context with System.Web.DynamicData.MetaModel. The
MetaModel defines the connectivity or mapping between the scaffold templates and your
data layer.

You register your data context inside the Global.asax file. Here you will notice that, at the top
of the file, the MetaModel is actually defined as a private application variable and exposed as a
read-only property. The following code shows an example.

Sample of Visual Basic Code

Private Shared s_defaultModel As New MetaModel
Public Shared ReadOnly Property DefaultModel() As MetaModel
 Get
 Return s_defaultModel
 End Get
End Property

 760	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Sample of C# Code

private static MetaModel s_defaultModel = new MetaModel();
public static MetaModel DefaultModel {
 get {
 return s_defaultModel;
 }
}

Further down in the file, notice that the RegisterRoutes method is called at application
start. The following code shows an example.

Sample of Visual Basic Code

Private Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 RegisterRoutes(RouteTable.Routes)
End Sub

Sample of C# Code

void Application_Start(object sender, EventArgs e) {
 RegisterRoutes(RouteTable.Routes);
}

The RegisterRoutes method is used to connect your data source to the MetaModel. You do
so through the DefaultModel.RegisterContext method and pass the type name of your data
context. You might also want to set the ScaffoldAllTables property to true to make sure that the
site will return all tables in the data context by default. The following code shows an example of
registering the NorthwindDataContext LINQ to SQL object with the MetaModel.

Sample of Visual Basic Code

Public Shared Sub RegisterRoutes(ByVal routes As RouteCollection)

 DefaultModel.RegisterContext(_
 GetType(NorthwindDataContext), New ContextConfiguration() _
 With {.ScaffoldAllTables = True})

 routes.Add(New DynamicDataRoute("{table}/{action}.aspx") With {
 .Constraints = New RouteValueDictionary(New _
 With {.Action = "List|Details|Edit|Insert"}),
 .Model = DefaultModel})

End Sub

Sample of C# Code

public static void RegisterRoutes(RouteCollection routes) {

 DefaultModel.RegisterContext(typeof(NorthwindDataContext),
 new ContextConfiguration() { ScaffoldAllTables = true });

 routes.Add(new DynamicDataRoute("{table}/{action}.aspx") {
 Constraints = new RouteValueDictionary(
 new { action = "List|Details|Edit|Insert" }),
 Model = DefaultModel
 });
}

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 761

That is all that is required to create a basic Dynamic Data website. You can now run the
site and view, edit, insert, and delete data by using the template user interface. Figure 12-24
shows an example of the Products table in a web browser. Notice the URL, Products/List.aspx.
This table/action convention is defined in the routing. It simply indicates that the List.aspx
template page should be called and the Product data should be displayed from the model.

FigURE 12-24 An example LINQ to SQL DBML model.

Notice also the default filters created for this list. The Discontinued filter is based on a
Boolean field in the data. The Category filter is based on the relationship between Product
and Category. In fact, relational IDs won’t be displayed in the table, but related data will be.
You can see that this was possible for the Category, because it exposed the CategoryName
field. However, this was not possible for SupplierID because this table does not include a
SupplierName field.

You can also see that the form allows you to page the data; select how many rows to show
in a page; edit, delete, and view the details of an item; insert a new item; and connect to data
related to a particular row (View Order_Details). Figure 12-25 shows an example of inserting
a product. Notice that here you again get the Category drop-down list. You can also see that
default data validation is being used. The validation is based on stored data types.

 762	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

FigURE 12-25 Automatic data validation in insert mode.

This site behavior is the default behavior with the template scaffolding. You can see that
there was no code or customization done to this site. In upcoming sections, you will see how
to customize the routing, create new page and field templates, and add custom business
logic to validate data.

The Dynamic Data Classes
ASP.NET Dynamic Data relies on several classes inside the System.Web.DynamicData
namespace. These classes include controls for defining custom field user controls, managing
the routing, and using Dynamic Data inside a webpage. The MetaModel classes are found
in the System.Data.Linq.Mapping namespace. Figure 12-26 shows some of the key classes
used by Dynamic Data. Many of these classes will be discussed in upcoming sections.

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 763

FigURE 12-26 Some of the key classes related to ASP.NET Dynamic Data.

Extending and Customizing Dynamic Data
ASP.NET Dynamic Data is fully extensible. You can customize how fields are edited, how data
is displayed, the look of the pages, the URL routing, data validation, and more. You can create
customizations to existing templates that will be applied to all data elements. You can also
create new, entity-specific templates for customizations that are specific to a particular entity.
This section walks you through common customizations you might want to make when using
ASP.NET Dynamic Data.

Defining Custom Routing
Dynamic Data uses the same routing features from System.Web.Routing that are used by
ASP.NET model-view-controller (MVC) (see Chapter 14, “Creating Websites with ASP.NET
MVC 2”). This routing engine maps intelligent Uniform Resource Identifiers (URIs) that are
defined based on user actions to actual pages in your site, which makes the URIs easier to
understand for users and search engines.

 764	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

For example, Dynamic Data exposes the List.aspx, Edit.aspx, Insert.aspx, and Details.aspx
page templates for working with data. These pages are called by the routing engine based on
the user’s action: List, Edit, Details, or Insert. A DynamicDataRoute class is created and added
to the RouteTable.Routes collection inside the Global.asax file. This DynamicDataRoute indi-
cates that a URI should be mapped as table/action.aspx. The following shows the code from
the Global.asax file that does this.

Sample of Visual Basic Code

routes.Add(New DynamicDataRoute("{table}/{action}.aspx") With {
 .Constraints = New RouteValueDictionary(_
 New With {.Action = "List|Details|Edit|Insert"}), .Model = DefaultModel})

Sample of C# Code

routes.Add(new DynamicDataRoute("{table}/{action}.aspx") {
 Constraints = new RouteValueDictionary(
 new { action = "List|Details|Edit|Insert" }), Model = DefaultModel

This code ensures that a call to http://mysite/products/Edit.aspx?ProductID=1 will be routed
to the /DynamicData/PageTemplates/Edit.aspx page. When accessed, the page will know the
right table to edit (Products) and right record to edit (ProductID=1).

EDITING THE URI STRUCTURE
You can customize this routing by editing this code. For example, you might want to change
the structure of the URL or even add a custom action. You can switch the table and action
in the route definition to read {action}/{table}.aspx and get the same results but a different
URL. New requests will be made as http://mysite/Edit/Products.aspx?ProductID=1. In this
case, the table is used for the ASPX page name, and the action precedes the table name.

EDITING THE ROUTE TABLE TO SHOW A LIST AND DETAILS ON THE SAME PAGE
The Dynamic Data page templates include the ListDetails.aspx file. This page supports viewing
a table in a list and selecting an item from the list to view its details. You can also edit the item
or delete it, and you can insert a new item into the list by using this page. However, by default,
requests are not routed to this page. You can change this behavior by removing the existing
routing and adding entries for the action’s List and Details that both point to the ListDetails.aspx
page. The following code shows an example.

Sample of Visual Basic Code

routes.Add(New DynamicDataRoute("{table}/ListDetails.aspx") With {
 .Action = PageAction.List,
 .ViewName = "ListDetails",
 .Model = DefaultModel})

routes.Add(New DynamicDataRoute("{table}/ListDetails.aspx") With {
 .Action = PageAction.Details,
 .ViewName = "ListDetails",
 .Model = DefaultModel})

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 765

Sample of C# Code

routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx")
{
 Action = PageAction.List,
 ViewName = "ListDetails",
 Model = DefaultModel
});

routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx")
{
 Action = PageAction.Details,
 ViewName = "ListDetails",
 Model = DefaultModel
});

The result is that all calls to view a record’s details or show a table in a list will be routed
to the ListDetails.aspx page. From there, users can do everything they need to with the data.
Note that ListDetails.aspx also handles inline editing in the GridView control.

CREATING A CUSTOM ROUTE TO A SPECIFIC PAGE
ASP.NET Dynamic Data can already route to custom pages you create. You simply need to fol-
low the conventions already set up. You do not need to add custom routes. Instead, you create
a new folder in the CustomPages folder and name this new folder with the name of an entity
from your model. You then place appropriate action pages inside this folder (List.aspx, Edit.aspx,
Insert.aspx, and so on). The default routing will look for pages in CustomPage first. You will walk
through an example of creating a custom template page in an upcoming section.

Adding Metadata to Your Data Context
The classes in your data context are partial classes that include partial methods. This allows you to
add to these classes and their methods outside the generated code. Doing so ensures that your
changes are not overwritten if the model’s code gets regenerated when the database changes.

You create partial classes so that you can add metadata that defines how your fields are to
be displayed and validated (see “Creating Custom Field Templates,” later in this lesson). You
can also add custom business logic inside a partial method (see “Adding Custom Validation,”
also later in this lesson).

To start, you simply add a class to the App_Code directory and give it the same name as
the class in your data context. Of course, you mark this class as partial. You then create a
related metadata class (typically added to the same file). You can name this class by using
the EntityMetadata convention.

Inside this metadata class, you redefine the properties contained in your data context
class (but as simple object types, because the underlying type already has strongly typed
properties). You then mark your partial class with the MetadataType attribute from the
System.ComponentModel.DataAnnotations namespace. This attribute should pass the meta-
data class type as a parameter.

 766	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

You can then add attributes to your metadata class to change how your fields are rendered
by Dynamic Data. As an example, if you want to exclude a field from display, you can add the
ScaffoldColumn attribute and pass in false. Additionally, if you want to format a value for dis-
play, you can use the DisplayFormat attribute. This attribute allows you to indicate whether to
only format the value when it is displayed or also when it is being edited. You can also use the
Display attribute to change the name of a column.

The following shows an example from the Products entity partial class and metadata class.
Notice the use of ScaffoldColumn, Display, and DisplayFormat.

Sample of Visual Basic Code

Imports Microsoft.VisualBasic
Imports System.ComponentModel.DataAnnotations

<MetadataType(GetType(ProductMetadata))> _
Partial Public Class Product

End Class

Public Class ProductMetadata

 Public Property ProductID As Object
 Public Property ProductName As Object
 Public Property SupplierID As Object
 Public Property CategoryID As Object

 <ScaffoldColumn(False)> _
 Public Property QuantityPerUnit As Object

 <DisplayFormat(ApplyFormatInEditMode:=False,
 DataFormatString:="{0:c}")> _
 <Display(Name:="Price")> _
 Public Property UnitPrice As Object

 <ScaffoldColumn(False)> _
 Public Property UnitsInStock As Object

 <ScaffoldColumn(False)> _
 Public Property UnitsOnOrder As Object

 <ScaffoldColumn(False)> _
 Public Property ReorderLevel As Object

 Public Property Discontinued As Object

End Class

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 767

Sample of C# Code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.ComponentModel.DataAnnotations;

[MetadataType(typeof(ProductMetadata))]
public partial class Product
{
}

public class ProductMetadata
{
 public object ProductID { get; set; }
 public object ProductName { get; set; }
 public object SupplierID { get; set; }
 public object CategoryID { get; set; }

 [ScaffoldColumn(false)]
 public object QuantityPerUnit { get; set; }

 [DisplayFormat(ApplyFormatInEditMode=false,
 DataFormatString="{0:c}")]
 [Display(Name = "Price")]
 public object UnitPrice { get; set; }

 [ScaffoldColumn(false)]
 public object UnitsInStock { get; set; }

 [ScaffoldColumn(false)]
 public object UnitsOnOrder { get; set; }

 [ScaffoldColumn(false)]
 public object ReorderLevel { get; set; }

 public object Discontinued { get; set; }
}

When you run the application, this metadata is added to the Product class. Dynamic
Data then picks up on this metadata and displays your fields accordingly. Figure 12-27
shows the results in a browser. Notice the missing fields, formatted UnitPrice column, and
changed name.

 768	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

FigURE 12-27 Using metadata and partial classes to indicate field display options.

There are many additional annotations you can add to your metadata from the System.
ComponentModel.DataAnnotations namespace. You will see some of these in the upcoming
sections. Table 12-1 provides a partial list of these classes (note that all are attribute classes).

TAbLE 12-1 Commonly Used Metadata Annotation Classes

CLAss DEsCRiPTiOn

Association Used to mark a property as a data relationship, such as a foreign key.

CustomValidation Used to indicate a custom validation method to use for validating a
property.

DataType Used to indicate the data type to associate with the field.

Display Allows you to indicate many things about the display of a field,
including its order and its name.

DisplayFormat Allows you to change how the data in a field is displayed. You can
apply the formatting to affect only the view mode (and not the edit
mode) if you want.

Editable Used to indicate whether a property can be edited.

EnumDataType Allows you to set an enum data type for a property.

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 769

CLAss DEsCRiPTiOn

Key Allows you to set one or more properties as unique keys for a
collection of objects.

MetadataType Used to set the metadata class to associate with a type from your
data context.

Range Allows you to add a numeric range constraint to a property. You can
also set an error message to be shown if the range is not valid.

RegularExpression Used to add a regular expression constraint to a property.

Required Used to indicate that a property is required when inserting or editing.

ScaffoldColumn Indicates whether the column should be part of the scaffold (shown).

ScaffoldTable Indicates whether an entire table should be part of the scaffold (shown).

StringLength Allows you to set a constraint on a property based on the specified
minimum and maximum number of characters for a property.

UIHint Used to specify a custom field user control that should be used to
display the property.

Adding Custom Validation
You can see from Table 12-1 that you can use attributes to mark your metadata with specific
constraints. These constraints will then be enforced by Dynamic Data, and ASP.NET validation
controls will be rendered and invoked.

The validation attributes include Range, StringLength, Required, and RegularExpression
(among others). You use these controls to enforce additional constraints on your data. For
example, suppose you want to add the Range validator to the ReorderLevel property to
indicate that users can only reorder stock in quantities of 1 to 144 units. You could do so
with the following code.

Sample of Visual Basic Code

<Range(1, 144, ErrorMessage:="Quantity must be between 1 and 144")> _
Public Property ReorderLevel As Object

Sample of C# Code

[Range(1, 144, ErrorMessage = "Quantity must be between 1 and 144")]
public object ReorderLevel { get; set; }

This business logic is then processed by Dynamic Data. You can see the results of a row edit
in Figure 12-28. Here the user set the ReorderLevel to a value that is out of range (0). You can
follow this same construct for other validation attributes, including StringLength and Required.
Of course, you can apply more than one attribute to any property.

 770	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

FigURE 12-28 The Range constraint running in a browser window.

CUSTOM VALIDATION WITH PARTIAL METHODS
The data content model includes partial methods that allow you to add custom code that will
be added to the method when the partial class is assembled. In fact, you can see these partial
methods inside the Extensibility Method Definitions region of the generated code for a LINQ
to SQL model. There are partial methods for OnChanging and OnChanged for each property
in the data context. This means that the Product table has an OnUnitPriceChanging and
OnUnitPriceChanged partial method. In fact, when you type “partial” into your partial class,
Visual Studio’s IntelliSense provides you with a list of all partial methods that you can extend.

You can use these partial methods to write customized validation rules. Remember,
your partial class is an instance of the actual class representing the entity. Therefore, you
have access to all fields on the record. The OnChanging partial method is also passed the
value to which the property is being changed. You can use these fields and this value to
write custom business logic. If you encounter an error, you throw a ValidationException from
System.ComponentModel.DataAnnotations. Dynamic Data will present the exception to the
user as an ASP.NET validation error.

As an example, suppose you want to write custom business logic that processes when the
Product.UnitPrice is being changed. This logic might prevent a user from lowering the price
of an object if there are items still in stock and the product has not been discontinued. You
would add this code to the Product partial class as follows.

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 771

Sample of Visual Basic Code

Private Sub OnUnitPriceChanging(ByVal value As System.Nullable(Of Decimal))

 'rule: can only lower the price if product is discontinued
 If (Me.UnitsInStock > 0 And Me.UnitPrice > value) _
 And (Me.Discontinued = False) Then

 Throw New ValidationException(_
 "Cannot lower the price of an item that is not discontinued.")

 End If

End Sub

Sample of C# Code

partial void OnUnitPriceChanging(decimal? value)
{
 //rule: can only lower the price if product is discontinued
 if ((this.UnitsInStock > 0 && this.UnitPrice > value)
 && (this.Discontinued == false))
 {
 throw new ValidationException(
 "Cannot lower the price of an item that is not discontinued.");
 }
}

Figure 12-29 shows an example of this logic processing. Notice that the validation message
is shown as part of the validation summary controls in ASP.NET.

FigURE 12-29 The custom business logic being processed in the browser.

 772	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Creating Custom Field Templates
Recall that the Dynamic Data templates include the FieldTemplates folder. Inside this folder
is a set of user controls that inherit from FieldTemplateUserControl. These controls are used
to render the appearance and functionality of your data context properties when they are
displayed on a details or edit page (or page section).

Field template controls are named as either display controls or edit controls for a
specific data type and functionality. For example, the controls used to render DateTime
values are DateTime.ascx and DateTime_Edit.ascx. The former is simply a Literal control
that is used when a DateTime value is rendered for display. The edit version includes a
TextBox, a RequiredFieldValidator, a RegularExpressionValidator, a DynamicValidator,
and a CustomValidator control. This composite user control is used whenever a DateTime
value is displayed for editing.

You can edit the field template controls or create new ones in order to provide additional
behavior in your website. Edits to an existing control will apply to all uses of that control within
your website. When you create a new control, you use metadata to specify which properties
in your data model use the new control. You will look at both examples next.

CUSTOMIZING AN EXISTING FIELD TEMPLATE
You can customize an existing field template user control as you would any other user control. This
means adding client-side script, changing the appearance, and modifying the processing logic.

For example, you could modify the code-behind file for each of the core edit pages (Text_
Edit.ascx, DataTime_Edit.ascx, Decimal_Edit.ascx, Integer_Edit.ascx, and MultilineText_Edit.ascx)
to change the background color of the control if a different background color is required. To do
so, you would add code to the OnDataBinding event. At this point, the SetupValidator methods
have already run and any validation controls, including the RequiredFieldValidator, will already
be set as either enabled or disabled. You could then add the following code to this event to set
the background color accordingly.

Sample of Visual Basic Code

Protected Overrides Sub OnDataBinding(ByVal e As System.EventArgs)

 MyBase.OnDataBinding(e)
 If Me.RequiredFieldValidator1.Enabled = True Then
 TextBox1.BackColor = System.Drawing.Color.SandyBrown
 End If

End Sub

Sample of C# Code

protected override void OnDataBinding(EventArgs e)
{
 base.OnDataBinding(e);
 if (this.RequiredFieldValidator1.Enabled == true)
 TextBox1.BackColor = System.Drawing.Color.SandyBrown;
}

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 773

You can then add the RequiredAttribute class to any properties in your metadata class that
you want to be required. When the control is rendered, Dynamic Data will mark the edit ver-
sions for these properties with the color if they are required fields.

CREATING A NEW FIELD TEMPLATE CONTROL
You can create your own custom field template user controls. You can do so by copying an
existing user control in Dynamic Data/FieldTemplates or by selecting the Dynamic Data Field
template from the Add New Item dialog box.

When you use the Dynamic Data Field item template, Visual Studio will actually generate
two controls: one for display (ControlName.ascx) and one for editing (ControlName_Edit.ascx).
The display version by default is just a Literal control. The edit version will include a TextBox
control and the various validation controls used by DynamicData, some of which were shown
in Table 12-1. You can then customize these controls to your needs.

As an example, suppose you want to create a new user control to allow users to use a
Calendar control when picking a date in edit mode. To do so, you can add a new Dynamic
Data Field to your project named CalendarPicker.ascx. Again, this will create two controls.
You can leave the display version as is. You might then modify the markup in the
CalendarPicker_Edit.ascx control to use a Calendar control, as follows.

<%@ Control Language="VB" CodeFile="CalendarPicker_Edit.ascx.vb"
 Inherits="DynamicData_FieldTemplates_CalendarPicker_EditField" %>

<asp:Calendar ID="Calendar1" runat="server"
 CssClass="DDTextBox"></asp:Calendar>

You would then add code to the code-behind page for the control to set the value of the
Calendar control when data binding occurs. This code might look as follows.

Sample of Visual Basic Code

Protected Overrides Sub OnDataBinding(ByVal e As System.EventArgs)
 MyBase.OnDataBinding(e)
 Dim dte As DateTime = DateTime.Parse(Me.FieldValue)
 Calendar1.SelectedDate = dte
 Calendar1.VisibleDate = dte
End Sub

Sample of C# Code

protected override void OnDataBinding(EventArgs e)
{
 base.OnDataBinding(e);
 DateTime dte = DateTime.Parse(this.FieldValue.ToString());
 Calendar1.SelectedDate = dte;
 Calendar1.VisibleDate = dte;
}

 774	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

The last step is to mark your metadata properties to indicate that they should use this new
control. You do so with the UIHint attribute. You pass the name of your control to this attribute.
Dynamic Data will then find your control and use it for all display and edits (including GridView
edits) that involve this field. As an example, the following metadata marks the HireDate and
BirthDate properties of the Employee class to use the custom CalendarPicker control.

Sample of Visual Basic Code

<MetadataType(GetType(EmployeeMetadata))> _
Partial Public Class Employee

End Class

Public Class EmployeeMetadata

 <UIHint("CalendarPicker")> _
 Public Property HireDate As Object

 <UIHint("CalendarPicker")> _
 Public Property BirthDate As Object

End Class

Sample of C# Code

[MetadataType(typeof(EmployeeMetadata))]
public partial class Employee
{
}

public class EmployeeMetadata
{
 [UIHint("CalendarPicker")]
 public object HireDate { get; set; }

 [UIHint("CalendarPicker")]
 public object BirthDate { get; set; }
}

Figure 12-30 shows the control in use on a webpage.

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 775

FigURE 12-30 The custom field template being used in the browser.

Creating Custom Page Templates
Recall that the Dynamic Data templates are not specific to an object in your data context. Rather,
they are generic templates that get information about the data they display from your data con-
text at run time. You can customize how these templates display your data by using a metadata
partial class and the data annotation attributes. However, you might find scenarios in which you
need to create an entity-specific version of a page to control exactly how that entity is rendered
to the browser. In this case, you need to create a custom page template.

Custom page templates are specific to a single entity in your data context. You create them
by first creating a new folder inside the CustomPages folder. This folder should have the same
name as your entity object. To create custom pages for working with products, for example,
you would create a Products folder inside CustomPages. You then copy one or more of the
page templates from the PageTemplates directory into your new folder. The Dynamic Data
routing will look first in the CustomPages/EntityName folders for action pages such as
Edit.aspx, Insert.aspx, and List.aspx. If the file it is looking for is there, it will use this custom
page for display. If not, it will use the default action page inside the PageTemplates directory.

 776	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

As an example, suppose you want to create a custom version of the List.aspx page for use
with Products. You would create a Products folder in CustomPages. You would then copy the
List.aspx page to that folder. You can then open this page and edit the markup and code-
behind accordingly. A common edit is to bind the GridView control more tightly with the
specific product. You can do so by setting the AutoGenerateColumns property to false. You
can then add a series of DynamicField properties to represent your bound data. The following
markup shows an example.

<asp:GridView ID="GridView1" runat="server"
 DataSourceID="GridDataSource" EnablePersistedSelection="true"
 AllowPaging="True" AllowSorting="True" CssClass="DDGridView"
 RowStyle-CssClass="td" HeaderStyle-CssClass="th" CellPadding="6"
 AutoGenerateColumns="false">
 <Columns>
 <asp:DynamicField DataField="ProductID" HeaderText="ID" />
 <asp:DynamicField DataField="ProductName" HeaderText="Name" />
 <asp:DynamicField DataField="UnitPrice" HeaderText="Price" />
 <asp:DynamicField DataField="UnitsInStock" HeaderText="Stock" />
 <asp:TemplateField>
 <ItemTemplate>
 <asp:DynamicHyperLink runat="server" Action="Edit" Text="Edit"/>
 <asp:LinkButton runat="server"
 CommandName="Delete" Text="Delete" OnClientClick=
 'return confirm("Are you sure you want to delete this item?");'/>
 <asp:DynamicHyperLink runat="server" Text="Details" />
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 <PagerStyle CssClass="DDFooter"/>
 <PagerTemplate>
 <asp:GridViewPager runat="server" />
 </PagerTemplate>
 <EmptyDataTemplate>
 There are currently no items in this table.
 </EmptyDataTemplate>
</asp:GridView>

Figure 12-31 shows this custom page running in a browser.

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 777

FigURE 12-31 The custom page template being displayed in the browser.

Using Dynamic Controls in Existing Sites
You can use the features of Dynamic Data in existing sites. For example, you can add the full
scaffolding and connect to a data context for CRUD operations, and you can create custom
webpages (or customize existing ones) to take advantage of the lower code, lower markup
solution that Dynamic Data offers.

Adding Dynamic Data Scaffolding to an Existing Website
You can add Dynamic Data scaffolding to an existing website. To do so, you must have a data
context defined in your site (or you must create one). Remember, Dynamic Data works with
either LINQ to SQL classes, the ADO.NET Entity Framework, or a custom data context.

You then edit the Global.asax file to register your context and enable custom routing. This
code can be copied from the Global.asax file for a blank Dynamic Data site. Refer back to
“Getting Started with Dynamic Data Websites” earlier in this lesson for details.

Finally, you copy the DynamicData folder from a blank Dynamic Data site into your existing site.
You can then make customizations and use Dynamic Data features as discussed in prior sections.

 778	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Enabling Dynamic Data Inside a Webpage
You can use Dynamic Data inside completely custom webpages that do not use the scaffolding or
routing common to Dynamic Data. For this scenario, you can create pages that use data-bound
controls such as GridView, DetailsView, ListView, and FormView, and use Dynamic Data for
displaying, editing, and validating data. In this case, you get the default behavior of Dynamic
Data, including data validation. You can then customize this behavior by adding more infor-
mation to your meta-model as described previously.

As an example, suppose you have a standard ASP.NET website (not one built with the
Dynamic Data template). Suppose that this site has an ADO.NET Entity Data Model for
working with the Northwind database.

You can then add an EntityDataSource control to the Default.aspx page for the site. This
control can be set to use the entity model for selecting, inserting, updating, and deleting. Recall
that you set EntitySetName to indicate the entity used by the data source. The following markup
shows an example.

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=northwndEntities"
 DefaultContainerName="northwndEntities" EnableDelete="True"
 EnableFlattening="False" EnableInsert="True" EnableUpdate="True"
 EntitySetName="Products">
</asp:EntityDataSource>

Next, you can add a data display control to the page. In this example, assume you add a
GridView to the page. You would then configure this control to auto-generate columns and
enable editing. The following markup shows an example.

<asp:GridView ID="GridView1" runat="server"
 DataSourceID="EntityDataSource1"
 AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="true">
 <Columns>
 <asp:CommandField ShowEditButton="True" />
 </Columns>
</asp:GridView>

The final step is to add code to the Page_Init event to enable the Dynamic Data. The fol-
lowing code shows an example.

Sample of Visual Basic Code

Protected Sub Page_Load1(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 GridView1.EnableDynamicData(GetType(northwndModel.Product));

End Sub

Sample of C# Code

protected void Page_Init()
{
 GridView1.EnableDynamicData(typeof(northwndModel.Product));
}

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 779

Figure 12-32 shows the results. Notice that the attempt to edit the first record failed. You
can see the asterisk next to the ProductName field. This is because this field cannot be blank,
as defined in the model. You can further customize this page to use even more features from
Dynamic Data.

FigURE 12-32 Dynamic Data being used on a standard webpage.

Quick Check
	 1. What data models can you use with Dynamic Data?

	 2. Where do you register your data model with the site’s MetaModel?

	 3. Which of the data annotation classes would you use to define metadata to
change the display format of a property?

Quick Check Answers
	 1. Dynamic data must use a data model based on DataContext or ObjectContext.

This includes LINQ to SQL classes and ADO.NET Entity Framework models.

	 2. You register your data context inside the Global.asax file.

	 3. You would use the DisplayFormatAttribute.

 780	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

PrActIcE	 Creating a Dynamic Data Website

In this practice, you create a Dynamic Data website and edit the default routing.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Creating a Dynamic Data Website and an Entity Model

In this exercise, you create a new Dynamic Data website, add a database to the site, and define
an Entity Data Model. You then configure the site to work with the model and customize
the routing.

	 1. Open Visual Studio and create a new ASP.NET Dynamic Data Entities Web Site. Name
the site DynamicDataLab. Select your preferred programming language.

	 2. Add the northwnd.mdf file to your App_Data directory. You can copy the file from the
samples installed from the CD.

	 3. Add an ADO.NET Entity Data Model to your site. Name the model northwind.edmx.
When prompted, allow Visual Studio to add this to your App_Code directory. Use the
Entity Data Model Wizard to connect to all tables in the database; use the default
settings throughout the wizard.

	 4. Open the Global.asax file. Inside RegisterRoutes, uncomment the line that calls
RegisterContext. Change this code to register your new entity model and set
ScaffoldAllTables to true. Your code should look as follows.

Sample of Visual Basic Code

‘VB
DefaultModel.RegisterContext(GetType(northwndModel.northwndEntities), _
 New ContextConfiguration() With {.ScaffoldAllTables = True})

Sample of C# Code

DefaultModel.RegisterContext(typeof(northwndModel.northwndEntities),
 new ContextConfiguration() { ScaffoldAllTables = true });

	 5. Run the application and view the results. Select Products. Click to edit a product.
Notice the URL routing. On the product editing page, clear the name field and click
update. Notice the validation that is displayed.

 Lesson 3: Working with ASP.NET Dynamic Data ChAPTER 12 781

	 6. Return to the Global.asax file to enable routing to ListDetails.aspx. This page allows
you to edit a row directly in the GridView as well as in a DetailsView on the same page.
To enable row editing, comment out the routes.Add call for {table}/{action}. Then
uncomment both routes.Add calls at the bottom of the method. Notice that these
routes indicate that the List and Details actions should route to ListDetails.aspx. This
page handles all other actions inline with the page.

	 7. Rerun the site. Select the Products table. Notice the new URL. Click the Edit link for a
product in the GridView control. Notice the inline editing and data validation.

Lesson Summary
■ There are two Dynamic Data website templates in ASP.NET: one for working with the

Entity Framework and one for working with LINQ to SQL models. Both create a set of
page and field template files inside the DynamicData folder. Both allow you to connect
your data context to the site inside the Global.asax file.

■ You can use the System.Web.Routing inside the Global.asax file to indicate how
your Dynamic Data site maps entity requests and actions formatted in a URI to
page templates.

■ You use partial classes to extend the metadata of your data context. This metadata
includes attributes from the DataAnnotations namespace that define display format-
ting properties and validation rules.

■ You can write additions to the OnChanging partial methods from your data context
model to extend individual properties to include additional business logic.

■ You can create custom field templates that change how properties are displayed
and edited. These field templates inherit from FieldTemplateUserControl. You apply
a custom field template as metadata to a property in your partial entity class by using
the UIHintAttribute.

■ You can create custom page templates that are entity specific inside the CustomPages
folder. You add a folder with the same name as your entity. You then define custom
action pages such as List.aspx and Edit.aspx.

■ You can use the EnableDynamicData method of the data view controls (such as GridView)
to add Dynamic Data features to existing websites that do not contain the standard
scaffolding.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 782	 ChAPTER 12	 Working with Data Source Controls and Data-Bound Controls

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 3,
“Working with ASP.NET Dynamic Data.” The questions are also available on the companion
CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You need to add metadata to your data context object, Invoice, in order to change
how invoices are handled by Dynamic Data. Which actions should you take? (Choose
all that apply.)

	 A. Create a new partial class called Invoice in the App_Code directory.

	 B. Create a new class called InvoiceAnnotations in the App_Code directory.

	 c. Decorate the Invoice class with the MetadataTypeAttribute class.

	 D. Decorate the InvoiceAnnotations class with the ScaffoldTableAttribute class.

	 2. You have defined a custom field template user control for changing the way an
Invoice number is edited. You want to apply this control to the Invoice.Number
property. Which data annotation attribute class would you use to do so?

	 A. MetadataType

	 B. Display

	 c. Editable

	 D. UIHint

	 3. You want to implement custom business logic that should run when the InvoiceNumber
property is modified. What actions should you take? (Choose all that apply.)

	 A. Add a CustomValidator control to the DynamicData/FieldTemplates/Integer_Edit.asax
file. Set this control to process custom logic to validate an invoice number.

	 B. Extend the OnInvoiceNumberChanged partial method inside the Invoice partial
class to include additional validation logic.

	 c. Extend the OnInvoiceNumberChanging partial method inside the Invoice partial
class to include additional validation logic.

	 D. If the logic fails, throw a ValidationException instance.

 Case Scenarios ChAPTER 12 783

Case scenarios

In the following case scenarios, you apply what you’ve learned in this chapter. If you have
difficulty completing this work, review the material in this chapter before beginning the next
chapter. You can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Choosing Data Source Controls
You are a developer at Contoso, Ltd, a car insurance company. You have been asked to write an
application that allows a customer service agent to provide an insurance quote to a customer
over the phone. However, there are many factors that go into pricing the insurance policy. Each
of these factors contains data from different sources. This data is displayed to the agent for
selection. Based on his or her selection, a price is generated.

You identify most of the data sources as follows:

■ Location premium markup data Provided as XML from a web service.

■ year, make, and model rates Provided inside a SQL Server database.

■ Driver history Provided through an XML web service.

■ Existing customer information Provided through a shared customer object to which
the application has a reference.

Thinking about how you will access the data, answer the following questions:

	 1. Which data source control would you use for accessing the data returned by the location
and driver history web services? How would you configure the data source control to
receive this data?

	 2. Which data source control would you use for accessing the year, make, and model
rate data?

	 3. How would you access the data provided by the customer object?

Case Scenario 2: Implementing a Master-Detail Solution
You are a developer who is creating a webpage for displaying customers and their orders in a
master-detail scenario. The top of the webpage will provide a list of customers that contains the
customer numbers and names. The bottom of the webpage will provide a list of the orders con-
taining the order numbers, the order dates, the order amounts, and the ship dates. The orders
will be displayed for the customer that is selected.

Thinking about how you will display your data, answer the following questions:

	 1. What controls would you use to display the customer and orders?

	 2. If you want to use this webpage to add customers and orders, what are some ways
that you can provide this functionality?

	784	 CHAPTER	12	 Working with Data Source Controls and Data-Bound Controls

Case Scenario 3: Adding ASP.NET Dynamic Data to a
Website
You are a developer working on an existing website. There are several core tables in the
database that users cannot edit. This is becoming a problem, because maintenance is
needed. You have been asked to quickly enable this editing for some of these tables not
already exposed by the functionality of your website.

Answer the following questions about how you would enable this functionality using
Dynamic Data.

	 1. How can you add Dynamic Data scaffolding to this existing site?

	 2. How would you indicate which tables to expose through Dynamic Data?

Suggested	Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Create Pages by Using Each of the Controls
For this task, you should complete Practice 1 for the data source controls. Practice 2 should
be completed for additional use of the data-bound web controls. If attempting Practice 2,
you should complete Practice 1 first. Practice 3 provides experience with using the insert,
update, and delete parts of a data source control.

■	 Practice	1 Create a new website and add a new page for each of the data source con-
trols in this chapter, especially those not defined in the practice for Lesson 1. Configure
these controls to access data.

■	 Practice	2 Add the ability to display the data defined in the pages in Practice 1. For
each data source, select a different display control. Use the Menu control for XML
data. Also, be sure to define a layout control that uses templates.

■	 Practice	3 Return to the practice for Lesson 1. Edit the site to enable customer editing.

Create a Master-Detail Solution by Using the Data-Bound
Server Controls
This practice gives you experience with using data-bound server controls.

■ Create a new website that uses a domain familiar to you, such as customers and orders,
owners and vehicles, employees and sick days, or albums and songs. Add a webpage
that is configurable as a master-detail page to provide access to related data.

 Take a Practice Test CHAPTER	12	 785

Work with Dynamic Data Websites
For this task, you should complete Practices 1 and 2 to gain experience creating custom field
and page templates. Complete Practice 3 for experience with using Dynamic Data outside a
Dynamic Data website.

■	 Practice	1 Return to the practice from Lesson 3. Create a custom field template for
selecting dates. Use the CalendarPicker example from the chapter. Apply this control
to date values in the site.

■	 Practice	2 Return to the practice from Lesson 3. Create a custom page template for
displaying only portions of an Employee object.

■	 Practice	3 Create a new, standard ASP.NET website. Define a data context connected
to a database. Enable Dynamic Data for a single page within the site (without adding
the scaffolding support).

Take	a	Practice	Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you
can look at the correct answers and explanations after you answer each question.

More Info	 PRACTiCE	TESTS

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 13 787

C h A P T E R 1 3

Implementing User Profiles,
Authentication, and
Authorization
Most websites require users to authenticate to gain access to private information, custom

settings, and role-based features. Developers need to be able to securely authenticate a
user, determine his or her authorization, and manage his or her site membership information.
This is true for both internal websites that use role-based security and for public sites whose
developers want to allow user-level customizations, data storage, security, and basic user
profile information.

Microsoft ASP.NET includes several components, classes, and controls that allow you to
manage the security and authorization of your sites. You can use these features to implement
security based on a Windows or form-driven account. You can then identify user information
through profiles. You can also use the ASP.NET membership features to help manage users.
Finally, there is a set of controls that work with the security, profile, and membership features.
These include Login, LoginStatus, ChangePassword, PasswordRecovery, and more. These
controls allow developers to quickly add basic security, profile, and membership features
to their sites.

This chapter explores how developers can take advantage of the many features of ASP.NET
user management, including profiles, membership, and security.

Exam objectives in this chapter:
■	 Configuring and Extending a Web Application

■ Configure providers.
■ Configure authentication and authorization.

Lessons in this chapter:
■	 Lesson 1: Working with User Profiles 788
■	 Lesson 2: Using ASP.NET Membership 804

 Contents

 ChAPTER 13 787

 implementing User Profiles, Authentication, and Authori-
zation 787

Before You Begin . 788

Lesson 1: Working with User Profiles . 788

User Profile Basics 789

Configuring a User Profile Provider 790

Defining the User Profile 792

Identifying Users 794

Setting and Saving a User Profile 796

Recognizing a Returning Visitor 797

Lesson Summary 802

Lesson Review 802

Lesson 2: Using ASP.NET Membership .804

Using the WSAT to Configure Security 804

Logon Controls 807

The FormsAuthentication Class 813

The Membership Class 815

The Roles Class 816

Configuring Websites to Require Windows Authentication 817

Restricting Access to ASP.NET Websites, Files, and Folders 818

Lesson Summary 824

Lesson Review 824

Case Scenarios . 827

Case Scenario 1: Configuring Website Authorization 827

Case Scenario 2: Configuring Website Authentication 828

Suggested Practices . 829

Configure Authentication and Authorization 829

Configure Profiles 830

Take a Practice Test . 830

 788	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
with Microsoft Visual Studio 2010 by using Microsoft Visual Basic or Microsoft Visual C#. In
addition, you should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Using Hypertext Markup Language (HTML) and client-side scripting

■ Creating ASP.NET websites and forms

real World

Tony Northrup

I ’ve spent time as both a developer and a systems administrator. Each role has dif-
ferent responsibilities. Typically, systems administrators should be responsible for

configuring Windows security for a website. This doesn’t require them to write any
code, because they can configure it by using the Internet Information Services (IIS)
Manager and the ASP.NET Web Site Administration Tool (WSAT).

So if you’re creating an application that should use Windows authentication,
it’s okay to leave it up to the systems administrator to configure security. Not all
systems administrators know how to properly configure it, however, so you should
be familiar with the process and be able to demonstrate how it’s done when you
hand off application support. And you do need to configure forms authentication,
because that requires application-specific configuration settings, such as specifying
the logon page. Typically, you would provide all the configuration information as
part of your Web.config file.

Lesson 1: Working with User Profiles

A user profile in ASP.NET is a set of properties that you define on a per-user basis for your site.
This might include color preferences, address information, or other information you want to
track for each user. Users set up a profile with your site. You store their profile information
between site visits, and ASP.NET will automatically load a user’s profile information based on
his or her identification. You can then use this profile information in your application to make
decisions, prefill data entry boxes, set customizations, and perform similar actions.

This lesson describes how you set up, define, configure, and use ASP.NET user profiles.

 Lesson 1: Working with User Profiles ChAPTER 13 789

After this lesson, you will be able to:
■	 Define a custom user profile.
■	 Retrieve and use user profile information to make decisions in your code.
■	 Configure user profile data storage.
■	 Enable and use both authenticated and anonymous user profiles.

Estimated lesson time: 20 minutes

User Profile Basics
The ASP.NET user profile feature allows you to quickly and easily create a means to define,
store, retrieve, and use user profile information in your site. You can configure most of the
setup inside Web.config. This includes defining a storage mechanism and the actual fields
to use to define a user profile. ASP.NET and the related user profile classes will then take
care of storing your data (without requiring you to create a specific schema), retrieving it,
and providing it to you in a strongly typed class.

The following list details the steps involved in setting up a user profile for an ASP.NET
website:

	 1. Configure a user profile provider. The profile provider class is used to store and
retrieve user profile information to and from a database. There is a default provider
for Microsoft SQL Server. You can also create your own custom profile providers.

	 2. Define the user profile. Set up the fields you want to track for a user profile by
using the Web.config file. These fields are used by ASP.NET to store data and return
it to you in a strongly typed class.

	 3. Uniquely identify users. You can identify both anonymous and authenticated users
of your site. You use a unique value to return a user’s profile from the data storage.

	 4. set and save a user profile. You must provide a means that allows users to set
their profile information. This information will then be saved by the configured
profile provider.

	 5. Recognize a returning visitor. When a user returns to your site, you can retrieve
his or her user profile information as a strongly typed class. Your code can then use
the profile information to set customizations, prefill data entry fields, and make other
decisions related to the application.

These steps represent the basic elements you need to set up to use the ASP.NET profile
feature. Each step is covered in detail in the following sections.

 790	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

Configuring a User Profile Provider
You store and retrieve user profiles in a database by using a provider class. This class abstracts the
storage and retrieval of the profile information from the actual profile itself. In this way, you can
always configure a new provider (and data store) without having to change any of your code.

ASP.NET provides a default, configured provider for use with user profiles. This provider
is the SqlProfileProvider class found in the System.Web.Profile namespace. When ASP.NET is
installed, a setting is added to the Machine.config file that connects the SqlProfileProvider
class to an instance of a Microsoft SQL Server database on the local machine. This setting is
AspNetSqlProfileProvider and is set to work with a local configured version of SQL Server. By
default, this is Microsoft SQL Server Express Edition. However, you can change this. The fol-
lowing shows an example of the provider’s configuration.

<profile>
 <providers>
 <add name="AspNetSqlProfileProvider"
 connectionStringName="LocalSqlServer" applicationName="/"
 type="System.Web.Profile.SqlProfileProvider, System.Web, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"/>
 </providers>
</profile>

Notice that in the preceding markup, the provider is configured to use the LocalSqlServer
connection string. This connection string is also found in Machine.config. By default, it points
to a SQL Server Express Edition version of a database named aspnetdb. The following markup
shows an example.

<connectionStrings>
 <add name="LocalSqlServer" connectionString="data source=.\SQLEXPRESS;
 Integrated Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true" providerName="System.Data.SqlClient"/>
</connectionStrings>

In fact, if your web server includes SQL Server Express Edition, ASP.NET will automati-
cally create the profile database when this feature is used. It does so inside the configured
DataDirectory (or App_Data). You can, of course, override these settings.

Note sOLving PERsOnALiZATiOn PRObLEms

If personalization begins to fail during development, it might be caused by a corrupted data-
base. Though you’ll lose any saved personalization data, you can quickly get personalization
working again by deleting the personalization database; simply stop the website and delete
the ASPNETDB.mdf and ASPNETDB_log.ldf files from the App_Data directory. ASP.NET will
automatically recreate these databases the next time you use personalization.

 Lesson 1: Working with User Profiles ChAPTER 13 791

Configuring a New Profile Database
In most cases, you can rely on this database to exist in your development environment and
therefore you will need to do nothing to configure a user profile provider or database. However,
you might want to configure a provider to use a standard version of SQL Server, which can use
more processor cores and memory than SQL Server Express Edition and thus might perform
better if you have a very busy website and a large number of users. To do so, you must first
generate the database schema on the database server. ASP.NET provides the Aspnet_regsql.exe
tool to help.

The Aspnet_regsql.exe tool can be found on your development machine at %windir%
\Microsoft.NET\Framework\%version%. For example, on a standard installation of a Windows 7
development machine, you can find this tool at C:\Windows\Microsoft.NET\Framework
\v4.0.30319.

When you run the tool, you have the option of running it in command-line mode or using
the user interface to walk through a wizard that allows you to set up the profile schema data-
base. In command-line mode, you have the option to set the database name (-d), the server
name (-S), and other important information such as login (-U) and password (-P). There are
a large number of other options, which are described in detail at http://msdn.microsoft.com
/en-us/library/x28wfk74.aspx.

For example, this tool can be used to set up more than just the profile table. It is also used
to define the role, membership, and Web Part tables. To define the tables you want to set up,
you use the -A command and append another letter(s) based on the table you want to set
up. For example, -A all sets up all the tables, whereas -A p only sets up the Profile table and
-A c only sets up the Personalization table.

The following example configures the profile table (-A p) for the server (-S) of localhost by
using Windows credentials (-E).

aspnet_regsql.exe -E -S localhost -A p

Running Aspnet_regsql.exe without parameters launches the setup wizard, which walks
you through the process of both configuring ASP.NET application services and removing
them. Figure 13-1 shows the Select The Server And Database page in the wizard. By default,
the profile database is named aspnetdb. After the database is configured, add the proper
connection string to your application’s Web.config file.

 792	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

FigURE 13-1 Defining an ASP.NET Application Services database.

Note CUsTOm PROviDERs

You can create your own custom provider classes by implementing the ProfileProvider
base class. You then build this provider and configure it inside your Web.config file.
For more information, see the MSDN topic titled “Implementing a Profile Provider”
at http://msdn.microsoft.com/library/0580x1f5.aspx.

Defining the User Profile
You define a user profile by determining the individual fields you want to track for each user
in your site. For instance, you might want to track the user’s first and last name, the date and
time of his or her last visit, preferred font and color settings, and so on. Each value to be tracked
is defined as a profile property. Profile properties can be of any type, such as string, DateTime,
and even custom types that you create.

You define user profile fields inside the Web.config file by adding a <profile> element to
the configuration file followed by a <properties> element. Inside the <properties> element,
you use the <add> child element to indicate a new field. You name the field by using the name
attribute. Unless otherwise specified, property fields are of type string. However, you can use
the type attribute to specify another specific type. The following is an example of a user profile
defined in a Web.config file.

 Lesson 1: Working with User Profiles ChAPTER 13 793

<configuration>
 <system.web>
 <profile>
 <properties>
 <add name="FirstName" />
 <add name="LastName" />
 <add name="LastVisit" type="System.DateTime" />
 </properties>
 </profile>
 </system.web>
</configuration>

Anonymous User Profiles
By default, a user profile and its properties are enabled only for authenticated users—those
users who provide logon credentials for your site and then are authenticated against a user
data store. However, you might want to allow anonymous users (those who do not have logon
credentials to your site) to use features of a user profile. To do so, you start by defining proper-
ties as anonymous by using the allowAnonymous attribute. You set this attribute value to true
for each property for which you want to allow anonymous profiles.

Next, you must add the <anonymousIdentification> element to your Web.config file and
set the enabled attribute to true. The <anonymousIdentification> element has several other
attributes that you can define to control how cookies are used. However, the default settings
are typically sufficient.

The following shows an example of both the anonymousIdentification element and the
allowAnonymous attribute.

<anonymousIdentification enabled="true" />

<profile>
 <properties>
 <add name="FirstName" allowAnonymous="true" />
 <add name="LastName" allowAnonymous="true" />
 <add name="LastVisit" type="System.DateTime" allowAnonymous="true" />
 </properties>
</profile>

In this case, anonymous profiles are enabled and ASP.NET creates a unique identification
for each user the first time he or she visits your site. This value is stored and tracked with a
browser cookie. By default, this cookie is set to expire 70 days after the user’s most recent
site access. If a browser does not support cookies, user profiles can also function without
them by storing unique identifiers in the URL of the page request; however, the profile is
lost when the user closes his or her browser.

 794	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

Profile Property Groups
You can group profile properties together under a group name. For example, you might want
to define an Address group that contains Street, City, and PostalCode properties. Adding these
items to a group allows you to access them through the profile class much like you would
encapsulate data in a class (Profile.Address.Street).

The following markup demonstrates defining a grouped profile property in a Web.config file.

<profile enabled="true">
 <properties>
 <group name="Address">
 <add name="Street" />
 <add name="City" />
 <add name="PostalCode" />
 </group>
 </properties>
</profile>

Custom Profile Property Types
You can create your own custom class and use it as a profile property. For example, you might
have a class that defines a user’s position in your organization, that user’s reports-to informa-
tion, and his or her direct reports. You could use this type as a profile property. To do so, you
need to make sure your custom class is marked as serializable by using the Serializable attribute.
You then reference the custom type by using the type attribute of the <add> element. The
following markup shows an example of adding a custom type called OrgPosition.

<profile>
 <properties>
 <add name="Position" type="MyNamespace.OrgPosition" serializeAs="Binary" />
 </properties>
</profile>

Identifying Users
As discussed previously, user profiles can be used with either authenticated or anonymous
users. If your website requires and implements user authentication, you can immediately
begin using profiles because they are automatically enabled for authenticated users. For
more information on implementing user authentication, see Lesson 2, “Using ASP.NET
Membership,” later in this chapter.

If your site does not authenticate users, you must explicitly enable user profiles through
the <anonymousIdentification> Web.config element, setting its enabled attribute to true, as
discussed previously. In this case, users are identified by either a cookie setting or a URL value.

 Lesson 1: Working with User Profiles ChAPTER 13 795

You might also want to implement a scenario whereby users of your site have anonymous
profiles to start. However, at some point they might want to create an account and thus
make their anonymous profile one that requires authentication. Fortunately, ASP.NET
supports this scenario.

Migrating Anonymous User Profiles
If you enable anonymous user profiles but later allow a user to create authentication creden-
tials, ASP.NET creates a new profile for the user. To avoid losing the user’s anonymous profile
information, you respond to the MigrateAnonymous event that ASP.NET raises when a user
logs on to your site. The following code demonstrates how to migrate information when a
user is first authenticated with his or her new credentials.

Sample of Visual Basic Code

Public Sub Profile_OnMigrateAnonymous(sender As Object, args As ProfileMigrateEventArgs)
 Dim anonymousProfile As ProfileCommon = Profile.GetProfile(args.AnonymousID)

 Profile.ZipCode = anonymousProfile.ZipCode
 Profile.CityAndState = anonymousProfile.CityAndState
 Profile.StockSymbols = anonymousProfile.StockSymbols

 ' Delete the anonymous profile. If the anonymous ID is not
 ' needed in the rest of the site, remove the anonymous cookie.
 ProfileManager.DeleteProfile(args.AnonymousID)
 AnonymousIdentificationModule.ClearAnonymousIdentifier()
End Sub

Sample of C# Code

public void Profile_OnMigrateAnonymous(object sender, ProfileMigrateEventArgs args)
{
 ProfileCommon anonymousProfile = Profile.GetProfile(args.AnonymousID);

 Profile.ZipCode = anonymousProfile.ZipCode;
 Profile.CityAndState = anonymousProfile.CityAndState;
 Profile.StockSymbols = anonymousProfile.StockSymbols;

 // Delete the anonymous profile. If the anonymous ID is not
 // needed in the rest of the site, remove the anonymous cookie.
 ProfileManager.DeleteProfile(args.AnonymousID);
 AnonymousIdentificationModule.ClearAnonymousIdentifier();
}

Notice that in this code, the user’s anonymous profile information is actually copied into his
or her new profile. After this action, the user’s anonymous profile is deleted from the system.

 796	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

Setting and Saving a User Profile
You can save a user profile by simply setting the values of individual properties and then calling
the Profile.Save method. This method will use the configured profile provider to write the profile
data out to the configured database.

Typically, you set user profile information in response to a user’s selection, such as his or
her preferred color or font size for your website. You might also allow users to enter and edit
their profile information by using a web form. You do so in a way similar to how you might
code any web form. You add controls to the page, validation, a Save button, and an event in
your code-behind file to write the data to the data store.

For example, suppose that you have a user profile that contains both first and last name
along with the most recent time the user visited your site. In this case, you might start by
creating a form to allow users to edit their name information. This form would contain a
couple of TextBox controls, a Button control, and perhaps some validation controls. When
the user clicks the Save button, you simply set the profile information and call the Save
method. The following code shows an example.

Sample of Visual Basic Code

Protected Sub Button1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Button1.Click

 Profile.FirstName = TextBoxFirst.Text
 Profile.LastName = TextBoxLast.Text
 Profile.Save()

End Sub

Sample of C# Code

protected void Button1_Click(object sender, EventArgs e)
{
 Profile.FirstName = TextBoxFirst.Text;
 Profile.LastName = TextBoxLast.Text;
 Profile.Save();
}

To set the time of the user’s most recent site access, you could add code to the Global.asax
file to override the Session.End event. The following shows an example.

Sample of Visual Basic Code

Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)

 Profile.LastVisit = DateTime.Now
 Profile.Save()

End Sub

 Lesson 1: Working with User Profiles ChAPTER 13 797

Sample of C# Code

void Session_End(object sender, EventArgs e)
{
 Profile.LastVisit = DateTime.Now;
 Profile.Save();
}

Note, however, that the Session.End event does not run if the server is unexpectedly shut
down; for example, by a power outage.

Recognizing a Returning Visitor
ASP.NET automatically loads a user’s profile based on his or her identification. Again, if you
allow anonymous authentication, this identification is passed as a cookie setting. Otherwise,
identification happens at the time of authorization. Either way, after the profile is loaded, you
can access the data to make decisions such as setting color and font preferences.

In the previous example, a web form was used to allow a user to set his or her profile infor-
mation. You could add code to the Load method of this form to initialize the form fields with
profile data. This code would look as follows.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not IsPostBack Then
 TextBoxFirst.Text = Profile.FirstName
 TextBoxLast.Text = Profile.LastName
 LabelLastVisit.Text = Profile.LastVisit.ToString()
 End If
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 TextBoxFirst.Text = Profile.FirstName;
 TextBoxLast.Text = Profile.LastName;
 LabelLastVisit.Text = Profile.LastVisit.ToString();
 }
}

Using profiles in this way is extremely easy compared to the alternatives, because you
do not need to explicitly determine who the user is or perform any database lookups. Simply
referring to a profile property value causes ASP.NET to perform the necessary actions to
identify the current user and look up the value in the persistent profile store.

 798	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

PrActIcE	 Applying User Profiles

In this practice, you define and configure user profiles. You also create a form that allows a
user to modify his or her profile information.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Working with ASP.NET User Profiles

In this exercise, you enable user profiles for anonymous users and track information for
website visitors.

	 1. Open Visual Studio. Create a new, file-based website by using the ASP.NET Empty
Web Site template.

	 2. Open the Web.config file for your project. Navigate to the <system.web> element.
Inside this element, add markup to configure anonymous user profiles. The following
shows an example.

<anonymousIdentification enabled="true" />

	 3. Add user profile information to the Web.config file under <system.web>. Add fields
for name, postal code, and color preference, as in the following.

<profile>
 <properties>
 <add name="Name" allowAnonymous="true" />
 <add name="PostalCode" type="System.Int16" allowAnonymous="true" />
 <add name="ColorPreference" allowAnonymous="true" />
 </properties>
</profile>

	 4. Add a master page to your site. Right-click the site and choose Add New Item. Use the
default page name of masterPage.master.

	 5. Add markup to the master page to include a HyperLink control to both show the name
of the user and to link to the user profile edit page you will create in a later step.

	 6. Surround your markup with a Panel control. This control will be used to set the user’s
preferred color for the site. The contents of the <body> element for your page should
look similar to the following.

 Lesson 1: Working with User Profiles ChAPTER 13 799

<body>
 <form id="form1" runat="server">
 <asp:Panel ID="Panel1" runat="server">
 <h1>My Site</h1>
 <hr />
 <div style="float: right">
 <asp:HyperLink ID="UserProfileHyperLink" runat="server"
 NavigateUrl="UserProfile.aspx"></asp:HyperLink>
 </div>
 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </asp:Panel>
 </form>
</body>

	 7. Add a Page_Load event handler to the master page’s code-behind file. In this handler,
add code to set the HyperLink control’s text and the Panel control’s background based
on the user’s profile. Your code should look similar to the following.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Profile.Name.Length > 0 Then
 UserProfileHyperLink.Text = "Welcome, " & Profile.Name
 Else
 UserProfileHyperLink.Text = "Set Profile"
 End If

 If Profile.ColorPreference.Length > 0 Then
 Panel1.BackColor = System.Drawing.Color.FromName(Profile.ColorPreference)
 End If
End Sub

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (Profile.Name.Length > 0)
 {
 UserProfileHyperLink.Text = "Welcome, " + Profile.Name;
 }
 else
 {
 UserProfileHyperLink.Text = "Set Profile";
 }

 if (Profile.ColorPreference.Length > 0)
 {
 Panel1.BackColor =
 System.Drawing.Color.FromName(Profile.ColorPreference);
 }
}

 800	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

	 8. Add a new web form called Default.aspx. When doing so, select the Select Master
Page check box in the Add New Item dialog box and select your master page. In
Solution Explorer, right-click the Default.aspx page and set it as the startup page
for the solution.

	 9. Inside the new Default.aspx page, add text within the second asp:Content control to
indicate that the user is on the home page. Your markup might look as follows.

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
 <title>Home</title>
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
 <h2>Home</h2>
</asp:Content>

	 10. Add another new form to your page. Name it UserProfile.aspx. Be sure to select
MasterPage.master as its master page.

	 11. Edit the markup of the UserProfile.aspx page to include form fields to allow a user to
manage his or her profile. Your markup might look similar to the following.

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
 <title>User Profile</title>
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">

 <h2>User Profile</h2>

 Name

 <asp:TextBox ID="NameTextBox" runat="server"></asp:TextBox>

 Postal Code

 <asp:TextBox ID="PostalTextBox" runat="server"></asp:TextBox>

 Background Preference

 <asp:DropDownList ID="ColorsDropDownList" runat="server">
 <asp:ListItem Text="White" Value="White"></asp:ListItem>
 <asp:ListItem Text="Yellow" Value="Yellow"></asp:ListItem>
 <asp:ListItem Text="Green" Value="Green"></asp:ListItem>
 </asp:DropDownList>

 <asp:Button ID="SaveButton" runat="server" Text="Save" />
</asp:Content>

 Lesson 1: Working with User Profiles ChAPTER 13 801

	 12. Add an event handler for the UserProfile.aspx page’s SaveButton click event. Add code
to this event handler to set the user’s profile, save it, and redirect the user back to the
home page (Default.aspx). Your code should look similar to the following.

Sample of Visual Basic Code

Protected Sub ButtonSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ButtonSave.Click

 Profile.Name = NameTextBox.Text
 Profile.PostalCode = PostalTextBox.Text
 Profile.ColorPreference = ColorsDropDownList.SelectedValue.ToString()

 Profile.Save()

 Response.Redirect("Default.aspx")
End Sub

Sample of C# Code

protected void ButtonSave_Click(object sender, EventArgs e)
{
 Profile.Name = NameTextBox.Text;
 Profile.PostalCode = short.Parse(PostalTextBox.Text);
 Profile.ColorPreference = ColorsDropDownList.SelectedValue.ToString();

 Profile.Save();

 Response.Redirect("Default.aspx");
}

	 13. Add another event handler to the UserProfile.aspx page for the Page.Load event. Add
code to this event to initialize the form fields if user profile values exist. Your code
should look as follows.

Sample of Visual Basic Code

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Not IsPostBack Then
 NameTextBox.Text = Profile.Name
 If Profile.PostalCode > 0 Then
 PostalTextBox.Text = Profile.PostalCode
 End If
 If Profile.ColorPreference.Length > 0 Then
 ColorsDropDownList.SelectedValue = Profile.ColorPreference.ToString()
 End If
 End If
End Sub

 802	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

Sample of C# Code

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 NameTextBox.Text = Profile.Name;
 if (Profile.PostalCode > 0)
 {
 PostalTextBox.Text = Profile.PostalCode.ToString();
 }
 if (Profile.ColorPreference.Length > 0)
 {
 ColorsDropDownList.SelectedValue = Profile.ColorPreference.ToString();
 }
 }
}

	 14. Run the application and go to the Default.aspx page. Notice that the first time you
run the application, it takes a little time, as ASP.NET generates the ASPNETDB.mdf
file for your site.

	 15. Click the Set Profile link, edit your profile, and then view the results. Close the application
and run it again and notice that ASP.NET stores your information between requests.

	 16. In Solution Explorer, click the Refresh button. Notice that the App_Data subdirectory
now exists and contains an ASPNETDB.mdf database file.

Lesson Summary
■ You can configure user profiles by using the Web.config file and the <profile> element.

You add fields to this element based on which data elements you intend to track for
users of your site.

■ ASP.NET automatically creates a strongly typed object based on your profile field
settings in the Web.config file. You can access this class and its properties through
the Profile.<FieldName> syntax in your code.

■ You call the Profile.Save method to save a user’s profile to a database.

■ By default, ASP.NET uses the SqlProfileProvider to store and retrieve user profile
information to a SQL Server Express database called ASPNETDB.mdf. You can
change the provider and the database by using configuration files.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Working with User Profiles.” The questions are also available on the companion CD in a
practice test, if you prefer to review them in electronic form.

 Lesson 1: Working with User Profiles ChAPTER 13 803

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. Which of the following Web.config files correctly enables the website to track the age
of anonymous users in a variable of type Int32?

	 A. <anonymousIdentification enabled="true" />

<profile>

 <properties>

 <add name="Age" type="System.Int32" allowAnonymous="true" />

 </properties>

</profile>

	 B. <anonymousIdentification enabled="true" />

<profile>

 <properties>

 <add name="Age" allowAnonymous="true" />

 </properties>

</profile>

	 c. <anonymousIdentification enabled="true" />

<profile>

 <properties>

 <add name="Age" type="System.Int32" />

 </properties>

</profile>

	 D. <profile>

 <properties>

 <add name="Age" type="System.Int32" />

 </properties>

</profile>

	 2. You want to create a user profile that uses a custom type as one of the profile properties.
What actions must you take? (Choose all that apply.)

	 A. Mark your class as serializable.

	 B. Set the type attribute of the profile property to the fully qualified name of your
custom type.

	 c. Add the group element to your profile property. Add one element to the group
element for each property in your custom type. Set each element’s name to match
that of a property in your custom type.

	 D. Add your custom type in the Machine.config file in the <customTypes> element.

 804	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

Lesson 2: Using AsP.nET membership

One key feature of nearly every enterprise website is the ability to manage users and their
access to the features of a site. This includes creating and editing users, managing their
passwords, authenticating users based on role, and much more. In the past, this code was
written by nearly every website team out there (sometimes more than once). Fortunately,
ASP.NET now includes membership features that reduce the amount of code you have to
write. ASP.NET membership features include all of the following:

■ Wizard-based configuration of user management capabilities

■ Browser-based user management and access control configuration

■ A set of ASP.NET controls that provides users with the ability to log on, log off, create
new accounts, and recover lost passwords

■ The Membership and Roles classes, which you can use to access user management
capabilities within your code

ASP.NET membership is related to the user profiles that you learned about in Lesson 1.
User profiles store data about unique users. Membership is meant to uniquely identify users.
This lesson describes how you take advantage of the ASP.NET membership features in your
own websites to manage user accounts and authorization.

After this lesson, you will be able to:
■	 Understand the features of the ASP.NET logon controls and use them in a site.
■	 Configure an ASP.NET website to support user management.
■	 Use the Membership class to manage user information.
■	 Use the Roles class to define authentication groups for your site.

Estimated lesson time: 45 minutes

Using the WSAT to Configure Security
You can use the Web Site Administration Tool (WSAT) to define and manage users, roles,
and security on your site. Administrators and developers can use the tool to manage secu-
rity settings from a web browser. This tool allows you to configure authentication, create
and manage users, and create and manage role-based authorization.

 Lesson 2: Using ASP.NET Membership ChAPTER 13 805

Creating Users
Recall that you launch the WSAT tool in Visual Studio by choosing ASP.NET Configuration from
the Website menu. This takes you to the administration page for your site. The user configura-
tion information is found on the Security tab. The first step is to click the Select Authentication
Type link. Here you choose Windows-based, local Active Directory security authentication (From
A Local Network), or web-based forms that use a database authentication (From The Internet).
After the type of authentication has been selected, you can create users, manage users, define
their roles, and control their access. Figure 13-2 shows an example of creating a new user
with the WSAT.

FigURE 13-2 Creating a user by using the WSAT.

When you select web-based security by using the WSAT, ASP.NET automatically creates
the ASPNETDB.mdf file for your site and stores it in the App_Data directory (see Lesson 1 for
information on configuring a different database). It also updates your site’s Web.config file to
enable this security feature. It adds the authentication element, as shown here, if it did not
previously exist.

<configuration>
 <system.web>
 <authentication mode="Forms" />
 </system.web>
</configuration>

 806	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

The WSAT is a great tool for administrators and developers. You can use it to edit config-
uration settings and manage the data found inside ASPNETDB. However, it does not allow
users to create or manage their own accounts. For this, you need to use the logon controls
to create pages on which users can set up and manage their information.

Creating Roles
You can also use the WSAT to create, configure, and manage user roles, which are simply
groups of users that you define. You can then apply authorization at the role level rather
than at the individual user level. This makes management easier because roles do not
change, but the users assigned to them do.

To enable roles by using the WSAT, on the Security tab, click the Enable Roles link. This
will edit your Web.config file to enable roles, as shown in the following.

<configuration>
 <system.web>
 <roleManager enabled="true" />
 </system.web>
</configuration>

On the Security tab, you can now use the Create Or Manage Roles link. To create a new
role, you start by assigning it a name. You then click Manage for the role to assign users to
or remove users from the role.

Roles, by themselves, do not enforce security on your site. Instead, you need to do one of
two things (or both). First, you can use the Roles class in your code to determine whether a user
has access to a specified page or feature. You can query the IsUserInRole method (described
later in this lesson) to do so. Second, you can use the WSAT to create role-based access rules
for your site.

Creating Access Rules
You create role-based access rules on the Security tab in the WSAT. An access rule allows you
to define folder-level access to items in your site on either a per-user or role basis. You start
by clicking the Create Access Rules link. This takes you to the Add New Access Rule page, as
shown in Figure 13-3. From here, you can apply a rule to a role, an individual user, all users,
or anonymous users. You select a folder for the rule, choose to whom the rule applies, and
specify whether you intend to allow or deny permission.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 2: Using ASP.NET Membership ChAPTER 13 807

FigURE 13-3 Managing access rules by using the WSAT.

The WSAT adds a Web.config file to any folder to which you apply an access rule (or it
edits the existing Web.config file if the folder already contains this file). This configuration file
applies only to the content of that folder. In the example shown in Figure 13-3, the role of Site
Owner is being allowed for the Administration folder. The following represents the content of
the Web.config file found inside the Administration folder after this operation.

<configuration>
 <system.web>
 <authorization>
 <allow roles="Site Owner" />
 </authorization>
 </system.web>
</configuration>

Logon Controls
ASP.NET provides a set of controls, classes, and management tools for authenticating users
with web forms and storing user information in a database. These controls allow you to
track, manage, and authenticate users without creating your own schema, relying on the
Active Directory user database, or managing users by other means. Prior to version 2.0 of
the Microsoft .NET Framework, custom user authentication required creation from scratch
of many complex components, such as user database schemas, logon pages, password
management pages, and user administration. Creating these components yourself is time-
consuming and risky to your application’s security. ASP.NET helps you minimize this risk.

 808	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

The Login Control Classes
There are seven controls in ASP.NET for managing the logon information of a user. These seven
controls are grouped together as the logon controls. They provide user interface elements for
managing the logon features related to users. Like the profile features, these controls are con-
figured to work with the ASPNETDB.mdf SQL Server Express Edition database by default.

Each of these controls provides a specific feature required of most user-driven websites.
The following is a list of each of these controls and their purpose:

■ CreateUserWizard This control gathers information from a new user, such as user
name and password, and creates a new user account. You can use the user profile
features in conjunction with the CreateUserWizard.

■ Login This control defines a user interface for prompting users for their user name
and password and enables users to select whether they want to be automatically
authenticated the next time they visit your site. You can use the Login control with
ASP.NET membership without writing any code, or you can write your own authenti-
cation code by adding a handler for the Authenticate event.

■ Loginview This control is used to display different information if a user is logged
onto your site. For example, you could use this control to provide links to features
that are available only to authenticated users.

■ Loginstatus You use this control to allow users to link to your logon page if they
haven’t been authenticated. It displays a link to log off for users who are currently
logged on.

■ Loginname This control displays the current user’s user name (if logged on).

■ PasswordRecovery This control enables password retrieval or reset for a user by
sending an email message or by having the user answer a security question.

■ ChangePassword This control enables a user who is logged on to change his or her
password.

With the functionality built into these controls, you can create—without writing any code—
a website that enables users to create their own accounts, change and reset their passwords,
and log on and log off. You can, of course, create your own custom providers or migrate to a
higher version of SQL Server.

Creating a User Account Creation Page
Most public websites allow users to create their own accounts. This simplifies user creation and
takes the burden off of the administrator. If you create a site by using the ASP.NET Web Site
template, Visual Studio generates a page named Register.aspx in the Account folder specifically
for this purpose. This page is preconfigured to work with the default logon database.

You use the CreateUserWizard control to create a custom page that allows users to create
their own accounts by using the standard ASP.NET membership. This control can be added to
a page and automatically works with the provider that works with the ASPNETDB.mdf file.

 Lesson 2: Using ASP.NET Membership ChAPTER 13 809

The CreateUserWizard control, by default, prompts a user for a user name, password, email
address, security question, and security answer. Figure 13-4 shows an example of the control
on a page inside Visual Studio. The CreateUserWizard control is also capable of validating
required fields, ensuring a strong password, and confirming a password.

FigURE 13-4 The ASP.NET CreateUserWizard control in Visual Studio.

There is nothing additional that you need to do to configure, set up, or use a CreateUserWizard
control. However, you will most likely want to set the ContinueDestinationPageUrl property. This
property should be set to the page to which you want users to go after they have completed their
account creation process. In addition, you can add your own code to the ContinueButtonClick
event to add processing when the user clicks the final step in the wizard.

The CreateUserWizard control is a composite, template-driven control. Therefore, you have
access to edit the templates that are defined by the control. You can even change and add to
the steps defined by the wizard. These features are useful if you want to add information to the
user registration process or change the layout of the interface.

As an example, suppose you want to add controls to allow a user to define additional profile
information as part of the account creation process. You can do so by clicking the Customize
Create User Step link from the CreateUserWizard Tasks pane (refer back to Figure 13-4). This will
render the entire markup to create a user form inside your page. You can then edit this markup
to include your own controls as necessary. Figure 13-5 shows an example of a CheckBox control
added to the page.

 810	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

FigURE 13-5 A customized version of the CreateUserWizard control.

You can store this additional information by handling the CreatedUser event. In this event,
you use the Membership class (discussed later in this lesson) to get the user and update the
Comment property of the MembershipUser class. This property is used to store custom values
for a user. However, a better method is to use the Profile object, as discussed in Lesson 1.

Unfortunately, you cannot easily set the user’s profile information inside the CreatedUser
event because the user is not considered identified and authenticated to the site until after
this event completes. To help with this issue, the CreateUserWizard control exposes the prop-
erties EditProfileText and EditProfileUrl. You can use these properties to create a link that
appears on the final page for the created user. This link can take users to a page that allows
them to edit their profile (as discussed in Lesson 1). This profile will be associated with the
newly created user. However, without deeper customizations, you will have to maintain
both a profile page and a create user page.

By default, new user accounts do not belong to any roles. To add a new user to a role
(such as a default Users role), add a handler for the CreateUserWizard.CreatedUser event,
and then call the Roles.AddUserToRole method as described later in this lesson.

Creating a Logon Page
A logon page allows a user to present his or her credentials to your site and then be authen-
ticated. In most cases, a logon page will include logon information, a link to create a new
account, and a link to retrieve a password for an existing account. If you create a site by using the
ASP.NET Web Site template, Visual Studio generates a page named Login.aspx in the Account
folder specifically for this purpose. It is preconfigured to work with the default logon database.

 Lesson 2: Using ASP.NET Membership ChAPTER 13 811

To create a custom logon page, edit the Web.config file to point nonauthenticated requests
to your logon page by adding the loginUrl attribute to the <forms> element as follows.

<authentication mode="Forms">
 <forms loginUrl="Login.aspx" />
</authentication>

On the logon page, you start by adding a Login control. This control is used to prompt
a user for his or her credentials. The Login control also includes features for validation to
ensure that the user types a user name and password. However, to get the actual error
messages to the page (instead of just asterisks indicating incomplete information), you
should add a ValidationSummary control to your logon page. You configure this control
to work with the Login control by setting the ValidationGroup property to the ID of your
Login control. Figure 13-6 shows an example of both controls added to a page.

FigURE 13-6 The Login control prompts the user for credentials.

You do not need to write any code to use the Login control. It works automatically with
the site configuration to authenticate users by using forms-based authentication.

Adding Password Recovery
To complete your logon page, you might want to add a PasswordRecovery control. This
control assists users if they forget their password. This control enables users to type their
user name and receive a new, random password via email. Email messages are sent based
on the configured email provider in the Web.config file. You can also require users to answer
a security question before their password is sent.

 812	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

Note COnFigURing An EmAiL sERvER

You can configure an email server for your site manually in the Web.config file, or you can
use the WSAT. When using the WSAT, you set up a Simple Mail Transfer Protocol (SMTP)
server from the Application tab.

Figure 13-7 shows an example of the PasswordRecovery control in Visual Studio. Notice
that there are three template views: UserName, Question, and Success. The UserName view
allows a user to enter his or her user name; the Question view allows your application to ask
for and validate the user’s secret question, and the Success view indicates a successful lookup.

FigURE 13-7 The PasswordRecovery control can send email messages to users who request their passwords.

If the user provides valid credentials, the user is logged in to your site. The member-
ship controls such as LoginStatus will then automatically reflect that. If the user does not
provide valid credentials, the Login control prompts the user to retype his or her pass-
word. You should create a handler for the Login.LoginError event and perform security
auditing by adding an event to the Security event log. Similarly, you should handle (log)
the PasswordRecovery.UserLookupError and PasswordRecovery.AnswerLookupError
events. This ensures that administrators can discover excessive attempts to look up and
recover a password.

Creating a Password Change Page
Another important form is the change password form, which allows a user to enter his or her cur-
rent password and create a new one. If you create a site by using the ASP.NET Web Site template,
Visual Studio generates pages named ChangePassword.aspx and ChangePasswordSuccess.aspx in
the Account folder specifically for this purpose.

 Lesson 2: Using ASP.NET Membership ChAPTER 13 813

You can create a custom change password page by using the ChangePassword control, as
shown in Figure 13-8. On completion, you can either show a success message or automatically
navigate to another page. To enable the latter scenario, set the SuccessPageUrl property of the
ChangePassword control to the name of the page to which you want to redirect the user
following a successful password change. The control also exposes other useful properties,
such as EditProfileUrl and EditProfileText to create a link to allow the user to edit other por-
tions of his or her profile.

FigURE 13-8 The ChangePassword control allows users to change their passwords.

The FormsAuthentication Class
The FormsAuthentication class is the basis for all forms authentication in ASP.NET. The class
includes the following read-only properties, which you can use to programmatically examine
the current configuration:

■ FormsCookiename This property returns the configured cookie name used for the
current application.

■ FormsCookiePath This property returns the configured cookie path used for the
current application.

■ RequiressL This property gets a value indicating whether the cookie must be
transmitted by using SSL (that is, over HTTP Secure [HTTPS] only).

IMportaNt imPROving sECURiTy iF ThE WEb sERvER hAs An ssL CERTiFiCATE

Enable RequireSSL for best security. This will ensure that forms authentication is encrypted.

 814	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

■ slidingExpiration This property gets a value indicating whether sliding expiration is
enabled. If sliding expiration is enabled, the user’s authentication timeout is reset with
every web request.

IMportaNt imPROving sECURiTy (AT ThE COsT OF COnvEniEnCE)

Disable SlidingExpiration for the highest level of security. This prevents a session from
remaining open indefinitely.

Additionally, you can call the following methods:

■ Authenticate This method attempts to validate the provided credentials against those
contained in the configured credential store.

■ Decrypt This method returns an instance of a FormsAuthenticationTicket class, given
a valid encrypted authentication ticket obtained from an HTTP cookie.

■ Encrypt This method produces a string containing an encrypted authentication ticket
suitable for use in an HTTP cookie, given a FormsAuthenticationTicket object.

■ getAuthCookie This method creates an authentication cookie for a specified user name.

■ getRedirectUrl This method returns the URL for the original request that caused the
redirect to the logon page.

■ hashPasswordForstoringinConfigFile Given a password and a string identifying the
hash type, this routine produces a hash password suitable for storing in a configuration
file. If your application stores user credentials in the Web.config file and hashes the pass-
word, build this method into a management tool to enable administrators to add users
and reset passwords.

■ RedirectFromLoginPage This method redirects an authenticated user back to the
originally requested URL. Call this method after verifying a user’s credentials with
the Authenticate method. You must pass this method a string and a Boolean value. The
string should uniquely identify the user, and the method uses the string to generate
a cookie. The Boolean value, if true, allows the browser to use the same cookie across
multiple browser sessions. Generally, this unique piece of information should be the
user’s user name.

■ RenewTicketifOld This method conditionally updates the sliding expiration on a
FormsAuthenticationTicket object.

■ setAuthCookie This method creates an authentication ticket and attaches it to the
cookie’s collection of the outgoing response. It does not perform a redirect.

■ signOut This method removes the authentication ticket, essentially logging the user off.

 Lesson 2: Using ASP.NET Membership ChAPTER 13 815

The Membership Class
The logon controls discussed previously use the methods of the System.Web.Security.Membership
class to implement their functionality. This is, for the most part, abstracted from developers.
However, there are many cases in which you might want to use these methods yourself. For
instance, you might want to create your own custom user interface outside of the logon
controls, intercept logon control events, and implement other security-related code on your
site. In each case, you use the Membership class. It provides capabilities that allow you to
add, remove, and find users. The following are the important static methods in this class,
along with each method’s capability:

■ CreateUser This method adds a user to the database. Use this method if you create a
custom page to enable users or administrators to add new accounts.

■ DeleteUser This method removes a user from the data store. Use this method if you
create custom user management tools.

■ FindUsersbyEmail This method gets a collection of membership users with the specified
email addresses.

■ FindUsersbyname This method gets a collection of membership users with the
specified user names.

■ generatePassword This method creates a random password of the specified length.
Use this if you are implementing custom controls to generate or reset passwords.

■ getAllUsers This method returns a collection of all users in the database.

■ getnumberOfUsersOnline This method returns the number of users currently
logged on.

■ getUser This method returns a MembershipUser object representing the current
logged-on user. Call this method any time you need to access the current user’s
account.

■ getUsernamebyEmail This method gets a user name with the specified email
address.

■ UpdateUser This method updates the database with the information for the speci-
fied user. Use this method if you create a page to enable users or administrators to
modify existing accounts.

■ validateUser This method verifies that the supplied user name and password are
valid. Use this method to check a user’s credentials if you create your own custom
logon controls.

 816	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

The Roles Class
Role management consists of a set of classes and interfaces that establish roles for the current
user and manage role information. In ASP.NET user management, roles function as user groups,
enabling you to assign access rights to all users who are part of a specific role. The most use-
ful of these classes is System.Web.Security.Roles, which provides the ability to add users to or
remove users from roles, create new roles, and determine to which roles a user belongs.

The Roles class provides many static methods, including the following:

■ AddUserToRole, AddUserToRoles, AddUsersToRole, and AddUsersToRoles These
methods add a user or users to a role or roles.

■ CreateRole This method creates a new role.

■ DeleteRole This method deletes an existing role.

■ FindUsersinRole This method returns a collection of users in a role.

■ getAllRoles This method returns a collection of all roles that currently exist.

■ getRolesForUser This method returns a collection of roles for the current user.

■ isUserinRole This method returns true if the user is a member of a specified role.

■ RemoveUserFromRole, RemoveUsersFromRole, RemoveUserFromRoles, and
RemoveUsersFromRoles These methods remove a user or users from a role
or roles.

For example, if you want to assign the user being created as part of the CreateUserWizard
control to a role named Users, you could use the following code:

Sample of Visual Basic Code

Roles.AddUserToRole(CreateUserWizard1.UserName, "Users")

Sample of C# Code

Roles.AddUserToRole(CreateUserWizard1.UserName, "Users");

You cannot use the Roles class to manage Windows user groups when using Windows
authentication. Windows authentication is discussed in more detail in the next section.

Quick Check
	 1. Which control would you use to provide a logon link?

	 2. Which logon controls are useful only to authenticated users?

Quick Check Answers
	 1. Use the LoginStatus control to provide a logon link.

	 2. The LoginName, ChangePassword, and LoginView controls are useful only to
authenticated users.

 Lesson 2: Using ASP.NET Membership ChAPTER 13 817

Configuring Websites to Require Windows Authentication
If your application is targeted for use inside an organization in which users have existing user
accounts within a local user database or Active Directory repository, then you should authen-
ticate users with Windows authentication. You can configure Windows authentication in two
ways: within IIS and within your ASP.NET application. To provide stronger security, you should
configure your site to use both techniques.

When a website requires Windows authentication, the application rejects any request that
does not include a valid user name and password in the request header. The user’s browser
then prompts the user for a user name and password. Because the browser prompts the user
for credentials, you do not have to have pages to request the user’s user name and password.
Some browsers, such as Windows Internet Explorer, automatically provide the user’s current
user name and password when the server is located on the intranet. This seamlessly authenti-
cates the user, eliminating the need to retype the password for intranet site visits.

With that said, most public websites use forms-based authentication; Windows authentica-
tion is primarily useful for intranet sites in an Active Directory domain environment.

To configure an ASP.NET application for Windows authentication, edit the <authentication>
section of the Web.config file. This section, like most sections related to ASP.NET application
configuration, must be defined within the <system.web> section. The <system.web> section, in
turn, must exist within the <configuration> section. This example shows the <authentication>
section of the Web.config file configured to use Windows authentication.

<configuration>
 <system.web>
 <authentication mode="Windows" />
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

The <authorization> section simply requires all users to be successfully authenticated. Specify-
ing <deny users=”?” /> within <authorization> requires users to be authenticated, whereas
specifying <allow users=”*” /> within <authorization> bypasses authentication entirely. The
question mark (?) represents unauthenticated users, and the asterisk (*) represents all users,
both authenticated and unauthenticated.

You can also configure Windows authentication in your application’s Web.config file by
following these steps, which are more user friendly:

	 1. Create an ASP.NET website by using Visual Studio.

	 2. From the Website menu, select ASP.NET Configuration.

	 3. Click the Security tab, and then click Select Authentication Type.

	 4. Under How Will Your Users Access The Site, select From A Local Network, and then
click Done.

 818	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

exaM tIp

The exam objectives specifically exclude Windows authentication, so don’t put too much of
your time into understanding how it works. In the real world, however, Windows authentica-
tion is commonly used in intranet Active Directory environments.

Restricting Access to ASP.NET Websites, Files, and Folders
Authentication determines a user’s identity, whereas authorization defines what the user is
allowed to access. Before the .NET Framework, administrators controlled web user authoriza-
tion entirely with Windows permissions. Although Windows permissions are still a key part of
configuring security for ASP.NET applications, these permissions are now complemented by
ASP.NET’s authorization capabilities. Authorization is now controlled with Web.config files, just
like authentication is. This enables authorization to work with any type of authentication—even
if the authorization doesn’t use the local user database or Active Directory directory service on
which NTFS permissions are based. The use of Web.config files also makes copying file permis-
sions between multiple web servers as easy as copying files.

In the sections that follow, you will learn how to restrict access according to user and group
names, how to restrict access to specific files and folders by using either a .config file or file
permissions, and how to use impersonation in an ASP.NET application.

Restricting Access to Users and Groups
The default Machine.config file contains the following authorization information.

<authorization>
 <allow users="*"/>
</authorization>

Unless you modify this section of the Machine.config file, or override the Machine.config
file by adding this section to your application’s Web.config file, all users permitted by your
authentication configuration are allowed to interact with all parts of your ASP.NET website.
The <allow users=”*”> subsection of the <authorization> section tells ASP.NET that all users
who pass the authentication requirements are allowed access to all ASP.NET content.

To configure an ASP.NET application to provide access only to the users whose user names
are Eric and Sam, override the Machine.config security settings by editing the Web.config file
in the root of the ASP.NET application and add the following lines within the <system.web>
section:

<authorization>
 <allow users="Eric, Sam"/>
 <deny users="*"/>
</authorization>

 Lesson 2: Using ASP.NET Membership ChAPTER 13 819

The <allow> and <deny> subsections contain users and roles attributes. The users attri-
bute should be set to a list of user names separated by commas, an asterisk (*) to indicate
all authenticated and unauthenticated users, or a question mark (?) to indicate anonymous
users. If Windows authentication is used, the user names should match names in the local user
database or Active Directory service and need to include a domain name (that is, DOMAIN\user
for domain accounts or COMPUTERNAME\user for local user accounts).

The roles element contains a comma-separated list of roles. When Windows authentication
is used, roles correspond to Windows user groups. In this case, the names must exactly match
group names in the local user database or Active Directory repository. Provide the domain
name for groups in the Active Directory repository, but do not specify the computer name for
local groups. For example, to specify the IT group in the CONTOSO domain, use CONTOSO\IT.
To specify the local users group, use Users.

If you are using Windows authentication, you must disable the roleManager element in
your Web.config file to use role security to authorize Windows user groups. The roleManager
element is disabled by default, so removing it from your Web.config file is sufficient to disable
it. You can authorize Windows users with roleManager enabled, but it must be disabled to
authorize Windows groups.

Controlling Authorization for Folders and Files by Using .config Files
The previous techniques are useful for controlling user access to an entire ASP.NET application.
To restrict access to specific files or folders, add a <location> section to the <configuration>
section of the Web.config file. The <location> section contains its own <system.web> subsection,
so do not place it within an existing <system.web> section.

To configure access restrictions for a specific file or folder, add the <location> section to
your Web.config file with a single path section. The path section must be set to the relative
path of a file or folder; absolute paths are not allowed. Within the <location> section, include
a <system.web> subsection and any configuration information that is unique to the specified
file or folder. For example, to require forms authentication for the ListUsers.aspx file and allow
access only for the user named admin, add the following text to the <configuration> section
of the Web.config file.

<location path="ListUsers.aspx">
 <system.web>
 <authentication mode="forms">
 <forms loginUrl="AdminLogin.aspx" protection="All"/>
 </authentication>
 <authorization>
 <allow users="admin"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</location>

 820	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

When multiple <location> sections are used, files and subfolders automatically inherit all
settings from their parents. Therefore, you do not need to repeat settings that are identical
to the parents’ configurations. When you are configuring authorization, inheritance has the
potential to lead to security vulnerabilities. Consider the following Web.config file.

<configuration>
 <system.web>
 <authentication mode="Windows" />
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>

 <location path="Protected">
 <system.web>
 <authorization>
 <allow roles="CONTOSO\IT" />
 </authorization>
 </system.web>
 </location>
</configuration>

In this example, there are actually three layers of inheritance. The first is the Machine.config
file, which specifies the default <allow users=”*”/>. The second layer is the first <system.web>
section in the example, which applies to the entire application. This setting, <deny users=”?”/>,
denies access to all unauthenticated users. By itself, this second layer denies access to any user.
However, combined with the Machine.config file, this layer allows access to all authenticated
users and denies access to everyone else.

The third layer is the <location> section, which grants access to the CONTOSO\IT group.
However, this section also inherits the <deny users=”?”/> and <allow users=”*”/> settings.
Therefore, the effective settings for the Protected subfolder are the same as for the parent
folder: All authenticated users have access. To restrict access to only users in the CONTOSO\IT
group, you must explicitly deny access to users who are not specifically granted access, as the
following code demonstrates.

<location path="Protected">
 <system.web>
 <authorization>
 <allow roles="CONTOSO\IT" />
 <deny users="*" />
 </authorization>
 </system.web>
</location>

 Lesson 2: Using ASP.NET Membership ChAPTER 13 821

Note Using FiLE PERmissiOns

You can also control access to files and folders by setting Windows file system permissions.
However, file permissions are typically managed by system administrators. Additionally,
because file permissions cannot be distributed as easily as a Web.config file and can only
be used with Windows security, they should not be relied on as the primary method of file
authorization for developers.

Configuring Impersonation by Using .config Files
By default, ASP.NET applications make all requests for system resources from the ASPNET
account (in IIS 5.0) or the Network Service account (in IIS 6.0, IIS 7.0, and IIS 7.5). This setting
is configurable and is defined in the <processModel> item of the <system.web> section of
the Machine.config file. The default setting for this section is as follows.

<processModel autoConfig="true" />

You can change autoConfig to false and set the userName and password attribute to
define the account that ASP.NET impersonates when requesting system resources on behalf
of a web user.

Automatic configuration is sufficient for most ASP.NET implementations. However, in many
cases, administrators need to configure ASP.NET to impersonate the client’s authenticated user
account, IIS’s anonymous user account, or a specific user account. This configuration is done
by setting the impersonate attribute of the <identity> element of the Machine.config file (for
server-wide settings) or the Web.config file (for application-specific or directory-specific
settings). To enable impersonation of the client’s authenticated Windows account, or the IIS
IUSR_MachineName account for anonymous access, add the following line to the <system.web>
section of the Web.config file.

<identity impersonate="true" />

When IIS is configured for anonymous access and impersonation is enabled, ASP.NET makes
requests for system resources by using the IUSR_MachineName account. When a user authen-
ticates directly to IIS by using a Windows logon, ASP.NET impersonates that user account. To
enable ASP.NET to impersonate a specific user account, regardless of how IIS authentication is
handled, add the following line to the <system.web> section of the Web.config file and replace
the DOMAIN, UserName, and Password placeholders with the account logon credentials.

<identity impersonate="true" userName="DOMAIN\UserName" password="Password"/>

 822	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

real World

Tony Northrup

If you create Internet applications, you’ll never need to use Windows authentication
or impersonation. Those concepts are vital to understand if you create intranet

applications for enterprises with an Active Directory infrastructure, however.

One of the biggest selling points of Active Directory directory services is central-
ized control of user credentials and roles. Active Directory directory services allow
an enterprise to create a single user account for each employee and grant those
accounts access to just about any network resource, including files, printers, appli-
cations, databases, and even specific data within a database. If an enterprise has
5,000 users, managing those users is time consuming enough. If dozens of different
applications were to require users to have separately managed accounts, each with
different management techniques, it would not only be exceedingly time consuming
to manage, but security vulnerabilities would begin to appear as user accounts that
should be removed or updated are overlooked.

Windows authentication and impersonation allow you to take advantage of the
Active Directory user database for your own application. It’s not any easier or harder
to program than using forms authentication, but it’s definitely easier to manage.
Not only will users not need a separate account, but you can rely on systems admin-
istrators to manage the user accounts and control permissions each user receives.

PrActIcE	 Configuring Authentication in AsP.nET Applications

In this exercise, you create an ASP.NET website and then configure it to restrict access by
using roles.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	 Creating and Configuring an ASP.NET Site to Use Membership Features

In this exercise, you create a new ASP.NET website and add support for ASP.NET memberships.

	 1. Open Visual Studio. Create a new, file-based website by using the ASP.NET Web Site
template.

 Lesson 2: Using ASP.NET Membership ChAPTER 13 823

	 2. Create two subfolders in your site. Name one members and the other Admin. You can
do so by right-clicking the project and choosing New Folder.

	 3. To each subfolder, add a blank ASP.NET web form named Default.aspx. Later, you’ll
access these pages to verify that ASP.NET requires proper authentication.

	 4. From the Website menu in Visual Studio, select ASP.NET Configuration. This launches
the WSAT in a browser.

	 5. Click the Security tab to get started. In the Users section, click the Select Authentication
Type link. On the next page, select From The Internet, and click Done. This enables forms-
based authentication (though it was already enabled as part of the Visual Studio ASP.NET
Web Site template).

	 6. On the Security tab, click the Enable Roles link to enable roles for the site.

	 7. In the Roles section, click the Create Or Manage Roles link. On the next page, add a
role called Users. Repeat this process to add another role called Administrators.

	 8. Click the Security tab to return to the main security page. Use the Create User link to
add two users.

	 a. Create a user named standardUser. In the Roles section, select the Users role.

	 b. Add another user named Admin. In the Roles section, select the Administrators role.

	 c. For both users, you can set the password, security question, and email address as
you like. (The code provided in the samples installed from the CD uses the pass-
word password!.)

	 9. Click the Security tab to return to the main security page. In the Access Rules section,
click the Create Access Rules link. Create the following rules:

■ Create a rule that denies all anonymous users access to the root of the site.
■ Create a rule that grants all users (other than those who are anonymous) access to

the root of the site.
■ Create a rule that grants users in the Administrators role access to the Admin directory.
■ Create a rule that denies all users access to the Admin directory.

Note that the order of the rule creation is important, because each rule is processed in
order. You can move rules up or down by clicking Manage Access Rules on the Security
tab of the WSAT interface.

	 10. Return to Visual Studio. Click the Refresh button at the top of Solution Explorer. Notice
the inclusion of the ASPNETDB.mdf file in your site. Also notice the additional Web.config
file inside the Admin folder. Open both Web.config files for your site and examine the
new settings.

	 11. Open the Default.aspx page in the site root. Add the following controls:

■ A HyperLink control with the text set to members only and NavigateUrl set to
members/Default.aspx

■ A HyperLink control with the text set to Administrators only and NavigateUrl set
to Admin/Default.aspx

 824	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

	 12. Run Default.aspx in a web browser. Notice that you are redirected to the Account/
Login.aspx page. Log in as standardUser. (The code provided in the samples installed
from the CD uses the password password!.) You should now be able to view the page.

■ Click the Members Only link. You should have full access.

■ Click the Administrators Only link. You should be redirected to the Login page.
Notice that the URL includes a parameter named ReturnUrl that contains the
page you were attempting to access.

■ Log on as Admin and notice that you are redirected to the Administrators Only page.

Lesson Summary
■ ASP.NET provides several logon controls to enable you to easily build pages that

support creating user accounts, logging on, logging off, and resetting passwords.
These controls include Login, LoginView, LoginStatus, LoginName, PasswordRecovery,
CreateUserWizard, and ChangePassword.

■ Use the Membership class when you need to perform user management tasks from
within your code, such as creating, deleting, or modifying user accounts. This class
enables you to create custom forms that provide similar functionality to that provided
by the standard ASP.NET logon controls.

■ Use the Roles class when you need to perform role management tasks from within your
code, such as adding users to roles, removing users from roles, creating new roles, or
examining to which roles a user belongs.

■ To control which users can access folders and files in a website, you can use either
NTFS file permissions or Web.config files.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Using ASP.NET Membership.” The questions are also available on the companion CD in a
practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. Which of the following controls provides a link for unauthenticated users to log on?

	 A. Login

	 B. LoginView

	 c. LoginStatus

	 D. LoginName

 Lesson 2: Using ASP.NET Membership ChAPTER 13 825

	 2. You are creating a web form that enables users to log on to your website. Which of the
following ASP.NET controls should you add to the page? (Choose two answers.)

	 A. Login

	 B. CreateUserWizard

	 c. LoginName

	 D. PasswordRecovery

	 3. You have created an ASP.NET web form that enables users to create accounts with a
CreateUserWizard control. After a new user creates an account, you want to redirect
the user to a page listing the rules for your website. To which of the following events
should you respond?

	 A. CreateUserWizard.Unload

	 B. CreateUserWizard.ContinueButtonClick

	 c. CreateUserWizard.CreatedUser

	 D. CreateUserWizard.Init

	 4. Which of the following Web.config segments correctly requires that all users be
authenticated by using a Windows user account?

	 A. <authentication mode="Windows" />

<authorization>

 <deny users="*" />

</authorization>

	 B. <authentication mode="Windows" />

<authorization>

 <allow users="*" />

</authorization>

	 c. <authentication mode="Windows" />

<authorization>

 <deny users="?" />

</authorization>

	 D. <authentication mode="Windows" />

<authorization>

 <allow users="?" />

</authorization>

	 5. Given the following Web.config file, what permissions do users have to the Marketing
folder?

<configuration>
 <system.web>
 <authentication mode="Windows" />
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>

 826	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

 <location path="Marketing">
 <system.web>
 <authorization>
 <allow roles="FABRIKAM\Marketing" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
</configuration>

	 A. Authenticated users and members of the FABRIKAM\Marketing group have
access. All other users are denied access.

	 B. Members of the FABRIKAM\Marketing group have access. All other users are
denied access.

	 c. All users, authenticated and unauthenticated, have access.

	 D. All users are denied access.

	 6. You are configuring NTFS file permissions for a website with the following
Web.config file:

<configuration>
 <system.web>
 <authentication mode="Windows" />
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>

 <location path="Marketing">
 <system.web>
 <authorization>
 <allow roles="FABRIKAM\Marketing" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
</configuration>

For the Marketing folder, you remove all file permissions, and then grant read access
to the FABRIKAM\John and FABRIKAM\Sam user accounts. John is a member of the
FABRIKAM\Domain Users and FABRIKAM\Marketing groups. Sam is only a member
of the FABRIKAM\Domain Users group. Which of the following users can access web
forms located in the Marketing folder?

	 A. Unauthenticated users

	 B. Authenticated users

	 c. Members of the FABRIKAM\Domain Users group

	 D. FABRIKAM\John

	 E. FABRIKAM\Sam

 Case Scenarios ChAPTER 13 827

Case scenarios

In the following case scenarios, you apply what you’ve learned about how to authenticate
users and control access by using authorization. If you have difficulty completing this work,
review the material in this chapter before beginning the next chapter. You can find answers
to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Configuring Website Authorization
You are a developer for Southridge Video, a business that creates instructional videos. The
business is deploying a new ASP.NET intranet application, and the administrators need some
help configuring the security. The website has several subfolders, and each subfolder is man-
aged by a different organization within Southridge. You meet with each of the managers and
review the technical requirements to determine how you should configure security for each
organization’s subfolder.

Interviews
Following is a list of company personnel interviewed and their statements:

■ Wendy Richardson, iT manager My web experts have created an ASP.NET intranet
application in the /Southridge/ virtual folder of our web server’s default website.
The application should be accessible only to users who have valid accounts in the
SOUTHRIDGE Active Directory domain. Several of the internal groups have their
own subfolders in the application, including IT. Check with each of the managers to
determine how he or she wants security configured. For the IT subfolder, I just want
members of the IT group in the SOUTHRIDGE domain to be able to access it.

■ Arif Rizaldy, systems Administrator Hey, I hear you’re configuring a new website.
Can you do me a favor and put all the configuration in a single Web.config file? I had
to troubleshoot a security problem the other day and spent hours trying to figure out
what it was because I forgot that there might be a Web.config file in any of the folders.
One Web.config file is just easier for me to manage.

■ Anders Riis, Production manager For now, I’d like our Production subfolder to be
accessible to members of the Production group. Oh, also, give Thomas access to it.
Thomas is the Sales Manager. I don’t know what his user account name is.

■ Catherine boeger, Customer service manager Anyone who is an employee should
be able to open the CustServ folder.

■ Thomas jensen, sales manager For now, only I should have access to the Sales folder.
I’ll probably change this later, but there’s confidential information in there now. My user
account is TJensen. Sometimes I have to enter it as Southridge-backslash-TJensen.

 828	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

Technical Requirements
Create a single Web.config file for the application that configures permissions for each of the
subfolders according to the requirements outlined in Table 13-1. Require Windows authenti-
cation for every file in the application.

TAbLE 13-1 Application Authorization Requirements for Southridge Video

FOLDER AUThORiZED UsERs

/Southridge/ All authenticated users

/Southridge/IT/ All members of the SOUTHRIDGE\IT group

/Southridge/Production/ All members of the SOUTHRIDGE\Production group plus
the SOUTHRIDGE\TJensen user account

/Southridge/CustServ/ All authenticated users

/Southridge/Sales/ Only the SOUTHRIDGE\TJensen user account

Questions
Configure security for Southridge Video, and then answer the following questions.

	 1. What does the Web.config file that you created look like?

	 2. Besides creating a Web.config file, how can you further protect the folders?

Case Scenario 2: Configuring Website Authentication
You are a developer for Northwind Traders. Your manager has asked you to create a simple
ASP.NET webpage to display the contents of a text file. The text files are generated by a legacy
system to report on various aspects of your company’s financial status, so they are protected by
using NTFS file permissions. The IT Manager, Nino Olivotto, describes the problem:

“The financial people want to be able to view these text reports from our intranet, so
it would be nice if you could create an ASP.NET web form to allow that. Here’s the catch,
though. I don’t want to change the permissions on the file so that just anyone can read it.
The web server doesn’t have the file permissions to access the files by default, and I don’t
want it to. Instead, I’d like to have the user provide Windows credentials, and have your
application use those credentials to show the file. Oh—and name the project ShowReport.
You can place it in the C:\Inetpub\Wwwroot\ShowReport\ folder.”

You review the company’s technical requirements before creating the ASP.NET website.

 Suggested Practices ChAPTER 13 829

Technical Requirements
Create an ASP.NET website in the C:\Inetpub\Wwwroot\ShowReport\ folder by using either
C# or Visual Basic .NET. Create several text files in the ShowReport folder, remove all default
NTFS permissions, and then add permissions so that only specific users can access the files.
Use impersonation to take advantage of the user’s Windows credentials to display the
contents of the files.

Questions
Create the ASP.NET website and then answer the following questions to explain to the IT
manager how you created the application and why you did what you did.

	 1. What authentication method did you use? Why?

	 2. What XML code did you add to the Web.config file?

suggested Practices

To successfully master the exam objectives presented in this chapter, complete the
following tasks.

Configure Authentication and Authorization
For this task, you should complete Practices 1, 2, and 3 to gain experience creating custom logon
pages. To gain experience configuring Web.config files for authentication, complete Practices 4
and 5. To gain experience working with Windows authentication, complete Practices 6 and 7.

■ Practice 1 Respond to the CreateUserWizard.CreatedUser event to automatically
send an email to the new user welcoming him or her to your website.

■ Practice 2 Create a custom web form that provides common user management
features, such as displaying a list of users, deleting users, and adding users to roles.
Though this duplicates the functionality of the WSAT, it will give you experience
working with important user management classes and methods.

■ Practice 3 Create an ASP.NET website and implement custom forms authentication.
For simplicity, store user names and passwords in a collection. Use the Web.config files
to restrict access to specific files and folders and verify that the authorization features
work properly. Extend the website to store user credentials in a database. Store the
passwords by using hashes so that they are less vulnerable to attack.

■ Practice 4 Using the website you created in Lesson 2, delete the Web.config files
in the Admin folder. Then use <location> elements in the root Web.config file to
configure identical access rules in a single file.

 830	 ChAPTER 13	 Implementing User Profiles, Authentication, and Authorization

■ Practice 5 Use a browser that supports cookies to go to an ASP.NET website that
you created that uses forms authentication. Then disable cookies in the browser and
attempt to go to the site. Change the cookieless attribute of the <forms> element to
AutoDetect and test the website again.

■ Practice 6 Create an ASP.NET website that uses Windows authentication. Then create
several different groups and user accounts on the web server. Write code that exam-
ines the user’s account and displays the user name and whether the user is a member
of built-in groups such as Users and Administrators.

■ Practice 7 Create an ASP.NET website that uses Windows authentication. Then create
several different groups and user accounts on the web server. Experiment with NTFS
file permissions and Web.config access rules to determine how ASP.NET behaves when
one or both denies access to a user.

Configure Profiles
For this task, you should complete at least Practices 1 and 2. If you want experience with the
raw data stored by user profiles, complete Practice 3 as well.

■ Practice 1 Using the ASP.NET website you created in the exercise for Lesson 2,
create a template to modify the colors and fonts used by the controls based on a
user selection.

■ Practice 2 Using a copy of a real-world application that you created, add personal-
ization capabilities for elements of the website that users might want to change.

■ Practice 3 Configure user profiles to store information in a custom SQL Server
database. Examine the data contained with the database tables.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you
can look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 ChAPTER 14 831

C h A P T E R 1 4

Creating Websites with
ASP.NET MVC 2
The Microsoft ASP.NET model-view-controller (MVC) represents an alternative architecture

to the standard ASP.NET web form model. This alternative is based on the common MVC
software design pattern that separates the layers of your website into user interface (view),
data and business logic (model), and input handling (controller). This separation through MVC
results in loosely coupled objects that are highly testable, can be developed independently
from one another, and offer granular control of your application code.

ASP.NET MVC 2 is not meant to replace web forms; it is simply an alternative you can
take advantage of based on your specific needs. In fact, you can combine both models in
a single website.

Lesson 1 provides an introduction to the MVC architecture. This includes a definition of
MVC and coverage of the execution life cycle of an ASP.NET MVC application and the project
structure of the ASP.NET MVC template. You create a simple ASP.NET MVC application at the
completion of this lesson. Lesson 2 digs more deeply into MVC. Here you see how to create
custom models, views, and controllers. The lesson also discusses MVC routing, application
areas, and other MVC topics.

Exam objectives in this chapter:
■	 Developing a Web Application by Using ASP.NET MVC 2

■ Structure an ASP.NET MVC application.
■ Create custom routes.
■ Create controllers and actions.
■ Create and customize views.

Lessons in this chapter:
■	 Lesson 1: Understanding ASP.NET MVC Applications 832
■	 Lesson 2: Creating Models, Views, and Controllers 847

 Contents

 ChAPTER 14 831

 Creating Websites with AsP.nET mvC 2 831
Before You Begin . 832

Lesson 1: Understanding ASP.NET MVC Applications 832

The ASP.NET MVC Architecture 833

The Structure of an ASP.NET MVC Application 837

Running Your First ASP.NET MVC Webpage 839

Lesson Summary 845

Lesson Review 846

Lesson 2: Creating Models, Views, and Controllers 847

Defining a Model and Business Rules 848

Creating Controllers 851

Creating Views 856

Customizing MVC Routing 867

Lesson Summary 875

Lesson Review 876

Case Scenarios . 878

Case Scenario: Creating an ASP.NET MVC Application 878

Suggested Practices . 878

Work with Controllers, Views, and Routing 879

Take a Practice Test . 879

 832	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

before you begin

To complete the lessons in this chapter, you should be familiar with developing applications
with Microsoft Visual Studio 2010 by using Microsoft Visual Basic or Microsoft Visual C#. In
addition, you should be comfortable with all of the following:

■ The Visual Studio 2010 Integrated Development Environment (IDE)

■ Using Hypertext Markup Language (HTML) and client-side scripting

■ Creating ASP.NET websites and forms

■ Adding web server controls to a webpage

■ Working with generic types in C# or Visual Basic

■ Using Microsoft ADO.NET, the Entity Framework, and LINQ to SQL to work with data

■ Writing Microsoft Language-Integrated Query (LINQ) queries and working with LINQ
data–specific providers

real World

Mike Snell

I see some real advantages to using ASP.NET MVC. It is great for teams that have
a high separation of tasks between UI, database, and web developers (or those

teams with similar aspirations). It also offers many benefits in terms of creating test-
driven code. The greater control of your output is also nice. However, developers
need to understand it, review the tradeoffs, and migrate only if they see real ad-
vantages. It is tempting to jump to ASP.NET MVC because it is new and gets a lot
of buzz. However, the web form model is tested and provides a much more Rapid
Application Development (RAD) experience for most web developers. ASP.NET MVC
typically involves a lot more code and requires a good understanding of pattern-
based development. My advice is to make sure you are comfortable with the model
before making such a switch.

Lesson 1: Understanding AsP.nET mvC Applications

If you are accustomed to building ASP.NET applications, you need to rethink that approach to
understand how an ASP.NET application running under MVC operates. The model that uses
postback and ViewState is nonexistent with ASP.NET MVC. Instead, MVC uses a routing engine
and a set of controllers that provide you with deeper control over your processing and output,
at the expense of some automation. There are, however, a few familiar items that are preserved
in ASP.NET MVC, such as master pages, style sheets, membership, and standard page markup.
But almost everything else is different, including the process of a page through its life cycle.
This lesson gets you started with using this very different web application architecture.

 Lesson 1: Understanding ASP.NET MVC Applications ChAPTER 14 833

After this lesson, you will be able to:
■	 Explain the architecture of an ASP.NET MVC website.
■	 Understand the execution life cycle of a request made to an ASP.NET MVC

website.
■	 Understand the project structure and conventions used by an ASP.NET MVC

website.
■	 Create a basic ASP.NET MVC website.

Estimated lesson time: 20 minutes

The ASP.NET MVC Architecture
An ASP.NET MVC application has a different architecture, page processing model, conventions,
and project structure than an ASP.NET web form site. Requests to an ASP.NET MVC application
are handled by the UrlRoutingModule HttpModule. (See Chapter 10, “Writing and Working with
HTTP Modules and Web Services,” for more information regarding HttpModules.) This module
parses the request and selects a route for that request based on a configuration that you define.
Ultimately, the request is routed to one of the many controller classes that you write to manage
request processing. It is the selected controller’s job to access your data and business logic (the
model), connect it for display (the view), and send the response back to the user. The controller
handles all requests—view and updates (posts).

This is considerably different than the basic architecture of an ASP.NET application, in
which requests are handled by ASP.NET: it calls your page; it executes your events in order;
those events affect the response; and ASP.NET ultimately returns the response. With ASP.NET
MVC, you write the model, create the views, and code the controllers; thus you have finer
control over how each request is handled and each response is rendered. With ASP.NET MVC,
there is less “hidden” from you (and thus less work done automatically for you).

Figure 14-1 shows the high-level architecture of the components you write to manage a
request with ASP.NET MVC. As you can see, requests are routed to controllers. The controller
works with the data model, selects a view (based on an action), and returns the results.

HTTP request

HTTP response

MyModel MyView

User

FigURE 14-1 The architecture of an ASP.NET MVC application.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 834	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

These components should be familiar to you as a web developer. A controller is a class; the
model is either made up of custom classes or generated classes that use the Entity Framework
or LINQ to SQL; and the views are ASPX webpages. The following list provides a more detailed
definition of these components:

■ model The model is the data and related business logic or validation rules in your
application. The model objects typically can retrieve, update, and add records to an
underlying data store such as a Microsoft SQL Server database. A model can be a LINQ
to SQL layer, an Entity Framework layer, or some other layer that provides access to
your data and the business rules.

■ view The view indicates how data from the model will be displayed. It is a set of
webpages and user controls that define layout for model data based on user actions
such as read, edit, and insert. For example, you might have a view that defines specific
layout information for a page that allows a user to edit a Customer object from your
model. View tasks do not include the input logic or the processing of user actions;
these are managed inside the controller. This separation is what makes the input
logic more test-ready for unit testing.

■ Controller This is code you write to handle the user interaction (often called input
logic) and the connection between the model and the view. A controller is a class that
inherits from System.Web.Mvc.Controller. It includes logic for processing user events or
actions. HTTP requests are routed to individual controllers; the controller responds to
the request by calling the model and selecting a view for displaying results.

The ASP.NET MVC Request Life Cycle
Much of the request processing that makes ASP.NET MVC work is found in the System.Web.
Routing namespace. This is because much of what happens with requests is done through
routing. The UrlRoutingModule HttpModule is found in this namespace; it acts as a front-
controller for your website. UrlRoutingModule takes a request and looks up a Route object
in the RouteTable collection. You add routes to this collection inside the Global.asax file’s
RegisterRoutes method (which is called by Application_Start). These routes are added to the
table when your application starts. The request is then mapped to a route, and RouteData
and RequestContext objects are created to represent the route and the request, respectively.

Processing of the RequestContext object is then passed to classes in the System.Web.Mvc
namespace. The MvcRouteHandler class handles the routing to your MVC controller class. It
creates an instance of MvcHandler to actually call the controller and run its Execute method.
The controller that the MvcHandler calls is a controller class that you write to handle the
processing of requests to your application. Of course, there are several examples later in
the chapter.

 Lesson 1: Understanding ASP.NET MVC Applications ChAPTER 14 835

Your controller then uses ControllerActionInvoker to determine which action to run based
on the request. Your action method accepts the user input and prepares a response (by using
your model and views). Figure 14-2 illustrates this life cycle.

HTTP request Internet Information Services (IIS)

1. Receive request, look up Route
object in RouteTable collection,
and create RouteData object.

2. Create RequestContext instance.

3. Create MvcHandler and pass
RequestContext to handler.

4. Identify IControllerFactory from
RequestContext.

5. Create instance of class that
implements ControllerBase.

6. Call MyController.Execute method.

7. The ControllerActionInvoker
determines which action to invoke
on the controller and executes the
action on the controller, which
results in calling the model and
returning a view.

HTTP response

User

If no route is found,
then pass request

to ASP.NET/IIS IIS request processing
ASP.NET request processing

FigURE 14-2 The execution life cycle of an ASP.NET MVC HTTP request.

exaM tIp

Be sure to know how the execution life cycle of ASP.NET MVC applications differs from that
of ASP.NET.

Understanding Routing Basics
As you can see, the routing engine routes requests to one of your controller classes. The URL
of the request determines the appropriate controller and action to invoke. As an example,
suppose that a request is made to http://myMvcApplication/Employees/Detail/5.

 836	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

In this case, the portion of the request beyond the domain (myMvcApplication) is parsed
by the routing engine based on routing rules defined in your Global.asax file. By default, the
routing rules would parse this request as controller/action/id. Therefore, the employees section
would map to an EmployeesController controller class (all controllers by convention include the
suffix Controller). The action would map to Detail in the URL, so the routing would invoke
the Detail method of the EmployeesController object. The value, 5, would be passed as
a parameter to the Detail method. The Detail method would then return an ActionResult
instance as a response. Your controller class would look similar to the following:

Sample of Visual Basic Code

Public Class EmployeesController
 Inherits System.Web.Mvc.Controller

 Function Details(ByVal id As Integer) As ActionResult
 Return View()
 End Function

End Class

Sample of C# Code

public class EmployeesController : Controller
{
 public ActionResult Details(int id)
 {
 return View();
 }
}

Note AsP.nET AnD AsP.nET mvC

Your website can respond to both ASP.NET and ASP.NET MVC requests. If no route is found
for a request, the request passes to ASP.NET for processing.

Controller Action Methods
Your controllers can define as many action methods as required. These methods typically
correspond to individual user actions such as saving data or navigating to another page. In
the previous code example, you can see that the controller action method (Details) returns
an instance of a class that inherits from System.Web.Mvc.ActionResult. This is the case for
most action methods. The most commonly used ActionResult is the ViewResult class, which
simply returns a webpage.

There is a predefined set of ActionResult objects that can be returned from an action
method (see Lesson 2 for a complete list). The base Controller class includes a helper method
for returning these results. For instance, to return a ViewResult, you can call View() from your
controller class (as shown in the code example). You will learn more about action methods
and using the ActionResult objects in Lesson 2.

 Lesson 1: Understanding ASP.NET MVC Applications ChAPTER 14 837

The Structure of an ASP.NET MVC Application
The ASP.NET MVC application template in Visual Studio is a project template, not a web-
site. This means that you create it by using the Add New Project dialog box. When you do
so, Visual Studio asks you to create a related Unit Test Project. Recall that one of the goals
for ASP.NET MVC is to increase the testability of your application. This unit test project
is created so that you can define tests for your controller classes. Therefore, it is recom-
mended that you create this testing project; in fact, Visual Studio will generate some basic
tests for the Account controller (which is used for ASP.NET membership) and the home
page controller.

The actual ASP.NET MVC application has a different structure than that of a traditional
ASP.NET website. Models, views, and controllers are grouped into a series of folders. In
addition, the project template uses different item templates for creating controller classes
and views. Figure 14-3 shows the general structure of an ASP.NET MVC project (along with
its related testing project).

FigURE 14-3 The structure of an ASP.NET MVC application.

 838	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Many of the files and folders are the same as those you would find in a standard ASP.NET
website (such as App_Data, Web.config, and Scripts). However, some of the other folders
are specific to ASP.NET MVC. The following describes these folders inside this project
template:

■ Content Use this folder for static files in your site, such as images. You can also place
style sheets and standard HTML files here.

■ Controllers This is where you put your controller classes. In general, each entity
in your model has a single controller. You might also define additional controllers
for other types of processing, such as LoginController, HomeController, and
NavigationController. Controller classes are named with the EntityController
convention.

■ models This is where you put code that represents your business model. In most
sites, this code interacts with the database and processes business rules. If your
model is an Entity Framework or LINQ to SQL model, you can put the DBML or
EDMX file and its related code here. Your model can also be a separate DLL file
or class library that is referenced by the project (in which case this folder would
be empty).

■ views This folder is where you put the views for your application (ASPX pages,
ASCX user controls, and master pages). The convention is to create a folder for
each controller in your application. Therefore, if you have a controller called
EmployeeController, you would have a folder called Employee in the Views folder.
The Employee folder would contain pages used for rendering different user activity
related to an Employee in your model. The routing engine uses this convention to
search for views.

The Views folder also contains a Shared folder. This is used for views that are shared
across controllers (such as a master page).

Defining Application Areas
You can use the default project structure for most websites without having any problems.
However, there are some sites that are very large; keeping all the models, views, and con-
trollers in this single folder set can be difficult to manage. For such cases, you can define
different MVC project areas in your application.

An area in ASP.NET MVC is a subset of the project structure based on a logical grouping.
Each area contains area-specific models, views, and controllers. The root of the site contains
the sitewide models, views, and controllers. This type of partitioning can make it easier to
manage your application files.

You create an area in ASP.NET MVC by right-clicking the project and choosing Add | Area.
You give each area a name and Visual Studio generates a separate set of folders for storing
the MVC files in your area. Figure 14-4 shows an ASP.NET MVC site with two additional areas:
DataAdministration and SecurityManagement.

 Lesson 1: Understanding ASP.NET MVC Applications ChAPTER 14 839

FigURE 14-4 The ASP.NET MVC project structure, including two additional areas.

You add models, views, and controllers to these individual areas in the same way you do to
the site root. One difference, however, is that items added to an area have a different namespace
distinction, which further assists with organizing your project structure. For example, adding
a controller to the DataAdministration project creates the MyApplicationName.Areas.Data-
Administration.Controllers namespace.

Each area also includes an AreaRegistration class file (see Figure 14-4). These files map
your area with the routing engine by using the AreaName/controller/action/id format.
The Application_Start method in the Global.asax file then includes the AreaRegistration.
RegisterAllAreas() call to ensure that the area mapping is carried out.

Running Your First ASP.NET MVC Webpage
Many applications actions do not require a model. Instead, you might need to write controller
methods to handle navigation or to simply display a view. In these cases, the model is optional.
In this section, you look at a simple example designed to familiarize you with the project model
and the ASP.NET MVC execution life cycle. Lesson 2 will cover more involved examples that
include models.

 840	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

When you first create an ASP.NET MVC application, Visual Studio generates a HomeController
class and a Home folder in the Views folder. The HomeController class has two action methods:
Index and About. These methods simply return a ViewResult instance. The Index method also
adds a message, System.Web.Mvc.ViewDataCollection, to the ViewData collection. These
methods look as follows.

Sample of Visual Basic Code

<HandleError()> _
Public Class HomeController
 Inherits System.Web.Mvc.Controller

 Function Index() As ActionResult
 ViewData("Message") = "Welcome to ASP.NET MVC!"

 Return View()
 End Function

 Function About() As ActionResult
 Return View()
 End Function
End Class

Sample of C# Code

[HandleError]
public class HomeController : Controller
{
 public ActionResult Index()
 {
 ViewData["Message"] = "Welcome to ASP.NET MVC!";
 return View();
 }
 public ActionResult About()
 {
 return View();
 }
}

The routing engine maps requests for the http://mySite/home/index URL to this controller.
There is also a special route (http://mySite) mapped for the home page to allow it to display
when the user requests the default page for your site.

The line of code, return View(), in the controller tells ASP.NET MVC to look in a folder with
the same name as the controller (Home) and to look for a view with the same name as the
action method (Index.aspx), and to return it as the response.

 Lesson 1: Understanding ASP.NET MVC Applications ChAPTER 14 841

The Views/Home/Index.aspx page is built from a master page and includes MainContent,
whose markup is shown below. Notice that ViewData is pulled from the dictionary and displayed
in the view; this is how you move data from the controller (and often the model) to the view.

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <h2><%: ViewData["Message"] %></h2>
 <p>
 To learn more about ASP.NET MVC visit <a href="http://asp.net/mvc"
 title="ASP.NET MVC Website">http://asp.net/mvc.
 </p>
</asp:Content>

Figure 14-5 shows the result of running this page. The request is routed to the HomeController
based on the URL. The action method, Index, is then called based on the URL and routing rules
(controller/action). The Index method adds data to the view by using the ViewData dictionary
collection. The method then returns a ViewResult object. The view is then found by looking in
the folder with the same name as the controller (Home) and returning a view with the same
name as the action method (Index.aspx). You will create a custom controller and view in the
practice for this lesson.

FigURE 14-5 The home page of an ASP.NET MVC application running in the browser.

 842	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Quick Check
	 1. What is the ASP.NET MVC convention for naming controller classes?

	 2. What is the ASP.NET MVC convention for storing views?

	 3. What is the ASP.NET MVC convention for naming views?

Quick Check Answers
	 1. You name your controller classes after entities in your model and add the

Controller suffix, as in EntityController.

	 2. A view should be stored in a folder with the same name as the controller (minus
the suffix), as in Entity.

	 3. A view should be named after the action method in the controller, such as
Index.aspx or Create.aspx.

PrActIcE	 Creating an AsP.nET mvC Web Application

In this practice, you create an ASP.NET MVC 2 web application, a custom controller, and a
custom view.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

ExErcIsE	1	 Creating the ASP.NET MVC Web Application

In this exercise, you create a new ASP.NET MVC 2 web application.

	 1. Open Visual Studio. Select File | New Project (not New Web Site). From the New Project
dialog box, select your preferred programming language and the web node from the
Installed Templates area (on the left side of the dialog box). Select the ASP.NET MVC 2
Web Application template. Name the project and solution mymvcsite.

	 2. When prompted to create a unit test project, click Yes. Use the default name,
mymvcsite.Tests, and click OK.

	 3. Open the Global.asax file and examine the Application_Start and RegisterRoutes
methods. Notice the default routing scheme.

{controller}/{action}/{id}

 Lesson 1: Understanding ASP.NET MVC Applications ChAPTER 14 843

	 4. Open the Controllers folder in Solution Explorer and double-click HomeController.
Notice the two action methods, Index and About, and their return types.

	 5. Navigate to the Views/Home folder in Solution Explorer and double-click Index.aspx.
Notice the use of the master page (which is stored in Views/Shared/Site.master). You
can also open the MyMvcSite.Tests project in Solution Explorer and examine the
Controllers folder to find the HomeControllerTest class. Notice that there are tests for
both Index and About. The Index test validates the result of the call to Controller.Index
and the related ViewData.

	 6. Run the tests. Right-click the test project and choose Set As StartUp Project. Notice that
all tests pass by default. You can also set breakpoints in the tests and step through the
controller code.

	 7. Run the website and view the results. If you ran the tests in the previous step, you will
have to right-click the MyMvcSite project and choose Set As Startup. Notice the URL.
Click the About and Home links.

ExErcIsE	2	 Creating a Controller and a View

In this exercise, you add a controller and a view to the ASP.NET MVC 2 application created in
the previous exercise.

	 1. Continue editing the project created in the previous exercise. Alternatively, you can
open the completed Lesson 1, Exercise 1 project in the samples installed from the CD.

	 2. Add the Northwnd.mdf database to the App_Data directory of your site. You can get
this database from the CD for this book.

	 3. Right-click the Models folder in Solution Explorer and select Add | New Item. Add a
LINQ to SQL Classes file. Name this file northwind.dbml.

	 4. Open Northwind.dbml and add the Customer table to the design surface from Server
Explorer. Save and close the file. You now have a basic model with which to work.

	 5. Open the Site.Master file (which is in the Views/Shared folder). Here you will notice two
ActionLink HTML helpers, one for Home and one for About. These form the rudimentary
menu you saw when you ran the application in the previous lesson. To the unordered
list (), add a new menu ActionLink called Customers. This will create a new menu
tab on the master page. The ActionLink is an ASP.NET MVC HTML helper method that
lets you define a hyperlink that will work with ASP.NET MVC. This method takes a display
name, the name of an action method to invoke when selected, and the route to your
controller. Your code should look as follows.

<%: Html.ActionLink("Customers", "Index", "Customer")%>

	 6. Right-click the Controllers folder and choose Add Controller. Name the controller
CustomerController.

 844	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

	 7. Open CustomerController. Add code to the Index action method to create an instance
of the data model (NorthwindDataContext). Next, return a View and pass the model as
a parameter. The following code shows an example.

Sample of Visual Basic Code

Function Index() As ActionResult
 Dim nwd As New NorthwindDataContext()
 Return View(nwd.Customers.ToList())
End Function

Sample of C# Code

public class CustomerController : Controller
{
 public ActionResult Index()
 {
 Models.NorthwindDataContext nwd = new Models.NorthwindDataContext();
 return View(nwd.Customers.ToList());
 }
}

	 8. Add the new folder, Customer, to your Views folder.

	 a. Right-click it and choose Add View.

	 b. In the Add View dialog box, set the view name to index.

	 c. Select the Create a strongly-typed view option. This will generate a view based
on part of your model.

	 d. In the View data class list, select MyMvcSite.Models.Customer. (If this list item
doesn’t appear, compile the application and try again.)

	 e. In View content, select List.

	 f. Make sure to select the master page, and click the Add button.

	 9. Examine the view that is created. In this case, the Customer table, as accessed via the
model, is queried and the results are displayed in a table. Note that the Edit, Delete,
Details, and Add New ActionLink items are added to the grid to allow users to interact
with the data. Delete them for now (and delete the related <th/> tag). You might also
want to trim some of the columns for display or edit the column names.

	 10. Run the application. Select the Customers tab in the navigation area. Figure 14-6
shows sample results.

 Lesson 1: Understanding ASP.NET MVC Applications ChAPTER 14 845

FigURE 14-6 The Customer Index view showing the related model data in a browser.

Lesson Summary
■ An ASP.NET MVC 2 application does not use the standard ASP.NET life cycle that includes

the postback model, ViewState, and most of the ASP.NET controls. Instead, it emphasizes
separation of tasks, testability, and fine control of output.

■ Requests to an ASP.NET MVC application are handled by the UrlRoutingModule. This
module creates a RequestContext and a Route object based on routing rules defined
in the Global.asax file. The request is then routed to a controller class that you write.

■ Your controller classes contain action methods that return ActionResult instances.
Each action method represents some user action, such as Index (view page), Edit, or
Insert. You add code in the action method to work with your model and return the
appropriate view.

■ Views are ASPX pages that you write to render the display of model data. By default,
a view is returned based on the matching of its name with a corresponding action
method; for example, Index matches Index.aspx.

 846	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Understanding ASP.NET MVC Applications.” The questions are also available on the companion
CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You need to define a page that allows a user to add a new product to the product
catalog. You are using ASP.NET MVC and the default structure and routing. Which
actions do you take? (Choose two.)

	 A. Add a class to the Controllers folder and name it Catalog. Add a method called
AddProduct to this class.

	 B. Add a class to the Controllers folder and name it ProductController. Add a method
called Add to this class.

	 c. Add a new folder to the Views folder and name it Product. Create a view inside this
new folder and name it Add.aspx.

	 D. Add a new folder to the Views folder and name it AddProduct. Create a view inside
this new folder and name it Catalog.aspx.

	 2. You have a very large website and you want to structure the files in this site logically so
that they are easier to manage. What actions should you take? (Choose all that apply.)

	 A. Create separate area folders inside the Models, Views, and Controllers folders.
Name these folders based on the logical grouping in your site folder.

	 B. Ensure that the RegisterAllAreas() method is defined in your Application_Start
method.

	 c. Create separate Controllers, Models, and Views folders within your area folders.

	 D. Create an Areas folder and add individual area folders based on the logical
grouping in your site.

	 3. You are writing an action method inside your controller. You want to pass string
data to the view and display that data inside the view. You are using the default
MVC templates. What actions should you take? (Choose all that apply.)

	 A. In your action method, add your string value to the ViewData collection.

	 B. In the view, reference the string value by using this inline code: <%: object %>.

	 c. Create a constructor for your view that takes a string value.

	 D. Reference the string value in the code-behind file for your view, and write it to
the page.

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 847

Lesson 2: Creating models, views, and Controllers

The first lesson oriented you to the ASP.NET MVC project structure and page execution model.
In this lesson, you build on what you learned in Lesson 1 and dig deeper into creating webpages
that are built on this pattern. Coverage includes defining the model through custom classes as
well as adding rules to generated models such as LINQ to SQL models. You will also look closely
at building views (and partial views) and using the HTML helper classes inside ASP.NET MVC. In
addition, you will look more closely at controllers and their action methods and related results.
The lesson concludes with a deeper look at the ASP.NET MVC routing engine.

After this lesson, you will be able to:
■	 Define a model that includes business rules to be processed by ASP.NET MVC.
■	 Create new views, strongly typed views, and partial views.
■	 Use the HTML helper classes to ease the rendering of code that you write in

views.
■	 Use the many ActionResult classes inside your controller.
■	 Customize the ASP.NET routing engine to meet specific development scenarios.

Estimated lesson time: 40 minutes

real World

Mike Snell

I have the opportunity to attend a lot of developer events such as local code camps,
user group meetings, and the occasional TechEd or PDC. Over the last couple of

years, all these events have really ramped up on the ASP.NET MVC talks. Developers
are excited about this technology and eager to learn. Microsoft, too, is committed.
In fact, at the time of this book’s publication, Microsoft has already released the
first preview of ASP.NET MVC 3. You can check it out at http://www.asp.net/mvc
or take a look at the roadmap for the technology at http://aspnet.codeplex.com
/wikipage?title=Road%20Map. You will want to be sure to keep up with this fast-
moving technology.

 848	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Defining a Model and Business Rules
The ASP.NET MVC model can be written in any form that makes sense to your application. There
are no constraints or requirements put on it by ASP.NET MVC. This means that you can create
custom classes, use generated code, work with a mix of classes, or use an existing model. Models
do, however, have many attributes in common: they work with data in a data store (such as SQL
Server); they contain business rules and validation that are executed when users insert, update,
and take action on elements within the model; and they provide features for selecting individual
items or lists of items and other actions. As an example, the Northwind model might include a
Customer object that allows you to get a customer, get a list of customers, add a new customer,
check a customer’s orders, and more.

Creating a Custom Model
You typically put the models for your application in the Models folder. However, you can also
put them in the App_Code directory or in another class library project altogether, especially if
you need to share the model with another application. As discussed, a model can be a custom
class file or partially generated and partially customized code.

The custom class approach typically involves creating a class for each entity in your model.
You then define properties for that entity and methods to work with that entity and the data
store. The following code shows an example of a custom model for the Customer entity. Note
that the methods are just stubbed out but would ultimately include code to work with the data
store. In addition, business logic would be added as either code or annotations (more on this in
the next section).

Sample of Visual Basic Code

Public Class CustomerModel

 Public Property Id As Integer
 Public Property Name As String
 Public Property Address As String
 Public Property City As String
 Public Property State As String
 Public Property PostalCode As String
 Public Property Phone As String

 Public Shared Function Insert(_
 ByVal customer As Customer) As Integer

 End Function

 Public Shared Sub Delete(ByVal id As Integer)

 End Sub

 Public Shared Sub Update(ByVal customer As Customer)

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 849

 End Sub

 Public Shared Function GetAllCustomers() _
 As List(Of Customer)

 End Function

 Public Shared Function GetCustomer(ByVal id As Integer) _
 As Customer

 End Function

End Class

Sample of C# Code

public class CustomerModel
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string PostalCode { get; set; }
 public string Phone { get; set; }

 public static int Insert(Customer customer)
 {
 }
 public static void Delete(int id)
 {
 }
 public static void Update(Customer customer)
 {
 }
 public static List<Customer> GetAllCustomers()
 {
 }
 public static Customer GetCustomer(int id)
 {
 }
}

Creating a Partially Generated Model
Recall that in Lesson 3, “Working with ASP.NET Dynamic Data” in Chapter 12, “Working with
Data Source Controls and Data-Bound Controls,” you read about creating a data context by
using LINQ to SQL or the Entity Framework. You then used the partial class and partial method
concepts to provide additional metadata and validation logic to your generated model. The
ASP.NET MVC framework can work in a similar way. You can generate your model and then
create a simple class that can be used to provide metadata to that model.

 850	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

For example, assume that you create an Entity Framework model (EDMX) for the Northwind
database. You then create a partial class for adding metadata to the Customer class that gets
generated by the model. This partial class would include the MetadataType attribute from
DataAnnotations, which would point to your metadata class, as shown in the following code.

Sample of Visual Basic Code

Imports System.ComponentModel.DataAnnotations

<MetadataType(GetType(CustomerMetadata))> _
Partial Public Class Customer

End Class

Public Class CustomerMetadata
 Public Property CustomerId As Object
 Public Property CompanyName As Object
 Public Property Address As Object
 Public Property City As Object
 Public Property PostalCode As Object
 Public Property Country As Object
 Public Property Phone As Object
End Class

Sample of C# Code

using System.ComponentModel.DataAnnotations;

[MetadataType(typeof(CustomerMetadata))]
public partial class Customer
{
}

public class CustomerMetadata
{
 public object CustomerId { get; set; }
 public object CompanyName { get; set; }
 public object Address { get; set; }
 public object City { get; set; }
 public object PostalCode { get; set; }
 public object Country { get; set; }
 public object Phone { get; set; }
}

You can use this partial class and its metadata counterpart to extend your model by adding
validation logic, UI display hints, and formatting.

Model Validation Rules
One of the easiest ways to add validation and business rules to your model is to use the
DataAnnotations classes. Recall from Chapter 12 that these classes allow you to define
required fields, acceptable values, formatting, and UI display information to your model.
For example, the following attribute marks the CustomerId property as required in the
data model.

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 851

Sample of Visual Basic Code

<Required(ErrorMessage:="Customer id is required.")> _
Public Property CustomerId As Object

Sample of C# Code

[Required(ErrorMessage = "Customer id is required.")]
public object CustomerId { get; set; }

Note Using DATAAnnOTATiOns

The DataAnnotations attribute classes are discussed at length in Chapter 12, Lesson 3.
Refer to Table 12-1 in that chapter for a quick refresher.

The rules you define for your model will automatically be processed by the ASP.NET MVC
validation engine. Prior to executing a method such as Update or Insert, you should check your
controller class’s Model.IsValid property to determine whether your model has thrown any
validation errors (you will look at verifying that model data is valid in the upcoming section,
“Creating Controllers”). If it has, you then might redisplay the view and use a ValidationSummary
control (see “Using the HTML Helper Classes,” later in this lesson) to display any error messages.

Of course, you can take advantage of these attribute classes in both your custom models
and your partially generated ones. You can also use the ValidationException object to throw
an exception that will be caught by ASP.NET MVC as part of the model validation. Recall there
is also an example of doing this back in Chapter 12, Lesson 3.

Creating Controllers
Recall from Lesson 1 that you create controllers for each item in your model by using the
EntityController naming convention, as in CustomerController. Controllers are stored in the
Controllers folder. Each controller inherits from the Controller base class (which itself inherits
from ControllerBase).

Each controller has a set of action methods that are based on user activity, such as add-
ing, updating, inserting, viewing, or deleting one or more entity objects; clicking a link; or
submitting a form. There is typically a 1:1 mapping from user action to action method.
Action methods are often passed values from the request (as parameters in either the URL
or HTTP post). The action methods typically work with the model by instantiating it and
calling appropriate methods. Action methods are also responsible for handling errors and
validation that occurs within the model. Action methods return a selected ActionResult
(typically a view) as a result of the request. The result might pass data to the view from the
model. Finally, a WebFormViewEngine class is used to render the results to the user.

 852	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

The Controller Template
Visual Studio includes a template that is used for creating controllers. If you right-click the
Controllers folder, you will see the Add | Controller option. This brings up the Add Controller dia-
log box, as shown in Figure 14-7. This template allows you to name your controller and generate
method stubs for common scenarios such as create, read, update, and delete (CRUD) activities.

FigURE 14-7 The Add Controller dialog box for the controller item template in Visual Studio.

By default, this controller template generates code with the following methods (note that
you can change these method names as you see fit): Index, Details, Create, Edit, and Delete.
Each of these methods is intended to be used as the method name describes. (Index is used
to view a single item.)

As an example, suppose that you are using an Entity Framework model tied to the Northwind
database. You might opt to define a CustomerController class. This class could include a Details
method that is designed to get a customer from the model based on the customer’s ID. You
would then display those details by using the default details view (Details.aspx), passing the
Customer instance as a parameter to the view. The following code is an example.

Sample of Visual Basic Code

Function Details(ByVal id As String) As ActionResult

 Dim nw As New northwndEntities()
 Dim custQuery = From c In nw.Customers
 Where c.CustomerID = id
 Select c

 Dim cust As Customer = custQuery.FirstOrDefault()

 Return View(cust)

End Function

Sample of C# Code

public ActionResult Details(string id)
{
 northwndEntities nw = new northwndEntities();
 var custQuery = from c in nw.Customers
 where c.CustomerID == id
 select c;
 Customer cust = custQuery.FirstOrDefault();
 return View(cust);
}

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 853

This action method would then be called based on the URL routing. By default, a call to
http://mySite/customer/details/ALFKI would invoke the CustomerController.Details method
and pass the customer ID (ALFKI) as a parameter. The view would then be returned as the
Detail.aspx page inside the Views/Customer folder. The view would then use the Customer
object sent to it to display information (as you will see in the “Creating Views” section later
in this lesson).

Returning Different ActionResult Objects
The return type for most action methods is ActionResult. The ActionResult class is actually a
base class that can be used to define several different result types. Each result type does some-
thing different as a result of your action method. Possible types include a ViewResult to show a
webpage and a RedirectResult to redirect to another controller.

Each action result class has an associated helper method that is exposed by the Controller
class. You can use these helper methods in your controller to indicate the appropriate
ActionResult, as in using View to indicate ViewResult. These action result classes and their
helper methods (in parentheses) are listed here:

■ viewResult (view) Used to return a webpage from an action method.

■ PartialviewResult (Partialview) Used to send a section of a view to be rendered
inside another view.

■ RedirectResult (Redirect) Used to redirect to another controller and action method
based on a URL.

■ RedirectToRouteResult (RedirectToAction, RedirectToRoute) Used to redirect to
another action method.

■ ContentResult (Content) Used to return a custom content type as the result of the
action method. This is an HTTP content type, such as text/plain.

■ jsonResult (json) Used to return a message formatted as JSON.

■ javascriptResult (javascript) Used to return JavaScript code that will be executed
in the user’s browser.

■ FileResult (File) Used to send binary output as the response.

■ EmptyResult Used to return nothing (void) as the result.

You can also return simple types, such as string or integer, from your action methods. In this
case, the results will be wrapped in an ActionResult object for you. Finally, you can indicate that
a method inside your controller does not return an ActionResult. To do so, you mark it with the
NoAction attribute to indicate that it is not an action method.

 854	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Passing Data to Action Methods
Data is passed to action methods from a request as a series of name-value pairs. These
name-value pairs include form data, query string values, and cookie contents. ASP.NET MVC
will try to automatically map data values sent in the request to action method parameters
by name. For example, suppose that a request is routed to the Customer controller’s
Search action method and that this method takes the customerName and companyName
parameters. Suppose that the request is formatted ashttp://mySite/customer/search
/?customerName=test&companyName=test.

This request would automatically map to the Customer.Search(customerName, companyName)
action method. Because of this behavior, you do not have to write code to pull the parameter
values out of the request.

Of course, you can also rely on routing to map common parameter values such as ID. Recall
from Lesson 1 that the default routing is set to controller/action/id. Therefore, requests that look
like http://mySite/customer/details/5 will automatically map to the Customer.Details(id) method
and parameter.

HTTP POST PARAMETERS
You can also call an action method as part of an HTTP post. To do so, you mark the action
method with the HttpPost attribute. This indicates that the action method should be called
when the page is sent as a post (typically in response to a submit button action).

In this case, you define a parameter to your action method by using the FormCollection name-
value collection. ASP.NET MVC will then map the posted form data to this collection. You reference
each form element by name within the collection. The following code shows an example.

Sample of Visual Basic Code

<HttpPost> _
Function Create(ByVal collection As FormCollection) As ActionResult
 Try
 Dim cust As New Customer()
 cust.CompanyName = collection("CompanyName").ToString()
 ' ... map remaining customer properties

 Dim nw As New northwndEntities()
 nw.AddToCustomers(cust)
 nw.SaveChanges()

 Return RedirectToAction("Index")
 Catch
 Return View()
 End Try
End Function

Sample of C# Code

[HttpPost]
public ActionResult Create(FormCollection collection)
{

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 855

 try
 {
 Customer cust = new Customer();
 cust.CompanyName = collection["CompanyName"].ToString();
 // ... map remaining customer properties

 northwndEntities nw = new northwndEntities();
 nw.AddToCustomers(cust);
 nw.SaveChanges();

 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

REQUEST AND RESPONSE DATA
You can also get at additional data in the request (HTTP get) or response (HTTP post). If, for
instance, your data is not passed or mapped to a parameter, you can use the Controller class’s
Request and Response properties. These properties follow the HttpRequest and HttpResponse
semantics you are familiar with in ASP.NET. Therefore, to get a query string value in your action
method, you can call Request.QueryString("name"). To add to the response, you can call
Response.Write("Hello World").

Passing Data to Views
There are two principal means for passing data from a controller class to a view: a
ViewDataDictionary and a strongly typed view. The System.Web.Mvc.ViewDataDictionary
is a collection of objects that are referenced by string keys. Both the Controller base class
and the ViewPage base class (used for views) implement a property named ViewData, which
is of type ViewDataDictionary. In this scenario, you add items to the ViewData property inside
your controller. These items are then passed to the ViewData property of the selected view.

You can add any type of object, including a list, to ViewData. For example, the following code
adds a list of countries or regions to the ViewData collection from within a controller. Notice that
this list is converted to a System.Web.Mvc.SelectList. This class makes it easier to display a single-
select list by using the HTML helper classes (more on these classes later in this lesson).

Sample of Visual Basic Code

Dim countries As New List(Of String)
countries.Add("USA")
countries.Add("Canada")
countries.Add("India")
countries.Add("China")
countries.Add("Mexico")
ViewData("countries") = New SelectList(countries)

 856	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Sample of C# Code

List<string> countries = new List<string>();
countries.Add("USA");
countries.Add("Canada");
countries.Add("India");
countries.Add("China");
countries.Add("Mexico");
ViewData["countries"] = new SelectList(countries);

The ViewData can then be referenced inside a view. The following markup shows a page that
uses the HTML helper object to create a drop-down list control from the list data in the view:

Sample of Visual Basic Code

<%: Html.DropDownList("countries", CType(ViewData("countries"), SelectList))%>

Sample of C# Code

<%: Html.DropDownList("countries", (SelectList)ViewData["countries"])%>

You can also pass data to views that are strongly typed. In this case, you pass the type from
the controller to the view as a parameter, as in Return View(cust). You will see an example of this
in the upcoming section, “Creating Strongly Typed Views.”

Using Action Filters
The ASP.NET MVC framework allows you to run code both before an action method is called or
after it has run. You do so by using action filters. Action filters are applied by using attributes to
action methods. Action filters allow you to define pre-execution and post-execution actions
to your action methods.

Action filters are attribute classes that implement the FilterAttribute base class. You can
create your own custom action filters. You apply these attribute classes to your action methods.
ASP.NET MVC also includes several predefined action filters, including Authorize, OutputCache,
and HandleError. The Authorize filter allows you to check security before executing an action
method. OutputCache allows you to cache the results of an action method. The HandleError
action filter allows you to wrap an action method to an error view page (by default this page is
Views/Shared/Error.aspx).

Creating Views
You create views to render the user interface. Views are stored in the Views folder; you create
a subfolder in the Views folder for each controller. You then add views to this folder based on
your core action method names, such as Edit, Index, Create, Details, and similar names. Recall
that, by default, ASP.NET MVC will render the view that matches the executed controller action
method. You can also pass a specific view name to the View function in the controller, as in
Return View("SomeView").

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 857

All processing of input logic should be done by the controller. All data storage and manip-
ulation is handled by the model. Therefore, views do not require, and therefore typically do
not have, code-behind classes. Instead, they use inline code inside the markup to reference
data sent to them for display. User actions are then passed to the controller for processing.

Standard views (pages with the .aspx extension) inherit from the System.Web.Mvc.ViewPage
class, which is based on the ASP.NET Page class. You can also have master pages (pages with
the .master extension) in ASP.NET MVC; these inherit from ViewMasterPage. User controls
(those with the .ascx extension) are also supported; they are called partial views and inherit
from ViewUserControl.

You can create a view by using the Visual Studio View item template. You do so by right-
clicking a folder in the Views directory and choosing Add | View. This brings up the Add View
dialog box. Here you set the view name and can choose to select a master page.

A view page uses the @ Page directive; this works like the standard @ Page directive in
ASP.NET pages. You can use it to set a page title, language, master file, and inheritance. The
following markup shows an example.

Sample of Visual Basic Code

<%@ Page Title="Customer Details" Language="VB"
 MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %>

Sample of C# Code

<%@ Page Title="Customer Details" Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<dynamic>" %>

The markup inside your view is similar to that of standard ASP.NET pages. If you are using
a master page, you put your content inside ContentPlaceholder controls. You then use inline
syntax to call code within your markup. For example, the following markup writes the customer
name from the ViewData property to the page output.

Sample of Visual Basic Code

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <h2>Customer Details</h2>
 <%: ViewData("CustomerName")%>
</asp:Content>

Sample of C# Code

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <h2>Customer Details</h2>
 <%: ViewData["CustomerName"]%>
</asp:Content>

 858	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Using the HTML Helper Classes
The ASP.NET MVC framework provides the System.Web.Mvc.HtmlHelper class to make gen-
erating repetitive and sometimes tricky HTML easier. This includes a set of form helpers for
creating user input items such as drop-down lists, text boxes, buttons, validation summaries,
and more; a set of URL helpers for creating route-driven URLs; and helpers for encoding, for-
matting, and rendering HTML strings. You can also create your own custom HTML helpers.

You saw an example of an HtmlHelper action method in the previous section’s code. In that
case, a call was made inside the view to Html.DropDownList. This call populated a <select> input
element from a collection. Without the HTML helper, you would have to write the markup for
the select HTML and define a loop for adding each element to the option list. The helper simply
generates this markup for you and gives the element the name you specify as a parameter to
the method call.

An HtmlHelper instance is exposed through the ViewPage.Html property. This instance
contains many action methods, each of which includes many overloads. You use these
methods strictly to ease the creation of your MVC views. Table 14-1 lists many common
helper methods and their usage.

TAbLE 14-1 Some HtmlHelper Class Methods

hELPER mEThOD DEsCRiPTiOn

ActionLink Used to create an anchor tag inside the webpage.

BeginForm Used to write out the form tag for the page.

CheckBox Used to create a check box input element.

DropDownList Used to create a select list based on a set of values.

Editor Used to create an input text box or multiline text box (depending
on the data type and the UIHint attribute).

Hidden Used to create a hidden input element.

Label Used to create an HTML label.

ListBox Used to create a multiselect select element.

Password Used to create a password input element.

RadioButton Used to create a radio button input element.

RenderAction Used to call an action method of a child controller. The action
method will then return the appropriate view to be rendered
from within the parent.

RenderPartial Used to render a partial view (user control) from the parent. You
pass the view name and an HtmlHelper to this method to indicate
how to render the child view.

RouteLink Used to create an anchor tag based on a route to an action.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 859

hELPER mEThOD DEsCRiPTiOn

TextArea Used to create a <textarea> element.

TextBox Used to create a text input element.

Validate Used to apply rules to data fields.

ValidationMessage Used to display validation messages for individual fields.

ValidationSummary Used to display a list of all validation rules in the
ModelStateDictionary.

Creating Strongly Typed Views
A strongly typed view is one that expects a certain object to be passed to it from the model
as a parameter rather than as general information stored in ViewData, the data for which is
based on simple name-value pairs. Recall that a view page inherits from the ViewPage class,
as shown in the following @ Page attribute markup:

Sample of Visual Basic Code

... Inherits="System.Web.Mvc.ViewPage"

Sample of C# Code

... Inherits="System.Web.Mvc.ViewPage<dynamic>"

This class also supports a generic version, to which you can pass a strong type. This allows
you to strongly type the ViewPage, indicating that the page works with a class defined in your
model. The following markup shows an example.

Sample of Visual Basic Code

... Inherits="System.Web.Mvc.ViewPage(Of Customer)"

Sample of C# Code

... Inherits="System.Web.Mvc.ViewPage<Customer>"

This strong type is then mapped to the Model property of the page. You can use this Model
property inside your view code to reference the type, as in the code shown next. This code
writes out the Customer.CustomerID from the instance passed to the page.

<div class="display-field"><%: Model.CustomerID%></div>

Visual Studio provides support for helping you generate strongly typed views. In the Add
View dialog box, you have the option to create a strongly typed view. Selecting this option
allows you to indicate both a view data class and a primary view content control, such as a list
or grid. The view data class is a class from your model (such as Customer). The view content
indicates a page type that should be generated, such as Create, Delete, Details, Edit, List,
or Empty. Figure 14-8 shows an example of creating a Details content page based on the
Customer class.

 860	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

FigURE 14-8 The Add View dialog box allows you to define a strongly typed view.

Markup and inline code is then generated based on the selected type and content. For
example, if you select List in the view content drop-down, Visual Studio will create a view that
receives an IEnumerable list of Customer objects as the type. This view will then include an
HTML table for displaying the list, to include a For…Each loop for writing out each row in the
table. You will see an example of this in the practice at the end of this lesson.

Using Data Scaffolding and Model Validation in Views
You saw in the defining models section of this lesson how you can use the DataAnnotations
scaffolding to provide metadata about your model, indicating required fields, range valida-
tion, regular expression validation, and more. This scaffolding will impact how your strongly
typed views are generated, validated, and processed by the controller.

As an example, suppose you have created a model based on the Northwind database by
using the Entity Framework. That model might include a Customer object. You could use the
scaffolding features to add validation attributes to your model. The following code shows
an example of doing so. In this example, the Required, StringLength, and RegularExpression
attributes are used.

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 861

Sample of Visual Basic Code

<MetadataType(GetType(CustomerMetadata))> _
Partial Public Class Customer
End Class

Public Class CustomerMetadata

 <Required(ErrorMessage:="Customer id is required.")> _
 Public Property CustomerID As Object

 <Required(ErrorMessage:="Company name is required.")> _
 Public Property CompanyName As Object

 <StringLength(125, ErrorMessage:="City must be 125 characters or less")> _
 <Required(ErrorMessage:="City name is required.")> _
 Public Property City As Object

 <RegularExpression("((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}", _
 ErrorMessage:="Phone number should be in the format, 123-123-1234.")> _
 Public Property Phone As Object

End Class

Sample of C# Code

[MetadataType(typeof(CustomerMetadata))]
public partial class Customer
{
}

public class CustomerMetadata
{
 [Required(ErrorMessage = "Customer id is required.")]
 public object CustomerID { get; set; }

 [Required(ErrorMessage = "Company name is required.")]
 public object CompanyName { get; set; }

 [StringLength(125, ErrorMessage = "City must be 125 characters or less")]
 [Required(ErrorMessage = "City name is required.")]
 public object City { get; set; }

 [RegularExpression(@"((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}",
 ErrorMessage = "Phone number should be in the format, 123-123-1234.")]
 public object Phone { get; set; }

}

 862	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

This metadata can be used by your controller to handle business rule processing. These rules
can then be displayed inside the view as both validation summary and individual, field-level
validation messages.

As an example, consider the Customer class defined previously. Assume that you are
creating a strongly typed view based on the Edit option in the view content drop-down.
This will generate a view that inherits from ViewPage<Customer>. This view will use the
Html.ValidationSummary and Html.ValidationMessageFor helper classes, as shown here.

Sample of Visual Basic Code

<% Using Html.BeginForm() %>
 <%: Html.ValidationSummary(True) %>
 <fieldset>
 <legend>Fields</legend>

 <div class="editor-label">
 <%: Html.LabelFor(Function(model) model.CustomerID) %>
 </div>
 <div class="editor-field">
 <%: Html.TextBoxFor(Function(model) model.CustomerID) %>
 <%: Html.ValidationMessageFor(Function(model) model.CustomerID) %>
 </div>
...

Sample of C# Code

<% using (Html.BeginForm()) {%>
 <%: Html.ValidationSummary(true) %>

 <fieldset>
 <legend>Fields</legend>

 <div class="editor-label">
 <%: Html.LabelFor(model => model.CustomerID) %>
 </div>
 <div class="editor-field">
 <%: Html.TextBoxFor(model => model.CustomerID) %>
 <%: Html.ValidationMessageFor(model => model.CustomerID) %>
 </div>
...

When a user submits this form, the Edit action method is called in the controller. Note
that the typical view would contain two Edit action methods: one for get and one for post.
The get version of the method takes an ID parameter, looks up the entity object in the
model, and selects the Edit.aspx view page, to which it provides the entity object instance
(such as a Customer object). The following code shows an example.

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 863

Sample of Visual Basic Code

Function Edit(ByVal id As String) As ActionResult

 Dim nw As New northwndEntities()
 Dim custQuery = From c In nw.Customers
 Where c.CustomerID = id
 Select c

 Dim cust As Customer = custQuery.FirstOrDefault()

 Return View(cust)

End Function

Sample of C# Code

public ActionResult Edit(string id)
{
 Models.northwndEntities nw = new Models.northwndEntities();
 var custQuery = from c in nw.Customers
 where c.CustomerID == id
 select c;
 Models.Customer cust = custQuery.FirstOrDefault();
 return View(cust);
}

The post version of the method is called when the user submits the result of his or her
edits. This method can take a FormCollection object or a strong type if strongly typed
views are being used. In the case of the latter, the view data is automatically provided as a
parameter (ASP.NET MVC will convert the data into the strongly typed value as required).
Any rules that are not valid can then be checked by calling ModelState.IsValid. If this call
returns false, you typically redisplay the view. Any field-level validation messages will then
be rendered to the screen. If data validation succeeds, the user will be directed to the index
(main) page. The following code shows an example of the post version of the Customer.Edit
method inside the controller class.

Sample of Visual Basic Code

<HttpPost()> _
Function Edit(ByVal id As String, _
 ByVal c As Customer) As ActionResult

 If ModelState.IsValid = False Then
 Return View("Edit", c)
 Else
 'add code to update the model

 Return RedirectToAction("Index")
 End If

End Function

 864	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Sample of C# Code

[HttpPost]
public ActionResult Edit(string id, Models.Customer c)
{
 if (ModelState.IsValid == false)
 {
 return View("Edit", c);
 }
 else
 {
 //add code to update the model
 return RedirectToAction("Index");
 }
}

When a user posts his or her changes to the server, this Edit method is called. If the form is
not valid, the editing page is returned. Any validation errors are then shown on the form, as
shown in Figure 14-9.

FigURE 14-9 You can use DataAnnotation classes to validate your model and pass that validation down
to the controller and view.

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 865

Creating Partial (Child) Views
There are times when you need to break up your view into smaller parts. For example, you
might have a page that presents a dashboard of both sales order data and inventory data.
In this case, you would have a parent view for the dashboard; the parent view would bring
together the two child views (order and inventory).

A child (partial) view in ASP.NET MVC is a user control (ASCX file). These user controls are
considered to be views (albeit partial). Therefore, each can be accessed by a controller.

For example, suppose you have a Dashboard folder inside the Views folder. This folder
would contain an Index.aspx page for the main view. It would also contain both the
OrdersSummary.ascx and InventorySummary.ascx partial views. Figure 14-10 shows an
example from Solution Explorer.

FigURE 14-10 You can place both view pages and view user controls (partial views) inside a view folder.

Note that you can create partial views either by selecting the MVC 2 View User Control
template from the Add New Item dialog box or by selecting Create A Partial View in the Add
View dialog box.

Next, you would create a DashboardController class for rendering the views. This class would
contain action methods called Index, OrdersSummary, and InventorySummary. Each of these
methods would return a view as ActionResult. The following code shows an example.

Sample of Visual Basic Code

Public Class DashboardController
 Inherits System.Web.Mvc.Controller

 Function Index() As ActionResult
 Return View()
 End Function

 Function OrdersSummary() As ActionResult
 Return View()
 End Function

 Function InventorySummary() As ActionResult
 Return View()
 End Function

End Class

 866	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Sample of C# Code

public class DashboardController : Controller
{

 public ActionResult Index()
 {
 return View();
 }

 public ActionResult OrdersSummary()
 {
 return View();
 }

 public ActionResult InventorySummary()
 {
 return View();
 }

}

Users would request the Index page (as in http://mySite/dashboard/index). You then render
the parent view (Index.aspx); it is up to the parent view to know how to render its children by
using HTML helper methods.

The HTML helper methods you would use include Action and RenderAction. The Html.Action
method returns a child view as a string. You can then determine how to render the string output
inside your view. The Html.RenderAction method renders the child view inline inside the parent. If
you use these methods to simply write out the results on a page, they are functionally equivalent.
The following markup shows the Index.aspx page rendering its child views.

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Index</h2>

 <%= Html.Action("OrdersSummary")%>
 <%= Html.Action("InventorySummary")%>

</asp:Content>

When the page is requested, a call is made to DashboardController.Index. The Index
view then calls out to DashboardController.OrdersSummary and DashboardController.
InventorySummary. Both of these methods return a partial view (user control) that is
rendered to the page.

Note that partial views have access to the ViewData from their parent. Therefore, in the
example, you could add to the ViewData inside the Index method. This data could be used
by either user control. However, the instance of ViewData provided to the partial view is a
copy of that data. Any changes made to this copy belong to the partial view only.

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 867

Customizing MVC Routing
You saw previously that routes are registered in the Global.asax file by following the controller
/action/id pattern. The ASP.NET MVC framework maps this routing pattern to your controllers and
their action methods. For the most part, you should not have to modify this routing setup in your
ASP.NET MVC application. However, it is important to know more about routing in ASP.NET, in
case you do need to make customizations.

Route Segments and Placeholders
Recall that requests to ASP.NET MVC applications are handled by the UrlRoutingModule HTTP
module. These requests are passed to the MvcRouteHandler to determine the controller and
action method to call. This is determined by parsing the URL pattern in the request.

A URL pattern is a defined set of segments delimited by a slash (/), as in Customer/Index/5.
In this case, there are three segments in the URL pattern. When the request is received, the
URL is broken into segments and placeholders. These segments are stored as key-value pairs,
in which the key is the placeholder defined in the routing definition and the value is the value
from the URL. In ASP.NET MVC, these placeholder keys are defined as {controller}/{action}/{id}.
This routing is established by calling routes.MapRoute in the Global.asax file. Routes is a
RouteCollection instance. The values (such as Customer/Index/5) are then mapped accord-
ingly to these keys when passed in the request.

You can define a placeholder by putting it in braces, as in {route}. You can also define mul-
tiple placeholders in a segment by using a literal delimiter, as in {language}-{country}/{route}.
In this case, there are two segments (separated by the slash), and the first segment has two
placeholders that would act as keys in the route collection.

Setting Default Route Parameters
These route placeholders are also referred to as route parameters. They are used to pass named
parameters (named with the key) to the routing engine. You can also set default values for your
route parameters. These defaults are used if a parameter is omitted from the URL.

You define a default route parameter by using a RouteValueDictionary object. By using
this object, you can pass route parameter names and default values. In fact, the default
routing setup uses default parameter values. The following code shows an example. Notice
that the {controller}, {action}, and {id} are all mapped to default values. In this case, if you
omit all segments of the URL, users will be routed to Home/Index by default. In addition,
the {id} parameter is set to optional for all routes.

Sample of Visual Basic Code

routes.MapRoute("Default", _
 "{controller}/{action}/{id}", _
 New With {.controller = "Home", .action = "Index", .id = UrlParameter.Optional})

Sample of C# Code

routes.MapRoute("Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional });

 868	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Note ROUTE ORDER

You can add more than one route definition to the routing table. The routing engine will
evaluate each route in order until it finds a match.

Defining Route Constraints
You can also specify that a particular route segment’s value must match a constraint that you
define. This might be the length of the segment, a date range, or any string data validation
that you can define. If a URL does not meet the constraint, the route is not used to process
the request.

You define route constraints with regular expressions or by using objects that implement
the IRouteConstraint interface. You then add each constraint to a RouteValueDictionary
object and pass that to routes.MapRoute().

As an example, suppose you want to add a route definition that searches for the month/year
numeric pattern in the URL (as in 12/2012). You could do as shown in the following code. This
code creates default values for month and year based on the current month and year. It then
sets a route constraint for each segment by using regular expressions.

Sample of Visual Basic Code

routes.MapRoute("MonthYear", _
 "{month}/{year}", _
 New RouteValueDictionary(New With {.month = DateTime.Now.Month,
 .year = DateTime.Now.Year}), _
 New RouteValueDictionary(New With {.month = "\d{2}", .year = "\d{4}"}))

Sample of C# Code

routes.MapRoute("MonthYear",
 "{month}/{year}",
 new RouteValueDictionary(new { month = DateTime.Now.Month,
 year = DateTime.Now.Year}),
 new RouteValueDictionary(new { month = @"\d{2}", year = @"\d{4}" }));

Preventing Route Handling
There are scenarios in which routing does not handle the request. One such scenario is when a
request actually maps to a physical file. In this case, the physical file on your server is returned
and the route is ignored. For example, a call to http://mySite/customer/edit.aspx would return
the edit.aspx page, if it exists in the customer folder on your site.

You can prevent physical files from circumventing routing. You do so in an ASP.NET MVC
application by setting the RouteCollectionExtension object’s RouteExistingFiles property to
true, as in routes.RouteExistingFiles = true, inside the Global.asax file.

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 869

You can also turn off routing explicitly for certain requests. You do so in an ASP.NET MVC
application through the RouteCollectionExtensions.IgnoreRoute method. This method creates
a StopRoutingHandler that will block routing for a specified request. You pass a route pattern
to this method to indicate which request patterns you want routing to ignore.

By default, ASP.NET MVC includes the following line of code in the Global.asax.

routes.IgnoreRoute("{resource}.axd/{*pathInfo}")

This indicates that calls for files with the .axd extension will not be routed, because ASP.NET
uses this HTTP handler to serve embedded resources such as JavaScript for a page.

Quick Check
	 1. What are the restrictions placed on defining a model for ASP.NET MVC?

	 2. How would you return a specific view from an action method?

	 3. How do you indicate that an action method should be called as part of an
HTTP post?

Quick Check Answers
	 1. There are no restrictions on creating a model. You can create any set of custom

classes or use generated code such as an Entity Framework model.

	 2. You can do so by passing the view name in the View method, as in return View("Edit").

	 3. You add the HttpPostAttribute class to the action method signature.

PrActIcE	 Creating a Full-Featured AsP.nET mvC Application

In this practice, you create an ASP.NET MVC 2 web application and a model. You then create
views and controller methods to work with the data in the model so that users can view, add,
edit, and delete model items.

oN the CoMpaNIoN MedIa

If you encounter a problem completing an exercise, you can find the completed projects
in the samples installed from this book’s companion CD. For more information about the
project files and other content on the CD, see “Using the Companion Media” in this book’s
Introduction.

 870	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

ExErcIsE	1	 Creating the ASP.NET MVC Web Application and the Model

In this exercise, you create a new ASP.NET MVC 2 web application and define a data model.

	 1. Open Visual Studio. Select File | New Project (not New Web Site). From the New Project
dialog box, select your preferred programming language and the web node from the
Installed Templates area (on the left side of the dialog box). Select the ASP.NET MVC 2
Web Application template. Name the project and solution Employeemgrmvc. When
prompted to create a unit test project, you can select either yes or no. This practice
does not create tests.

	 2. Add the northwnd.mdf database to the App_Data directory of your site. You can get
this database from the CD for this book.

	 3. Right-click the Models folder in Solution Explorer and select Add | New Item. Select the
Data node on the left side of the Add New Item dialog box. Select an ADO.NET Entity
Data Model template. Name this file northwind.edmx.

	 4. Step through the Entity Data Model Wizard and connect to the Northwind database.
Select the Employees table.

	 5. Add a new class to the Models folder and name it Employee. This class will allow you
to define metadata validation rules for your model.

	 6. At the top of this class, add a using (imports in Visual Basic) statement for
System.ComponentModel.DataAnnotations.

	 7. Next, define a class called Employeemetadata. Add rules for some of the fields in
your model (see the code shown for step 8).

	 8. Finally, define a partial class called Employee. Assign the MetedataType attribute to
this class. This will be used to add the rules to your generated model.

The following code shows an example.

Sample of Visual Basic Code

Imports System.ComponentModel.DataAnnotations

<MetadataType(GetType(EmployeeMetadata))> _
Partial Public Class Employee

End Class

Public Class EmployeeMetadata

 <Required(ErrorMessage:="Employee id is required.")> _
 Public Property EmployeeID As Object

 <Required(ErrorMessage:="First name is required.")> _
 Public Property FirstName As Object

 <Required(ErrorMessage:="Last name is required.")> _
 Public Property LastName As Object

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 871

 <StringLength(60, ErrorMessage:="Address must be 60 characters or less")> _
 Public Property Address As Object

 <RegularExpression("((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}", _
 ErrorMessage:="Phone number should be in the format, 123-123-1234.")> _
 Public Property HomePhone As Object

End Class

Sample of C# Code

using System.ComponentModel.DataAnnotations;

namespace EmployeeMgrMvc.Models
{
 [MetadataType(typeof(EmployeeMetadata))]
 public partial class Employee
 {
 }

 public partial class EmployeeMetadata
 {
 [Required(ErrorMessage = "Employee id is required.")]
 public object EmployeeID { get; set; }

 [Required(ErrorMessage = "First name is required.")]
 public object FirstName { get; set; }

 [Required(ErrorMessage = "Last name is required.")]
 public object LastName { get; set; }

 [StringLength(60, ErrorMessage="Address must be 60 characters or less")]
 public object Address { get; set; }

 [RegularExpression(@"((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}",
 ErrorMessage = "Phone number should be in the format, 123-123-1234.")]
 public object HomePhone { get; set; }
 }
}

You now have your site and your model. You can build the code and even run the
application to verify.

ExErcIsE	2	 Creating the Controller and Views

In this exercise, you add the controller and related views to the ASP.NET MVC 2 application
created in the previous exercise.

	 1. Continue editing the project created in the previous exercise. Alternatively, you can
open the completed Lesson 2, Exercise 1 project in the samples installed from the CD.

	 2. Right-click the Controllers folder and choose Add | Controller. Set the controller name to
EmployeeController. Select the check box to create the default set of action methods.

 872	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

	 3. Open the EmployeeController. Remove the Delete methods because this practice will
not implement these. Add code to each action method to work with the model based
on the action. This includes the Index method (which returns a list of Employees) and
the Details, Create, and Edit methods. Assume that each of these pages will be created
as a strongly typed view. Be sure to add a using (Imports in Visual Basic) statement for
EmployeeMgrMvc.Models. The following code shows an example.

Sample of Visual Basic Code

Namespace EmployeeMgrMvc
 Public Class EmployeeController
 Inherits System.Web.Mvc.Controller

 Function Index() As ActionResult
 Dim nw As New northwndEntities()
 Return View(nw.Employees)
 End Function

 Function Details(ByVal id As Integer) As ActionResult
 Return View(GetEmployee(id))
 End Function

 Function Create() As ActionResult
 Return View()
 End Function

 <HttpPost()> _
 Function Create(ByVal emp As Employee) As ActionResult
 Try
 Dim nw As New northwndEntities()
 nw.AddToEmployees(emp)
 nw.SaveChanges()
 Return RedirectToAction("Index")
 Catch
 Return View()
 End Try
 End Function

 Function Edit(ByVal id As Integer) As ActionResult
 Return View(GetEmployee(id))
 End Function

 <HttpPost()> _
 Function Edit(ByVal emp As Employee) As ActionResult
 Try
 Dim nw As New northwndEntities()
 Dim origEmp As Employee = GetEmployee(emp.EmployeeID)
 nw.Employees.Attach(emp)
 nw.ApplyOriginalValues("Employees", origEmp)
 nw.SaveChanges()
 Return RedirectToAction("Index")
 Catch
 Return View()
 End Try
 End Function

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 873

 <NonAction()> _
 Function GetEmployee(ByVal id As Integer) As Employee

 Dim nw As New northwndEntities()
 Dim empQuery = From e In nw.Employees
 Where e.EmployeeID = id
 Select e

 Dim emp As Employee = empQuery.FirstOrDefault()

 Return emp

 End Function

 End Class
End Namespace

Sample of C# Code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using EmployeeMgrMvc.Models;

namespace EmployeeMgrMvc.Controllers
{
 public class EmployeeController : Controller
 {
 public ActionResult Index()
 {
 northwndEntities nw = new northwndEntities();
 return View(nw.Employees);
 }

 public ActionResult Details(int id)
 {
 return View(GetEmployee(id));
 }

 public ActionResult Create()
 {
 return View();
 }

 [HttpPost]
 public ActionResult Create(Employee emp)
 {
 try
 {
 northwndEntities nw = new northwndEntities();
 nw.AddToEmployees(emp);
 nw.SaveChanges();
 return RedirectToAction("Index");
 }

 874	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

 catch
 {
 return View();
 }

 }

 public ActionResult Edit(int id)
 {
 return View(GetEmployee(id));
 }

 [HttpPost]
 public ActionResult Edit(Employee emp)
 {
 try
 {
 northwndEntities nw = new northwndEntities();
 Employee origEmp = GetEmployee(emp.EmployeeID);
 nw.Employees.Attach(emp);
 nw.ApplyOriginalValues("Employees", origEmp);
 nw.SaveChanges();
 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
 }

 [NonAction]
 private Employee GetEmployee(int id)
 {
 northwndEntities nw = new northwndEntities();
 var empQuery = from e in nw.Employees
 where e.EmployeeID == id
 select e;
 Employee emp = empQuery.FirstOrDefault();
 return emp;
 }
 }
}

	 4. Next, add a subfolder to the Views folder and name it Employee.

	 5. Right-click the Employee folder and choose Add | View. Name this view page index.
Check the Strongly Typed View check box. Select EmployeeMgrMvc.Models.Employee
from the View Data Class list. Select List from the View Content list. Leave the other
settings as defaults, and click Add. If you want, inside the Index.aspx page, remove
some of the fields from the display grid to show only pertinent information.

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 875

Notice that the ActionLink HTML helper class is used inside the markup to create links
for editing, viewing, deleting, and creating new employees. These action links will create
requests bound for the EmployeeController by using the appropriate action method and
passing an ID.

	 6. Remove the ActionLink for Delete from the table.

	 7. Open the Shared/Site.Master page. Add an ActionLink to the menu to call the Employee-
Index.aspx page, as in the following.

<%: Html.ActionLink("Employees", "Index", "Employee")%>

	 8. Add view pages for Details.aspx, Edit.aspx, and Create.aspx to the Employee folder.
Make each page strongly typed. Be sure to remove the EmployeeID field information
from the Create.aspx page, because the ID is generated by the database. If you want,
remove some of the fields from each page so that you will only work with pertinent
information (such as EmployeeID, LastName, FirstName, Address, and HomePhone).

	 9. Run the site. You should be able to create new employees and edit existing ones. Be sure
to notice how your model validation rules are processed when data is being updated.

Lesson Summary
■ You can create models to work with ASP.NET MVC by using any class you like. You can

also generate your models by using the Entity Framework or LINQ to SQL. If you do, you
can attach metadata and business rules to your model by using the DataAnnotations
classes.

■ Controllers include action methods that work with the model, process user input, and
return different ActionResult objects. The ActionResult value you can return includes a
view or a file, redirecting to another controller, and more.

■ You can pass data from a controller to a view by using the ViewDataDictionary object.
You can also create strongly typed views that are based on entity classes in your model.

■ The HtmlHelper classes ease writing HTML that works with data sent to a view from a
controller. Helper methods include ActionLink, TextBox, and ValidationMessage (and
many others).

■ You create partial (child) views by using user controls (ASCX files). Each user control has
its own action method in a controller. The parent view can render any child views (user
controls) by using the Html.Action helper method.

■ You can customize the ASP.NET MVC default routing to provide additional routes,
parameter constraints, and default values for route parameters.

 876	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Creating Models, Views, and Controllers.” The questions are also available on the companion
CD in a practice test, if you prefer to review them in electronic form.

Note AnsWERs

Answers to these questions and explanations of why each answer choice is correct or
incorrect are located in the “Answers” section at the end of the book.

	 1. You are writing an action method called ShipOrder inside the Order controller. The logic
in your code indicates that you need to call the Shipment controller’s Status method as a
result of your controller’s action method. Which line of code would accomplish this?

	 A. return View("Shipment.Status")

	 b. return redirect("Shipment/Status")

	 C. Response.Redirect("Shipment.aspx?action=Status")

	 D. return Content("Shipment.Status")

	 2. You want to add a default route for when requests are made to your site without
the controller and action parameters in the URL. This default route should point
to Default.aspx inside the view folder named Main. You create a controller named
DefaultController. Which code would you write?

	 A.

Visual Basic Code

routes.MapRoute("HomePage", _
 "{controller}/{action}", _
 New With {.controller = "DefaultController", .action = "Default"})

C# Code

routes.MapRoute("HomePage",
 "{controller}/{action}",
 new { controller = "DefaultController", action = "Default"});

 Lesson 2: Creating Models, Views, and Controllers ChAPTER 14 877

	 B.

Visual Basic Code

routes.MapRoute("Default", _
 "{DefaultController}/{Default}", _
 New With {.controller = "Default", .action = "Default"})

C# Code

MapRoute("Default ",
 "{ DefaultController }/{ Default }",
 new { controller = "Default", action = "Default"});

	 c.

Visual Basic Code

routes.MapRoute("Default", _
 "{DefaultController}/{Default}")

C# Code

routes.MapRoute("Default ",
 "{ DefaultController }/{ Default }");

	 D.

Visual Basic Code

routes.MapRoute("HomePage", _
 "{controller}/{action}", _
 New With {.controller = "Default", .action = "Default"})

C# Code

routes.MapRoute("HomePage",
 "{controller}/{action}",
 new { controller = "Default", action = "Default"});

	 3. You want to create a strongly typed view. What actions should you take? (Choose all
that apply.)

	 A. Mark your @ Page directive to inherit from ViewPage<TModel>.

	 B. Add a strong type as a parameter to the View method inside your action method.

	 c. Add a strong type to the ViewData collection inside your action method.

	 D. Mark your @ Page directive to include the ViewDataClass attribute and point to an
entity inside your model.

 878	 ChAPTER 14	 Creating Websites with ASP.NET MVC 2

Case scenarios

In the following case scenario, you apply what you’ve learned in this chapter. If you have
difficulty completing this work, review the material in this chapter before beginning the
next chapter. You can find answers to these questions in the “Answers” section at the end
of this book.

Case Scenario: Creating an ASP.NET MVC Application
You are a developer working at Contoso, Ltd. You are creating a new application to manage
your division’s inventory. Quality has been a big issue in the past; therefore, you plan to take
advantage of the testability of ASP.NET MVC applications.

You meet with subject-matter experts and gather requirements. You realize that this applica-
tion will have to display products obtained from an existing product database (exposed to you
as a web service). It will then have to define a new database and a functionality that allows
users to view and update current inventory; provide functionality for viewing, editing, and
adding suppliers; and create a restock page that allows a user to order a product from an
approved supplier.

You expect this application to grow very large over time. You also anticipate a large team
of developers working to extend the application as Contoso, Ltd. grows.

	 1. What controllers would you create to handle the requirements for this application?

	 2. What views would you create to allow users to interact as required?

	 3. How would you define your model?

	 4. How would you get data from the model to the views?

	 5. How might you consider structuring your application?

suggested Practices

To successfully master the exam objective presented in this chapter, complete the following tasks.

 Take a Practice Test ChAPTER 14 879

Work with Controllers, Views, and Routing
For this task, you should complete Practice 1 to gain experience with using partial views.
Practice 2 will help you understand routing and route constraints. Practice 3 will add to
your understanding of the HTML helper classes.

■ Practice 1 Return to the practice in Lesson 2. Create a partial view as a user control for
displaying the total number of employees. Add a method to the EmployeeController to
render this view. Add code to the Index page to show this user control as part of its view.

■ Practice 2 Return to the practice in Lesson 2. Add a route constraint inside the
Global.asax file to restrict route controller names to 10 characters or less. Test
the results.

■ Practice 3 Return to the practice in Lesson 2. Use the HTML helper classes to change
the way data is displayed and edited. You can add date formatting. You might also
display a list of employee territories as check boxes in the Create and Edit views.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just the lesson review questions in this chapter, or you can test yourself on
all the 70-515 certification exam objectives. You can set up the test so it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so you can
look at the correct answers and explanations after you answer each question.

More INfo PRACTiCE TEsTs

For details about all the practice test options available, see the “How to Use the Practice
Tests” section in this book’s Introduction.

 Answers	 881

Answers

Chapter 1: Lesson Review Answers

Lesson 1
	 1. Correct Answer: D

	 A. Incorrect: IsCallback is generated by client-side scripts and does not involve reloading
a page.

	 B. Incorrect: IsReusable is a standard property that indicates whether an object can be
reused.

	 c. Incorrect: IsValid indicates whether page validation succeeded. IsValid is discussed in more
detail in Chapter 5, “Input Validation and Site Navigation.”

	 D. Correct: If IsPostBack is true, the page loading is the result of a form being submitted
by the user. IsPostBack is discussed in more detail in Chapter 5.

	 2. Correct Answer: C

	 A. Incorrect: The PUT command is used to add a file to a web server.

	 B. Incorrect: The CONNECT command is not frequently used. It is reserved for use with proxy
servers under very specific conditions.

	 c. Correct: The POST command is used when a browser submits the results of a form. The
form data is stored as part of the response packet.

	 D. Incorrect: The GET command is used to submit a form with the form data included as part
of the URI.

 Contents

Answers 881

 882	 Answers

Lesson 2
	 1. Correct Answer: C

	 A. Incorrect: Although the remote HTTP option would create a site on a remote server, it
requires Front Page Server Extensions.

	 B. Incorrect: The file system option for a web project creates the project on the local computer,
rather than on a remote web server. If you chose the file system option, you would need
to connect to an IIS 7.5 server using WebDAV or deploy the site to the remote server after
development.

	 c. Correct: FTP allows you to publish a website to a remote server that does not support
Front Page Server Extensions. However, your ability to debug the site is limited.

	 D. Incorrect: You can use the local HTTP option to create a website by using IIS installed
on your local computer. However, the question requires you to create the website on a
remote computer.

	 2. Correct Answer: A

	 A. Correct: ASP.NET sites can contain pages that use different languages. In practice, however,
this makes the site very difficult to maintain, because developers would need to be familiar
with both Visual Basic and C#. Therefore, although you can simply add the Visual Basic
page to the existing C# site, a better option would be to use a Visual-Basic-to-C# converter
to convert the page to C#.

	 B. Incorrect: Joe does not need to rewrite the code-behind file by using C#. However, he
might want to do this to make the site easier to maintain.

	 c. Incorrect: The ASPX page is not language specific, and thus would not need to be rewritten
even if the code-behind page were converted from Visual Basic to C#. Additionally, Joe could
add the Visual Basic page to the existing C# site without problem.

	 D. Incorrect: Joe can simply add the Visual Basic page to the website.

Lesson 3
	 1. Correct Answer: C

	 A. Incorrect: The Global.asax file is used to define application-level events, but not settings.

	 B. Incorrect: Application Web.config files will only define settings for a single web application,
and changing that file will not change settings for Windows applications.

	 c. Correct: You can use the Machine.config file to manage settings for both web and Windows
applications at the machine level.

	 D. Incorrect: The root Web.config file will define settings for all web applications, but not
Windows applications. Instead, you should edit the Machine.config file.

	 2. Correct Answer: B

	 A. Incorrect: Changes to the Web.config file that is in the same folder as Machine.config will
apply to all websites on the machine, not just a single web application.

	 B. Correct: Changes to the Web.config file at the web application root will apply only to
that web application.

 Chapter 2: Lesson Review Answers Answers	 883

	 c. Incorrect: The Machine.config file is used to set global settings on the machine. As a result,
changes to the Machine.config file would impact all .NET Framework applications.

	 D. Incorrect: The Global.asax file is used to define application-wide events. It does not define
application settings.

Chapter 1: Case scenario Answers

Case Scenario 1: Creating a New Website
	 1. Have each developer create a new website on their local computer, and use that during debug-

ging. When a developer has created a stable version of a component, have the developer copy
it to the development server.

	 2. The development server will host an IIS website, which is easiest to manage by using HTTP.
Individual developers can perform development and debugging by using IIS on their local
computers or on file-system–based websites.

Case Scenario 2: Placing Files in the Proper Folders
	 1. You will place the ShoppingCart.dll file in the Bin folder. You will place the data-base files in

the App_Data folder. The wrapper file (ShoppingCartWrapper.cs or ShoppingCartWrapper.vb)
will be placed in the site’s App_Code directory.

	 2. A primary benefit to adhering to the ASP.NET folder structure is that these folders are
secured. A user who attempts to browse to any of these folders will receive an HTTP 403
Forbidden error.

Chapter 2: Lesson Review Answers

Lesson 1
	 1. Correct Answers: B, C, and D

	 A. Incorrect: Private properties are never available from other objects.

	 B. Correct: You can access public properties from a content page. For example, you can
access the Boolean property Master.EnableViewState to get or set whether the master
page uses view state.

	 c. Correct: You can access public methods from a content page. For example, you can
access the method Master.FindControl to get a control located on the master page.

	 D. Correct: You can use the public Master.FindControl method to create an object representing
a control on the master page.

 884	 Answers

	 2. Correct Answers: A and C

	 A. Correct: The @ MasterType declaration is required to access the properties in the
master page.

	 B. Incorrect: You only need to add the @ Master declarations to the master page, not the
content pages.

	 c. Correct: A content page must have a MasterPageFile attribute in the @ Page declaration
that points to the master page.

	 D. Incorrect: The master page, not the content pages, uses the ContentPlaceHolder control.
Content pages will replace the ContentPlaceHolder control with their own content.

	 3. Correct Answer: D

	 A. Incorrect: Page_Load occurs after the content page has bound to the master page.
If you attempt to change the master page, the runtime throws an exception.

	 B. Incorrect: Page_Render occurs after the content page has bound to the master page.
If you attempt to change the master page, the runtime throws an exception.

	 c. Incorrect: Page_PreRender occurs after the content page has bound to the master page.
If you attempt to change the master page, the runtime throws an exception.

	 D. Correct: Page_PreInit is the last opportunity to change the master page. After this event,
the content page binds with the master page, preventing you from changing it.

Lesson 2
	 1. Correct Answers: A and C

	 A. Correct: Themes specified by using the page’s Theme attribute override control attributes
because they are applied after control attributes are applied.

	 B. Incorrect: Themes specified by using the StyleSheetTheme attribute do not override
control attributes because they are applied before control attributes are applied.

	 c. Correct: Themes specified by using the page’s Theme attribute override control attributes
because they are applied after control attributes are applied.

	 D. Incorrect: Themes specified by using the StyleSheetTheme attribute do not override
control attributes because they are applied before control attributes are applied.

	 2. Correct Answer: C

	 A. Incorrect: Skin files should not include the ID attribute, and skin files must include the
runat="server" attribute.

	 B. Incorrect: Skin files should not include the ID attribute. The ID attribute is reserved for
controls themselves.

	 c. Correct: Skin files must include the runat="server" attribute but should not include the
ID attribute.

	 D. Incorrect: Skin files must include the runat="server" attribute.

 Chapter 2: Lesson Review Answers Answers	 885

	 3. Correct Answer: D

	 A. Incorrect: Page_Load occurs too late in the rendering process to change the theme.

	 B. Incorrect: Page_Render occurs too late in the rendering process to change the theme.

	 c. Incorrect: Page_PreRender occurs too late in the rendering process to change the theme.

	 D. Correct: Page_PreInit is the proper method in which to specify the theme because the page
theme property has not already been set by ASP.NET. After Page_PreInit executes for the
page, you can no longer change the theme property without causing a run time exception.

Lesson 3
	 1. Correct Answer: A

	 A. Correct: In this example, your primary concern is that a different copy of the page is cached
for each state that the user might select. The state would be provided as a parameter;
therefore, configuring the VaryByParam attribute with the name of the control containing
the state input provides optimal caching.

	 B. Incorrect: The VaryByHeader attribute is used to dynamically generate the page if an
item in the page’s header varies. In this case, the header is not unique for different states,
and you cannot use the attribute to configure the correct type of caching.

	 c. Incorrect: The SqlDependency attribute might seem like the correct attribute because the
webpage is based on a SQL query. However, in this scenario, you are not concerned about
updating the page if the database is updated. You are only concerned with updating the
page output if the user chooses to filter the customer list, which is provided by a parameter,
not the database.

	 D. Incorrect: The VaryByCustom attribute enables you to implement custom control over
how pages are cached. Although you could implement a custom method to meet your
requirements, this would be time consuming and inefficient. The capability you need is
provided by the VaryByParam attribute.

	 2. Correct Answer: B

	 A. Incorrect: The Request object contains methods and parameters that describe the user’s
request. To configure page output caching, you must use the Response object instead.

	 B. Correct: The Response object contains methods such as Response.Cache.SetExpires and
Response.AddCacheDependency that enable you to configure page output caching
programmatically.

	 c. Incorrect: The Application collection allows you to share data across all pages and
processes in your application. Page output caching is configured on a per-page basis
by using the Response object.

	 D. Incorrect: The Server object contains methods such as UrlDecode and UrlEncode that are
useful for processing server file paths. To configure page output caching, you must use
the Response object instead.

 886	 Answers

	 3. Correct Answer: C

	 A. Incorrect: You can directly define Cache items. However, this technique does not provide
for automatic expiration. When you directly define a Cache item, it stays cached until you
remove it manually.

	 B. Incorrect: The Cache.Get method allows you to retrieve cached items, not define them.

	 c. Correct: You can use the Cache.Insert method to add an object to the cache and specify
one or more dependencies, including an expiration time span.

	 D. Incorrect: Although you would use DateTime.Now.AddMinutes(10) to specify an expiration
time 10 minutes in the future, you cannot directly cast it to the Cache type.

	 4. Correct Answers: B, C, and E

	 A. Incorrect: You can configure page output caching to vary with an HTTP header. However,
the Cache object cannot use HTTP headers as dependencies.

	 B. Correct: You can create file dependencies for Cache objects.

	 c. Correct: You can make a Cache object expire after a specific time span or at a specific time.

	 D. Incorrect: You cannot configure a Cache object to expire when a registry key is changed.

	 E. Correct: You can configure a Cache object to expire when a different cached object expires.

Chapter 2: Case scenario Answers

Case Scenario 1: Providing Consistent Formatting for an
External Web Application
	 1. Use a master page to implement the layout. Use content pages only to add content to the

master page.

	 2. You can use themes and add a .skin file that defines fonts for different controls.

	 3. If you apply a theme by using the <pages Theme=”themeName”> element in the Web.config
file, it overrides control attributes.

	 4. To enable users to change colors on a website, use programmatically applied themes and set
a session variable or user cookie to remember a user’s selection.

Case Scenario 2: Improving the Performance of a Public Website
	 1. Yes. You can use the Cache object to store a copy of database query results, and then quickly

retrieve those results the next time they are required.

	 2. The database administrator mentioned that you are using SQL Server, so you could configure
a dependency on the database table that contains the list of movies.

	 3. Yes. If you create user controls for cacheable components, such as the portion of the page
that displays a list of movies, those user controls can be cached while the rest of the page is
dynamically generated.

 Chapter 3: Lesson Review Answers Answers	 887

Chapter 3: Lesson Review Answers

Lesson 1
	 1. Correct Answer: C

	 A. Incorrect: You cannot respond to the Application_Start event within a webpage.

	 B. Incorrect: You cannot write code to respond to any event inside the Web.config file.

	 c. Correct: The Global.asax file allows you to handle special events such as the
Application_Start event.

	 D. Incorrect: These pages represent code-behind files to webpages. You cannot respond
to application-level events from a webpage.

	 2. Correct Answer: D

	 A. Incorrect: Application_Start is called when the application loads. You cannot access
the Session object from the Application_Start event handler.

	 B. Incorrect: Application_End is called when the application shuts down. You cannot access
the Session object from the Application_End event handler.

	 c. Incorrect: Session_Start is called when a user first connects.

	 D. Correct: The Session_End event handler is called when a user’s session times out. How-
ever, this event will not fire if the server is shut off unexpectedly or if the SessionState
mode is not set to InProc.

	 3. Correct Answer: A

	 A. Correct: To indicate that a control’s default event should cause a postback, you set the
AutoPostBack property of the control to true.

	 B. Incorrect: ASP.NET does not define a method called ForcePostBack.

	 c. Incorrect: An ASP.NET webpage does not have a property called PostBackAll.

	 D. Incorrect: The client makes no attempt to communicate with the server for the CheckBox
click event until you set the AutoPostBack property to true.

	 4. Correct Answer: A

	 A. Correct: The PreInit event is where you want to create (and re-create) your dynami-
cally generated controls. This ensures that they will be available for initialization,
ViewState connection, and code inside other events such as Load.

	 B. Incorrect: The Init event is meant to be raised after all controls have been initialized. You
can also use this event to initialize additional control properties. Adding a control here will
technically work, but it will not follow the prescribed life cycle.

	 c. Incorrect: Prior to the Load event, ASP.NET ensures that there is an instance of each
control and that each control’s view state has been connected. Adding a control here
will technically work, but it will not follow the prescribed life cycle.

	 D. Incorrect: The PreRender event is used to make final changes to the page prior to its
rendering. If you add your controls here, they will appear on the form. However, user
input will not be available during postback, and view state will not work.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 888	 Answers

Lesson 2
	 1. Correct Answer: B

	 A. Incorrect: Client-side state management requires the client to transmit the user name and
password with each request. It also requires the client to store the information locally,
where it might be compromised. This is not a secure solution.

	 B. Correct: Server-side state management provides better security for confidential informa-
tion by reducing the number of times the information is transmitted across the network.

	 2. Correct Answer: A

	 A. Correct: Client-side state management is an excellent choice for storing nonconfidential
information. It is much easier to implement than server-side state management when
multiple web servers are involved, and it minimizes load on the servers.

	 B. Incorrect: You could use server-side state management; however, it would require a
server-side database to synchronize information among multiple web servers. This
would increase the load on your servers.

	 3. Correct Answer: A

	 A. Correct: View state is the simplest way to store this information. Because it is enabled by
default, you might not need to write any code to support state management for your form.

	 B. Incorrect: You can use control state; however, it requires extra coding and is only necessary
if you are creating a control that might be used in a webpage that has view state disabled.

	 c. Incorrect: You can store the information in hidden fields; however, that requires writing
extra code. View state supports your requirements with little or no additional code.

	 D. Incorrect: Cookies require extra coding and are only required if you need to share
information between multiple web forms.

	 E. Incorrect: You can use query strings to store user preferences. However, you need to
update every link on the page that the user might click. This is very time consuming
to implement.

	 4. Correct Answer: D

	 A. Incorrect: View state can only store information for a single web form.

	 B. Incorrect: Control state can only store information for a single control.

	 c. Incorrect: Hidden fields can only store information for a single web form.

	 D. Correct: Unless you specifically narrow the scope, the user’s browser submits information
stored in a cookie to every page on your site. Therefore, each page processes the user
preference information. If you configure the cookie expiration to make it persistent, the
browser submits the cookie the next time the user visits your site.

	 E. Incorrect: You can use query strings to store user preferences. However, you need to
update every link on the page that the user might click. This is very time consuming
to implement.

 Chapter 3: Lesson Review Answers Answers	 889

	 5. Correct Answer: E

	 A. Incorrect: View state information is not stored in the URL, and therefore is lost if the URL
is bookmarked.

	 B. Incorrect: Control state information is not stored in the URL, and therefore is lost if
the URL is bookmarked.

	 c. Incorrect: Hidden fields are not stored in the URL, and therefore are lost if the URL is
bookmarked.

	 D. Incorrect: Cookies are not stored in the URL, and therefore are lost if the URL is bookmarked.

	 E. Correct: Query strings are stored in the URL. Although they are not the easiest type of
client-side state management to implement, they are the only technique that allows state
management data to be easily bookmarked and sent via email.

Lesson 3
	 1. Correct Answer: B

	 A. Incorrect: The Session object is user specific and therefore is not available to all users
and pages in the site.

	 B. Correct: The Application object allows you to store data that is scoped at the application
level and therefore is available to all users. The Application object never expires, which is
not the case with caching.

	 c. Incorrect: The Cookies collection is client and user specific.

	 D. Incorrect: The ViewState collection is client and user specific.

	 2. Correct Answer: A

	 A. Correct: Storing this value in the Session object will prevent the client from tampering
with the value. It will also ensure that this user-specific data is only available for the
specified session and user.

	 B. Incorrect: The Application collection represents global data available to all users.

	 c. Incorrect: Storing authentication information in the user’s cookie file exposes the site
to a potential security risk.

	 D. Incorrect: The ViewState is sent to the client and therefore would pose a security risk.

	 3. Correct Answers: A and D

	 A. Correct: You must manage session state on a central server in this case. StateServer or
SqlServer allows you to do so.

	 B. Incorrect: You cannot set the SessionState mode attribute to InProc, because this would
store each user’s session on the individual web servers. The load balancer might then route
different requests to different servers and thus break your application.

	 c. Incorrect: Turning sessions off for your application will break the application in this case.

	 D. Correct: You must manage session state on a central server in this case. SqlServer or
SqlServer allows you to do so.

 890	 Answers

Chapter 3: Case scenario Answers

Case Scenario 1: Selecting the Proper Events to Use
	 1. You should place the code to dynamically create the controls in the Page_PreInit event handler.

After the Page_PreInit event handler has been executed, all dynamically created controls should
be instantiated. Following the Page_Init event, all controls on the page should be initialized.

	 2. You should place the code to set the control properties in the Page_Load event handler. When
the Page_Load event handler fires, all controls should already be instantiated. Here you can
check whether the page is a postback, and set control properties appropriately. The controls
should already have been initialized in the Page_PreInit event.

Case Scenario 2: Remembering User Credentials
	 1. You should use client-side state management in the form of cookies. You should not, however,

store the user’s credentials in this cookie (see question 2). Cookies, however, will allow you to
identify the user between requests and between sessions, because they can be persisted
on the client.

	 2. First, you should not store the users’ actual credentials in the cookie. Instead, you should
store a token that proves the user has authenticated. Second, you can require Secure Sockets
Layer (SSL) for your web application so that all communications are encrypted. Third, you can
narrow the scope of the cookies so that the browser only submits them to the SSL-protected
portion of your website. Finally, you should maintain the user’s session. However, if you are
relying on a cookie, you should ask the user to reauthenticate before doing anything of
consequence on the site, such as making a purchase or accessing private information.

	 3. You should not use state management techniques to store previous orders. Instead, you should
retrieve that information directly from the database.

Case Scenario 3: Analyzing Information for Individual Users and
for All Users
	 1. You can use the Application object to log data related to all users. You can update a collec-

tion that tracks the number of users currently viewing certain pages in your site. Of course,
you would want to periodically reset this collection, because it should be a snapshot of a
certain time period.

	 2. You can use the Session object to track where a user has gone on the site and what naviga-
tional path he or she has followed. For each page view, you could add the page that the
user visits to a custom collection in the Session object. You can log this information and
allow the marketing department to watch and analyze this information to make advertise-
ment decisions.

 Chapter 4: Lesson Review Answers Answers	 891

Chapter 4: Lesson Review Answers

Lesson 1
	 1. Correct Answer: C

	 A. Incorrect: The correct attribute to indicate that an HTML server control should be run on
the server is the runat attribute (not run).

	 B. Incorrect: Double-clicking an HTML control will not convert it to run on the server. Instead,
it will generate a client-side event handler (in JavaScript) for the control.

	 c. Correct: To convert an HTML element to a server control, you add the runat="server"
attribute and value to the element.

	 D. Incorrect: Visual Studio does not allow you to modify this attribute from the Properties
window. You must set this value in Source view.

	 2. Correct Answers: A and B

	 A. Correct: A single RadioButtonList control can allow users to select one of multiple choices
that you define.

	 B. Correct: You could add a RadioButton control for each choice: Small, Medium, and
Large. To ensure that the user can only select one at a time, you would need to set
the GroupName property of all controls to the same value. The specific value does
not matter.

	 c. Incorrect: A CheckBoxList control allows users to select as many or as few of a list of
options as necessary. In this scenario, you need users to select exactly one choice,
which is what radio buttons should be used for.

	 D. Incorrect: The CheckBox control allows users to select multiple choices. It does not
have a GroupName property like the RadioButton control because CheckBox controls
always function separately from each other.

	 3. Correct Answers: A and D

	 A. Correct: If you need to handle clicks for multiple buttons with a single method, the Button.
Command event is the most convenient way to do it. You could also handle Button.Click,
but it would require extra code to determine which button had been clicked.

	 B. Incorrect: The Button.Load event fires when the page is initially loaded, not when the
button is clicked.

	 c. Incorrect: Button.CommandName must be unique for different controls because you
will use this value to determine which button was clicked.

	 D. Correct: The value you set Button.CommandName to is available in the ComandEventArgs.
CommandName parameter in the Button.Command event handler. You can use this value
to determine which button the user pressed.

 892	 Answers

Lesson 2
	 1. Correct Answer: B

	 A. Incorrect: Unless you intend to use the Table control on the server, you should consider
using a standard HTML table.

	 B. Correct: If you need to populate an HTML table with data generated at run time, you
should use the Table server control.

	 c. Incorrect: In this case, a standard HTML table will work because the data is static. No
server-side processing is required.

	 D. Incorrect: You should not use tables for layout. Instead, use <div> and tags.

	 2. Correct Answer: D

	 A. Incorrect: Although you could employ this method, it could be difficult to execute and
certainly is not the best way to accomplish this task.

	 B. Incorrect: The product lines are not rectangular, so this would not be an option.

	 c. Incorrect: The MultiView control only shows one View at a time, so this would not be a
solution.

	 D. Correct: The ImageMap control provides the ability to define hot spot areas, and the
PostBackValue can be used to determine the area that was clicked.

	 3. Correct Answer: C

	 A. Incorrect: The View control requires a MultiView control to work properly. Even if you did
include a MultiView control, this would not be the easiest solution to the problem.

	 B. Incorrect: The TextBox control will not provide multiple-page data collection.

	 c. Correct: The Wizard control will solve this issue by providing an easy-to-implement
solution for collecting multiple pages of data from users.

	 D. Incorrect: The Panel control is a useful container for storing other controls. However, it
does not provide a mechanism for developing pages that span multiple controls.

Chapter 4: Case scenario Answers

Case Scenario 1: Determining the Type of Controls to Use
■ For this application, consider using web server controls. These controls provide a more consistent

programming model for developers and often provide a better user experience for users.
■ Use TextBox controls to capture the customer names and addresses. The text associated

with these controls can be simple HTML text.
■ Use a CheckBox control for the active indicator.
■ Use multiple CheckBox controls for the vertical market categories. This allows the user to

select multiple categories.
■ Use RadioButton controls to allow the user to select a single, mutually exclusive quantity

of computers.

 Chapter 5: Lesson Review Answers Answers	 893

Case Scenario 2: Determining How to Prompt for Data
■ You could divide the prompts by category and create a separate webpage for each category.

This solution splits your code and data over several pages and can add to the overall com-
plexity of the website.

Alternatively, you could implement a solution that uses the MultiView control and create a
separate View for each category. The MultiView and View controls do not have a user inter-
face, so you have complete flexibility with regard to the graphical interface of the webpage.

As a third alternative, you could implement the Wizard control and create a WizardStep
control for each category. The Wizard contains the behavior for moving between steps and
offers a more complete solution.

Case Scenario 3: Implementing a Calendar Solution
	 1. This solution can use the Calendar control in every situation in which the user must enter

a date or dates, and in every situation in which a schedule is being displayed to a user. The
following list describes some of the situations in which you can use the Calendar control:

■ To prompt for a class start date

■ To prompt for a class end date

■ To display a training provider’s class schedule

■ To display a contractor’s schedule

	 2. Although you could use the Table control in these situations, you would need to write lots
of code to get the functionality that the Calendar control provides natively, so the Calendar
control is the best solution.

Chapter 5: Lesson Review Answers

Lesson 1
	 1. Correct Answer: C

	 A. Incorrect: The RegularExpressionValidator control does string pattern matching. It should
not be used to look up database values.

	 B. Incorrect: The RangeValidator control validates data in a specified range. In addition, the
control does not define a DbLookup operation.

	 c. Correct: The CustomValidator control can be used to call server-side code to validate the
vendor ID.

	 D. Incorrect: The CompareValidator control does not define a feature as described. It is used
to compare two values.

 894	 Answers

	 2. Correct Answer: A

	 A. Correct: You need to test the IsValid property of the webpage before executing code in
your event handler methods.

	 B. Incorrect: The IsValid property is not set yet; exiting the Load event handler method still
allows the event handler methods to execute.

	 c. Incorrect: Although this will appear to correct the problem, a malicious user could disable
client-side validation, and the server-side problem would still exist.

	 D. Incorrect: This is the default setting and does not correct the problem.

	 3. Correct Answer: B

	 A. Incorrect: The Text property should be an asterisk and the ErrorMessage property should
be set to the detailed error message.

	 B. Correct: Setting the Text property to an asterisk places the asterisk next to the control, and
setting the ErrorMessage property to the detailed error message causes the detailed
errors to be placed into the ValidationSummary control at the top of the webpage.

	 c. Incorrect: The Text property should be an asterisk, and the ErrorMessage property
should be the detailed error message.

	 D. Incorrect: The Text property should be an asterisk, and the ErrorMessage property
should be the detailed error message.

Lesson 2
	 1. Correct Answer: C

	 A. Incorrect: The Redirect method is available on the HttpResponse class, and it causes a
round trip back to the client.

	 B. Incorrect: The MapPath method returns the physical path of a specific virtual path.

	 c. Correct: The Page.Server.Transfer method transfers the page processing to another page
without calling back to the client.

	 D. Incorrect: The UrlDecode method decodes a string that was encoded before being
transmitted over HTTP.

	 2. Correct Answer: D

	 A. Incorrect: The Menu control requires a data source.

	 B. Incorrect: The TreeView control requires a data source.

	 c. Incorrect: The SiteMapDataSource control is a data source and does not have a visual
display for a user.

	 D. Correct: The SiteMapPath control will automatically pick up a site map file and display
its contents to a user.

 Chapter 5: Lesson Review Answers Answers	 895

	 3. Correct Answer: C

	 A. Incorrect: The SiteMapPath control connects to the site map file and displays the user’s
current, breadcrumb-trail navigation path.

	 B. Incorrect: The SiteMapDataSource control is used to provide data binding from a site
map file to a navigation control.

	 c. Correct: The SiteMap class will allow you to load the site map file and work with the data
contained inside.

	 D. Incorrect: The HttpServerUtility class does not provide such functionality.

Lesson 3
	 1. Correct Answers: A, B, and C

	 A. Correct: A user control can be used as a Web Part by placing it into a Web Part zone.

	 B. Correct: ASP.NET will automatically define a Web Part when you place a standard control,
such as a Label, into a Web Part zone.

	 c. Correct: You can create Web Parts by defining custom controls based on the WebPart
class.

	 D. Incorrect: A master page defines a common interface for your application and is not
used as a Web Part.

	 2. Correct Answers: B and D

	 A. Incorrect: The LayoutEditorPart control enables users to change the chrome state and
zone of a control. It does not provide the ability to change the Web Part’s title.

	 B. Correct: You must add an EditorZone container to the webpage. Then add an
AppearanceEditorPart control to the EditorZone.

	 c. Incorrect: The CatalogZone control enables users to add new Web Parts to a page,
but it does not enable them to change Web Part titles.

	 D. Correct: The AppearanceEditorPart control enables users to set the titles of Web Parts.

	 3. Correct Answers: B and C

	 A. Incorrect: The LayoutEditorPart control enables a user to change the chrome state and
zone of a control. It does not provide the ability to add Web Parts.

	 B. Correct: The DeclarativeCatalogPart control enables a user to add Web Parts when the
page is in catalog mode.

	 c. Correct: The CatalogZone container is required to hold the DeclarativeCatalogPart
control, which enables a user to add Web Parts.

	 D. Incorrect: The AppearanceEditorPart control enables the user to edit the appearance of
existing Web Parts, but it does not enable a user to add new Web Parts.

 896	 Answers

	 4. Correct Answer: B

	 A. Incorrect: The ConnectionConsumer attribute should be applied to the method that
receives the provider Web Part’s data.

	 B. Correct: You should apply the ConnectionProvider attribute to a public method to allow
consumers to access the method.

	 c. Incorrect: You cannot use properties for connections between Web Parts.

	 D. Incorrect: You cannot use properties for connections between Web Parts.

Chapter 5: Case scenario Answers

Case Scenario 1: Determining the Proper Validation Controls to
Implement on a User Name
	 1. The RequiredFieldValidator control ensures that data has been entered. The

RegularExpressionValidator can be used, and the ValidationExpression can be
set to Internet Email Address.

	 2. Use a RequiredFieldValidator control to ensure that data has been entered. Use a
CustomValidator control, and write code to check for the character types and length
as specified by the requirements, or use a RegularExpressionValidator control with
an appropriate regular expression.

	 3. Use a RequiredFieldValidator control to ensure that data has been entered. Optionally, use
a RegularExpressionValidator control to verify that the user enters the account number in
the correct format on the client. Use a CustomValidator control, and write code to the
database to determine whether the account number is correct.

Case Scenario 2: Implementing a Site Map
■ You can use the TreeView control with the SiteMapDataSource control, and a SiteMapPath

control to display the breadcrumb path.

Case Scenario 3: Meeting Customization Requirements for an
Internal Insurance Application
	 1. You can use a combination of user profiles and customizable Web Parts to meet the

requirements.

	 2. Connected Web Parts can provide what you need. You can have a provider Web Part that
enables the Underwriter to choose a claim type, and consumer Web Parts that retrieve the
currently selected claim type and display related statistics.

 Chapter 6: Lesson Review Answers Answers	 897

Chapter 6: Lesson Review Answers

Lesson 1
	 1. Correct Answers: B and C

	 A. Incorrect: The language abbreviation must come before the .resx extension.

	 B. Correct: The default language extension should not have a language extension. This
way, both English users and all others will be given the settings in this file.

	 c. Correct: To create a German language resource file, you add the language extension (de)
between the file name and the .resx extension.

	 D. Incorrect: You do not need to add a language-specific resource file for the default
language. In addition, this site should have a default resource file specified.

	 2. Correct Answers: B and C

	 A. Incorrect: The Page.Culture property is used to define cultural formatting (such as how
numbers are formatted), not language.

	 B. Correct: The Page.UICulture property is used to define the language for the page.
ASP.NET will load the appropriate resource file based on this setting.

	 c. Correct: You should override the page’s InitializeCulture method to set the
Page.UICulture property.

	 D. Incorrect: The Page.ReadStringResource method is not related to defining a language.

	 3. Correct Answer: A

	 A. Correct: You do not need to reference the class / file name as Resources:<filename> when
explicitly binding to a local resource.

	 B. Incorrect: This syntax is not valid for local resources. You would use the class / file name
as Resources:<filename> when explicitly binding to a global resource.

	 c. Incorrect: The resource file / class name should come before the resource name when
using explicit localization in markup.

	 D. Incorrect: The resource file / class name should come before the resource name when
using explicit localization in markup. In addition, you only reference an actual file / class
name when using global resources.

	 4. Correct Answer: A

	 A. Correct: ASP.NET will automatically create a strongly typed object for global resources.
This object can be referenced as Resources.Resource for each value in your resource file.

	 B. Incorrect: You can create global resources by using strings. However, you need to call the
GetGlobalResourceObject method to load these.

	 c. Incorrect: You can create global resources by using strings. However, you need to call the
GetGlobalResourceObject method to load these.

	 D. Incorrect: ASP.NET does not create strongly typed properties inside the Resources class.
Instead, you must use the Resources.Resource object.

 898	 Answers

Lesson 2
	 1. Correct Answers: B and C

	 A. Incorrect: ASP.NET uses the Image.AccessKey parameter to provide a keyboard shortcut
for an image.

	 B. Correct: ASP.NET uses the Image.AlternateText parameter to create the alternative text for an
image. Screen readers typically describe images by using the alternative text.

	 c. Correct: DescriptionUrl links to an HTML page that provides a long description of an image.
ASP.NET uses this link to create the longdesc HTML attribute.

	 D. Incorrect: ToolTip is not related to accessibility. ToolTip defines data that Internet Explorer
displays when you point to an image.

	 2. Correct Answers: A and C

	 A. Correct: Controls such as Image provide properties that you can use to provide a
description for those who cannot see the image.

	 B. Incorrect: ASP.NET controls are not displayed in high contrast by default. However, they
are designed to support high-contrast mode by default.

	 c. Correct: Controls such as CreateUserWizard, Menu, SiteMapPath, TreeView, and Wizard
support skipping links.

	 D. Incorrect: ASP.NET controls do not display text in large font sizes by default. However, they
are designed to support browsers configured to display large font sizes.

	 3. Correct Answers: A, B, and D

	 A. Correct: Visual Studio can automatically test web applications for compliance with WCAG
Priority 1 guidelines.

	 B. Correct: Visual Studio can automatically test web applications for compliance with WCAG
Priority 2 guidelines.

	 c. Incorrect: ADA, the Americans with Disabilities Act, provides accessibility guidelines
for facilities, transportation, and more. However, it does not provide web application
accessibility guidelines.

	 D. Correct: Visual Studio can automatically test web applications for compliance with Section
508 guidelines.

Chapter 6: Case scenario Answers

Case Scenario 1: Upgrading an Application for Multiple
Languages
	 1. You can use local and global resources to provide translations for your website. Use local

resources to provide page-specific translations, and use global resources to provide phrases
that are used on multiple pages.

 Chapter 7: Lesson Review Answers Answers	 899

	 2. Translators need to update the local and global resource files. These are standard XML
files, so any XML editor can be used. You can also create an application to facilitate the
translations.

	 3. Web browsers often are configured for language preferences. ASP.NET can automatically
detect this preference and use the preferred language if the resource is available. Additionally,
you should allow a user to specify a language.

	 4. Specific cultures distinguish both languages and regional requirements, as opposed to
neutral cultures, which only distinguish the language.

Case Scenario 2: Making a Web Application Accessible
	 1. Visual Studio includes tools to test individual web pages. Additionally, you can configure Visual

Studio to automatically test an entire web application for Section 508 compliance during the
build process.

	 2. Accessible applications can be used with alternative input and display devices.

	 3. No, accessible applications do not require users with traditional input and display devices to
make any sacrifices. Most accessibility features take the form of hidden textual descriptions
and access keys, which users who do not need them will probably not notice.

	 4. You need to provide textual descriptions for all visual elements, such as forms, tables, and
images. Additionally, you should make the web application usable without a mouse.

Chapter 7: Lesson Review Answers

Lesson 1
	 1. Correct Answers: B and D

	 A. Incorrect: An ASPX page is a webpage in ASP.NET and not a user control. In addition,
you use the @Register directive to register a user control on a page, not to create one.

	 B. Correct: A user control’s associated code should inherit from the UserControl class.

	 c. Incorrect: A user control should inherit from the UserControl class. A webpage inherits
from the Page class.

	 D. Correct: An ASCX file with the @Control directive indicates to ASP.NET that the markup
contained in the file is a user control.

	 2. Correct Answers: B and D

	 A. Incorrect: This will not add the controls to the form. User controls must be added to a
form to operate.

	 B. Correct: Each control must be added to the form.

	 c. Incorrect: The form object does not support a LoadControl method.

	 D. Correct: You can load a user control dynamically by using the LoadControl method
of the page object.

 900	 Answers

	 3. Correct Answer: C

	 A. Incorrect: Although you could use this method, it would be difficult to do and certainly is
not the best way to accomplish this task.

	 B. Incorrect: Although you could use this method, it would be difficult to do and certainly is
not the best way to accomplish this task.

	 c. Correct: The templated user control exposes the data to the webpage designer, who can
then specify the format of the data in a template.

	 D. Incorrect: This user control does not natively expose the style property, and if you
choose to expose the property, you can only set an overall format for the user control,
not a format for each of the data elements that is being exposed.

	 4. Correct Answer: B

	 A. Incorrect: This will not allow a user to read and modify the user control’s TextBox control’s
Text properties as required.

	 B. Correct: This will ensure that a user is able to read and modify the values stored in the
TextBox control.

	 c. Incorrect: Controls inside a user control are, by default, private to the user control.

	 D. Incorrect: This will not allow a user to read and modify the user control’s TextBox control’s
Text properties as required.

Lesson 2
	 1. Correct Answers: B and C

	 A. Incorrect: Inheriting directly from WebControl will not allow you to extend the ASP.NET
Button control.

	 B. Correct: You inherit directly from a base control such as Button to extend its features.

	 c. Correct: You add your HTML to the output for the control by using the Render method.
You also must call the base render method to ensure that the control’s base rendering
gets sent to the page.

	 D. Incorrect: The RenderChildren method is used to render multiple child controls of your
custom web server control.

	 2. Correct Answers: B and D

	 A. Incorrect: There is no need to set a reference to this namespace.

	 B. Correct: This namespace is required for the ToolboxBitmap class.

	 c. Incorrect: The ToolboxData attribute is used to influence the markup when your control
is added to the page.

	 D. Correct: The ToolboxBitmap attribute allows you to define an image for your custom
control inside the Toolbox.

 Chapter 7: Case Scenario Answers Answers	 901

	 3. Correct Answer: D

	 A. Incorrect: This method does not send output to the browser.

	 B. Incorrect: This method does not send output to the browser.

	 c. Incorrect: This method does not send output to the browser.

	 D. Correct: The Render method must be overridden, and you must provide code to display
your control.

	 4. Correct Answer: A

	 A. Correct: The CreateChildControls method must be overridden with code to create the
child controls and set their properties.

	 B. Incorrect: This method is not used for creating child control properties.

	 c. Incorrect: This method is not used for creating child control properties.

	 D. Incorrect: This method is not used for creating child control properties.

Chapter 7: Case scenario Answers

Case Scenario 1: Sharing Controls Between Applications
	 1. You should consider developing a custom web server control. You should also make this a

composite control, because these types of controls can easily contain other controls and
the layout of the control is always consistent.

	 2. You would exclude creating a user control because it would not be reusable across
websites. A templated control is ruled out, because the goal is to keep the layout of
the control consistent.

Case Scenario 2: Providing Layout Flexibility
	 1. You should consider creating a user control, because this control is only within one site.

This can provide easier development and additional flexibility in change and deployment.

	 2. You should consider creating the control as a templated control. This will allow the users of
the control to manage the many layouts required by the site.

	 3. A user control inherits from the System.Web.UI.UserControl class.

 902	 Answers

Chapter 8: Lesson Review Answers

Lesson 1
	 1. Correct Answers: B and C

	 A. Incorrect: This will turn on debugging for the entire site.

	 B. Correct: Setting debug to false inside the compilation element of Web.config will turn
off debugging for the entire site.

	 c. Correct: Setting the debug attribute of the @ Page directive to true will turn on
debugging just for the selected page.

	 D. Incorrect: This will turn off debugging for the selected page.

	 2. Correct Answers: B and D

	 A. Incorrect: This action is used to define error-specific pages (not a sitewide default error page).

	 B. Correct: The defaultRedirect attribute of the customErrors element will set a default
sitewide error page.

	 c. Incorrect: You use statusCode to define an attribute of the error element to set specific
error pages based on HTTP status codes.

	 D. Correct: You can use the aspxerrorpath query string parameter to retrieve the requested
page to display on the default error page.

	 3. Correct Answers: B and C

	 A. Incorrect: You need to run the Remote Debugging Monitor on the server, not the debug
host computer.

	 B. Correct: Running the Remote Debugging Monitor on the server allows remote debugging
for a specified user with the appropriate rights.

	 c. Correct: You need to attach to the process on the server that is hosting the application.

	 D. Incorrect: Attaching to the browser’s process is valid only if you are debugging client-side
script. To debug the server-side code, you need to attach to the server process running
your application.

Lesson 2
	 1. Correct Answer: A

	 A. Correct: You can use ASP.NET tracing to view page life-cycle timings.

	 B. Incorrect: This might get the results, but it is a time-consuming effort and will not be as
accurate or as easy to maintain.

	 c. Incorrect: This attribute does not exist in the Web.config file.

	 D. Incorrect: There is no such setting in the website properties.

 Chapter 8: Lesson Review Answers Answers	 903

	 2. Correct Answer: D

	 A. Incorrect: In this option, tracing is disabled. The localOnly attribute is also set wrong.

	 B. Incorrect: This option has the wrong values for pageOutput and localOnly.

	 c. Incorrect: This option has the wrong value for mostRecent.

	 D. Correct: This option matches the requirements defined in the question.

	 3. Correct Answer: C

	 A. Incorrect: The Control Tree section shows information about each control on the webpage,
but not the posted data.

	 B. Incorrect: The Headers Collection section does not contain the posted data.

	 c. Correct: The Form Collection section contains the posted data.

	 D. Incorrect: The Server Variables section does not contain the posted data.

	 4. Correct Answer: D

	 A. Incorrect: This is a base web event class that includes request data.

	 B. Incorrect: This is a base web event class for logging audit events.

	 c. Incorrect: This class sends an event when the website starts, stops, or processes another
significant event.

	 D. Correct: This class sends an event when a user successfully authenticates with the website.

Lesson 3
	 1. Correct Answer: A

	 A. Correct: Any installation changes you make should occur in the Install phase.

	 B. Incorrect: If you can divide an aspect of setup into separate installation and commit phases,
you should do so. However, registry entries are simple changes that can be made entirely in
the Install phase.

	 c. Incorrect: The Rollback phase is used to remove changes made during the Install phase if
setup is cancelled or otherwise fails.

	 D. Incorrect: The Uninstall phase is called when a user removes an application from Add Or
Remove Programs.

	 2. Correct Answer: C and D

	 A. Incorrect: You would perform the initial change in the Install phase and record the previous
value so that it could be removed later. However, you do not undo your registry modifica-
tion in this phase.

	 B. Incorrect: The Commit phase finalizes setup changes and should not be used for undoing
setup modifications.

	 c. Correct: The Rollback phase is used to remove changes made during the Install phase if
setup is cancelled or otherwise fails. Therefore, you should undo your registry modification
here if the change has already taken place.

	 D. Correct: The Uninstall phase is called when a user removes an application with Add Or
Remove Programs. Therefore, you should undo your registry modification here.

 904	 Answers

	 3. Correct Answer: C

	 A. Incorrect: Setup projects are used to deploy Windows Forms applications, not websites.

	 B. Incorrect: Web Setup Projects package websites in executable setups and Windows
Installer files. You can use a Web Setup Project to deploy a website to a web server.
However, it does not assist the development process by detecting versioning conflicts.

	 c. Correct: The Copy Web tool detects when a version of a file has been modified on the
web server after it is synchronized with the local copy of a file. Therefore, it can detect
versioning conflicts when multiple developers work on a single site.

	 D. Incorrect: The Publish Web Site tool is used to precompile and deploy websites. It does
not have the ability to detect versioning conflicts.

	 4. Correct Answer: D

	 A. Incorrect: Setup Projects are used to deploy Windows Forms applications, not websites.

	 B. Incorrect: Web Setup Projects package websites in executable setups and Windows
Installer files. You can use a Web Setup Project to deploy a website to a web server;
however, it does not precompile the website.

	 c. Incorrect: The Copy Web tool detects when a version of a file has been modified on
the web server after it was synchronized with the local copy of a file. It does not enable
you to precompile the website, however.

	 D. Correct: The Publish Web Site tool is used to precompile and deploy websites. Precom-
piling reduces the delay when the first user to visit the website requests a webpage,
improving initial responsiveness of a site.

Chapter 8: Case scenario Answers

Case Scenario 1: Debugging
	 1. Edit the Web.config file and set debug to false for the compilation element.

	 2. Create a default error page. Add a customErrors element to the Web.config file. Set the
defaultRedirect attribute to the name of the default error page.

	 3. Set the mode attribute of the customErrors element to RemoteOnly.

	 4. Run the Remote Debugging tool (msvsmon.exe) on the staging server. Connect to the
ASP.NET process on the staging server from Visual Studio.

	 5. You can use Web.config transformations (if you use the Publish Web dialog box) or Web.config
replacements (if you use a Web Deployment Project) to automatically update the development
environment’s Web.config file for production use.

 Chapter 9: Lesson Review Answers Answers	 905

Case Scenario 2: Troubleshooting
	 1. Turn tracing on for the site by setting the enabled attribute of the trace element to true inside

the Web.config file. In addition, set the localOnly attribute to true to enable tracing only for
local users.

Note that you cannot set tracing on at the page level in this scenario. Doing so will override
any settings in the Web.config file and output trace information on the page for any users
who display the page.

	 2. Add child rule elements to the <healthMonitoring> element in the Web.config file. Also set
the <healthMonitoring> element’s enabled attribute to true.

Case Scenario 3: Deploying a Website
	 1. You can use either the Copy Web tool or the Publish Web Site tool to update the staging server.

However, the Copy Web tool is more bandwidth-efficient because it only copies changed files.

	 2. The Publish Web Site tool is the best tool for the quality assurance people to use to update the
production web server. It enables the site to be precompiled, which can improve performance.

Chapter 9: Lesson Review Answers

Lesson 1
	 1. Correct Answers: A and C

	 A. Correct: The UpdatePanel control will enable the portion contained inside the panel to
update independently of the rest of the page.

	 B. Incorrect: The AsyncPostBackTrigger control is used to allow a control outside the
UpdatePanel to trigger an update to the UpdatePanel. This is not a requirement of this
scenario.

	 c. Correct: Every AJAX page must have a ScriptManager control to manage the JavaScript
files sent to the client and the communication between client and server.

	 D. Incorrect: The ScriptManagerProxy control is used for creating AJAX-enabled child pages
of a master page or user controls. Neither is a requirement of this scenario.

	 2. Correct Answers: A, B, and D

	 A. Correct: An UpdatePanel control can be used to update only the portion of the page.

	 B. Correct: A Timer control can be used to retrieve updates from the server on a periodic
basis.

	 c. Incorrect: Using a ScriptManager control on a user control prevents the user control from
being added to a page that already contains a ScriptManager control.

	 D. Correct: The ScriptManagerProxy control is used to avoid conflict with a ScriptManager
control that is already on a containing page.

 906	 Answers

	 3. Correct Answer: D

	 A. Incorrect: The UpdatePanel control does not have an AsyncPostBackTrigger attribute.

	 B. Incorrect: A Button control does not have an AsyncPostBackTrigger attribute.

	 c. Incorrect: An AsyncPostBackTrigger control should be added to the Triggers collection,
and not the other way around.

	 D. Correct: An AsyncPostBackTrigger control should be added to the Triggers collection of
the UpdatePanel. You then set the ControlID property to the Button control’s ID.

	 4. Correct Answer: B

	 A. Incorrect: A nested UpdatePanel control will be shown to the user at all times. It will not
be simply a part of the progress indicator.

	 B. Correct: An UpdateProgress control is used to display text or graphics during a partial-
page update. The DisplayAfter attribute controls how long the page waits from the start
of the request until it displays the progress indicator. If the request returns during this
time, the progress indicator is not shown.

	 c. Incorrect: A ProgressBar is a Windows (not web) control.

	 D. Incorrect: You cannot set two controls to have the same ID on the page. This will cause
an error. In addition, the UpdatePanel does not have an Interval property.

Lesson 2
	 1. Correct Answer: A

	 A. Correct: You must derive from the Sys.UI.Control class to create an AJAX UI control.

	 B. Incorrect: This call simply indicates that you intend to implement the IDisposable interface.
It does not indicate inheritance of the Sys.UI.Control, which is required to extend a DOM
element.

	 c. Incorrect: This call creates your class without inheritance. To extend a DOM element, you
should inherit from Sys.UI.Control.

	 D. Incorrect: This call creates a control that is meant to work as a behavior and not just a UI
control.

	 2. Correct Answer: B

	 A. Incorrect: The endRequest event fires when the postback has completed (and is over).

	 B. Correct: The pageLoading event fires when the postback first comes back from the server.

	 c. Incorrect: The pageLoaded event fires when the postback comes back from the server
and the content has been updated in the browser (after pageLoading).

	 D. Incorrect: The beginRequest event fires as the postback is being sent to the server.

	 3. Correct Answer: C

	 A. Incorrect: You need a ScriptManager control on the page to use the Microsoft AJAX
Library. In addition, your scripts must be registered with the ScriptManager control.

	 B. Incorrect: You must explicitly register your .js files with the ScriptManager.

 Chapter 9: Lesson Review Answers Answers	 907

	 c. Correct: To use a .js file that targets the Microsoft AJAX Library, you set a reference to it
inside a ScriptManager control. You do so through the <asp:ScriptReference /> element.

	 D. Incorrect: The ScriptReference class is used from a custom control (and not a page) to
reference and embed a .js file.

	 4. Correct Answers: B and D

	 A. Incorrect: A behavior is meant to extend multiple controls. Therefore, it is not specific to a
single control as this would imply.

	 B. Correct: A behavior is implemented by inheriting the ExtenderControl class.

	 c. Incorrect: The IScriptControl interface is implemented for custom UI controls. It is not
used for a behavior control.

	 D. Correct: The TargetControlType attribute is used by a behavior control to allow users to
attach a behavior to a control.

Lesson 3
	 1. Correct Answer: B

	 A. Incorrect: The example does not tell you the ID of the <h2> tag. Also, the .fadeIn() method
does not take numeric values.

	 B. Correct: You can use the :first keyword to indicate the first instance of a tag. You can then
pass the name “slow” to the .fadeIn() method to handle the animation.

	 c. Incorrect: This dot notation is used for selecting elements based on cascading style sheet
class names. Also, the .fadeIn() method does not take numeric values.

	 D. Incorrect: The .fadeIn() method does not take numeric values.

	 2. Correct Answers: A and B

	 A. Correct: You can use the .bind() method to bind code to a selected element’s event.

	 B. Correct: The .ready() event indicates the DOM has been loaded.

	 c. Incorrect: The .load() event indicates that an element (and not the DOM) has been loaded.

	 D. Incorrect: The .add function allows you to add elements to found items. This would not
bind an event.

	 3. Correct Answer: A

	 A. Correct: This code looks up the city code by state, by using the ASPX page.

	 B. Incorrect: This code uses an ASMX service (not the page). It also uses the state variable
and not the data variable for the results.

	 c. Incorrect: This code appends the state name to the URL rather than passing this value
through the data setting.

	 D. Incorrect: This code does not correctly pass the data setting. It is missing single quotes
and braces.

 908	 Answers

	 4. Correct Answer: D

	 A. Incorrect: The $.post() method will send an HTTP POST request to the server.

	 B. Incorrect: The $.getScript() method is used to load a JavaScript file.

	 c. Incorrect: The $.getJSON() method is used to get a JSON formatted message from
the server.

	 D. Correct: The $.get() method sends an HTTP GET request to the server to retrieve HTML,
text, XML, script, and JSON files.

Chapter 9: Case scenario Answers

Case Scenario 1: Using the ASP.NET AJAX Extensions
	 1. The UpdatePanel control will allow you to encapsulate the grid control and execute its updates

independent of the rest of the page. This will speed up these updates and keep the user’s
context within the page.

	 2. You must add a ScriptManager control to the page to use ASP.NET AJAX.

	 3. The UpdateProgress control can be used to notify the user as to the progress of the partial-
page update.

Case Scenario 2: Using the Microsoft AJAX Library
	 1. The clock should be implemented as a Sys.UI.Control class so that it can be used across pages

of the site and provide a UI for a single control. The highlight object should be written as a
Sys.UI.Behavior class because it extends the behavior of multiple controls. The validation logic
does not have a UI. Therefore, you can implement it as a Sys.Component class.

	 2. The highlight control should be implemented as a custom server control. if you do so, it would
inherit the ExtenderControl class. You could also consider wrapping the clock control as a
custom server control. If you do, it would inherit from a control such as the Label control
(or similar). You would also implement the IScriptControl interface.

Case Scenario 3: Using jQuery
	 1. To bind to the click event for the image control, you should find it by ID and then create a

function bound to the click event, as in $(“#ImageBike”).click(function (){... . To ensure that the
DOM has been loaded, wrap your code inside the document’s ready event, as in $(document).
ready(function() {... . You can use the event.pageX and event.pageY parameters inside the
click event to determine the location of the mouse click. The following shows an example
of using these methods:

$("#ImageBike").click(function (ev) {
 alert("x:" + ev.pageX + ", y:" + ev.pageY);
});

 Chapter 10: Lesson Review Answers Answers	 909

	 2. You can use the $.ajax() jQuery method to call the web service. You would set the dataType to
JSON, type to POST, and pass the url and data parameters to the service. You should ensure
that the web service has the System.Web.Script.Services.ScriptService attribute so it can be
called from jQuery.

	 3. You have many options here, including .show(), .animate(), .slideDown(), and .fadeIn().

Chapter 10: Lesson Review Answers

Lesson 1
	 1. Correct Answer: C

	 A. Incorrect: You need to capture the request for the custom MIME type within your applica-
tion. The IPartitionResolver interface has nothing to do with that process.

	 B. Incorrect: An HTTP module will respond to all requests sent to the application for appli-
cation events to which you subscribe. In this scenario, you need only respond to requests
based on the file type, .docx.

	 c. Correct: You create a custom HTTP handler to respond to specific file types such as .docx.

	 D. Incorrect: This is a factory class. It is used to create classes that dynamically manufacture
new instances of classes that implement the IHttpHandler interface.

	 2. Correct Answers: B and D

	 A. Incorrect: You use the <httpHandlers/> section when configuring an HTTP handler to
work with IIS 6.0 or the classic mode of IIS 7.0.

	 B. Correct: You use the <handlers/> section when configuring an HTTP handler to work
with IIS 7.0 running in integrated mode.

	 c. Incorrect: You add an <httpHandlers/> section to the <system.Web/> section when
configuring an HTTP handler to work with IIS 6.0 or the classic mode of IIS 7.0.

	 D. Correct: You add a <handlers/> section to the <system.WebServer/> section when
configuring an HTTP handler to work with IIS 7.0 running in integrated mode.

	 3. Correct Answers: B and D

	 A. Incorrect: The IHttpHandler interface is used to create HTTP handlers. In this case, you
need an HTTP module to handle each request for the application.

	 B. Correct: You override the IHttpModule.Init method to indicate which application events
to intercept.

	 c. Incorrect: The ProcessRequest method is used to send a response for an HTTP handler. In
this case, an HTTP module is required.

	 D. Correct: You implement the IHttpModule interface to create an HTTP module for handling
application events for each request.

 910	 Answers

Lesson 2
	 1. Correct Answer: B

	 A. Incorrect: The WebServiceAttribute class is used to mark a class as a web service. It does
not provide a base class and does not allow for access to ASP.NET features.

	 B. Correct: The WebService class is a base class that will allow your web service to have
access to session state and more.

	 c. Incorrect: The WebMethodAttribute class is used to tag public methods as web services.

	 D. Incorrect: To get easy access to the ASP.NET objects, you should inherit from WebService.
This will give you access similar to the access you get when inheriting from the Page object
for webpages.

	 2. Correct Answers: B and D

	 A. Incorrect: The Add Reference dialog box is used for referencing DLL files.

	 B. Correct: The Add Web Reference dialog box will find the web service and its description
and generate a proxy for use by your website.

	 c. Incorrect: To call a web service, you simply call the generated proxy class.

	 D. Correct: The proxy class will provide access to the web service.

	 3. Correct Answer: C

	 A. Incorrect: Windows Basic would send unencrypted passwords over the Internet. This
would invite tampering.

	 B. Incorrect: Windows Digest works only with systems based on Windows.

	 c. Correct: Client certificates can be secured and verified by a third party.

	 D. Incorrect: A custom SOAP header might be a viable option. However, it is not, by
default, verifiable as trusted.

	 4. Correct Answers: A, B, C, and D

	 A. Correct: The ScriptService class indicates that the web service can be called from
client script.

	 B. Correct: You write client-side JavaScript to call the service proxy created by the
ScriptManager class, which in turn calls your service directly.

	 c. Correct: You set a reference to the ASMX service from the ScriptManager. This tells the
ScriptManager to generate a client proxy for calling the web service.

	 D. Correct: If you intend to use ASP.NET AJAX for calling a web service from client script,
both the client and the service must be in the same domain.

 Chapter 10: Lesson Review Answers Answers	 911

Lesson 3
	 1. Correct Answer: B

	 A. Incorrect: The WCF Service library creates a DLL for your service. You can still reference
this from a website and therefore host in IIS. However, you are not taking advantage of
the ASP.NET programming model in this case.

	 B. Correct: A WCF service application is an ASP.NET website that is set up to define and
expose WCF services.

	 c. Incorrect: The ASP.NET Web Service application project is used for creating XML web
services with ASP.NET (and not WCF services).

	 D. Incorrect: A Windows Service application is used to create a Windows service (and not a
WCF service). A Windows service can, however, host a WCF service outside of IIS.

	 2. Correct Answers: A and D

	 A. Correct: The DataContract attribute class indicates that your class can be serialized
with WCF.

	 B. Incorrect: ServiceContract is used to define a WCF service class.

	 c. Incorrect: OperationContract is used to define a service method.

	 D. Correct: The DataMember attribute indicates public members that should be serialized
as part of the DataContract.

	 3. Correct Answers: A and C

	 A. Correct: You create a WCF data service by inheriting from DataService.

	 B. Incorrect: The DataContract class is used to indicate a class that can be serialized to
work with WCF.

	 c. Correct: You set access rules to govern how your data is used inside the InitializeService
method of the data service.

	 D. Incorrect: The Init method is applicable to HTTP modules that implement IHttpModule
(and not data services).

	 4. Correct Answers: B, C, and D

	 A. Incorrect: A web reference is used for XML web services (and not WCF services).

	 B. Correct: A service reference will generate a proxy to call the data service.

	 c. Correct: You pass a URI object as a parameter to the data service proxy. This URI should
point to your service.

	 D. Correct: The System.Data.Services.Client namespace includes classes such as
DataServiceQuery that are used to access the data exposed by the service.

 912	 Answers

Chapter 10: Case scenario Answers

Case Scenario 1: Working with HTTP Requests
	 1. You should create an HTTP handler. This class would implement the IHttpHandler interface,

which includes the ProcessRequest method. You would add code to the ProcessRequest
method to generate the XPS document and transmit it as part of the response. You would
then register the handler in the Web.config file to indicate that it should be called for all
requests made for files of type XPS.

	 2. You should implement the custom security and logging feature inside an HTTP module. This
module would be called for all requests made to the site. You would register application events
inside the module’s Init event. You would then register the module in the Web.config file.

Case Scenario 2: Selecting a Service Model
	 1. Both ASMX and WCF services can be configured to work with this scenario. The current

requirements do not dictate that you need the features of WCF (such as multiple endpoints
for communicating across multiple channels). Therefore, you might lean toward building
these services with ASMX. Of course, you can also add WCF services to the same site.

	 2. All access to the services is done over the web. In addition, the application would benefit
greatly from the scalability of IIS, the caching in ASP.NET, session state management, and
more. Therefore, you should consider hosting the services in IIS.

	 3. You should consider exposing this data as WCF Data Services. This will ensure that partners
are able to easily work with this data with a wide variety of clients.

	 4. The user information can be stored by using ASP.NET sessions (in memory, in a proxy caching
server, or inside a Microsoft SQL Server database).

Chapter 11: Lesson Review Answers

Lesson 1
	 1. Correct Answers: A, B, C, and D

	 A. Correct: You can write LINQ queries against any object that implements IEnumerable or a
derivative. This includes the DataSet class.

	 B. Correct: You can write LINQ queries against any object that implements IEnumerable or a
derivative. This includes the List<T> class.

	 c. Correct: You can write LINQ queries against any object that implements IEnumerable or a
derivative. This includes the Array class.

	 D. Correct: You can write LINQ queries against any object that implements IEnumerable or a
derivative. This includes the Dictionary<TKey, TValue) class.

 Chapter 11: Lesson Review Answers Answers	 913

	 2. Correct Answers: A and D

	 A. Correct: In this query, the data is sorted first by county and then by city. These results
are then properly grouped by county.

	 B. Incorrect: This is a valid LINQ query. However, it actually sorts the groups by those
with the cities in ascending order. It does not sort the cities within the group (just the
groups themselves by their cities).

	 c. Incorrect: This is a valid LINQ query. However, it sorts the list twice by the same value
(County), because County is the key in the group collection.

	 D. Correct: This will produce the intended result of a list grouped by county, sorted by
county, and then sorted within the groups by city.

	 3. Correct Answer: D

	 A. Incorrect: The ToList method allows you to execute a LINQ query into a IEnumerable list.

	 B. Incorrect: The DataContractJsonSerializer object allows you to serialize and deserialize
objects into JSON formatted messages.

	 c. Incorrect: The XElement class allows you to work with XML and LINQ.

	 D. Correct: The Concat method allows you to join two lists together to form a single list.

Lesson 2
	 1. Correct Answer: B

	 A. Incorrect: You are using a strongly typed DataSet. Therefore, you would code against
the University.Property value directly.

	 B. Correct: You can write the query directly against the property because you are using a
strongly typed DataSet.

	 c. Incorrect: The DataTable represented by “u” is not a collection class of fields.

	 D. Incorrect: The strongly typed DataSet does not expose a Fields collection for working
with column properties.

	 2. Correct Answer: D

	 A. Incorrect: A DataSet object is used to represent in-memory versions of data tables.

	 B. Incorrect: The XElement class is used by LINQ to XML to work with XML data.

	 c. Incorrect: The ObjectContext class is used by the Entity Framework and LINQ to
Entities.

	 D. Correct: DataContext is the class from which LINQ to SQL O/R models derive.

 914	 Answers

	 3. Correct Answers: A, B, and C

	 A. Correct: The ObjectContext can be generated with a default constructor that connects
to the database by using a default connection string.

	 B. Correct: You can pass a connection string to the Entity Data Model to work with a specific
database connection.

	 c. Correct: You can pass an EntityConnection object to the Entity Data Model.

	 D. Incorrect: The ObjectContext does not include an overloaded constructor that takes a
DataContext in the constructor.

Chapter 11: Case scenario Answers

Case Scenario 1: Writing LINQ Queries
	 1. You can use LINQ to XML to return all students from the XML web service. You can do the same

to load the XML files from a directory; you can put this data into a common XML schema so
that both data sources can be appended and queried together.

	 2. You can query the data as IEnumerable<XElement>. You can use the XElement Descendants
and Element properties to query against the XML nodes.

Case Scenario 2: Working with LINQ and ADO.NET
■ You should consider LINQ to Entities. This way, you can write your application against a

common application model that is independent of the database technology. You can then
update the database schema and map when installing at each subsidiary.

Chapter 12: Lesson Review Answers

Lesson 1
	 1. Correct Answer: D

	 A. Incorrect: The ObjectDataSource control is used to connect data defined in a middle-
tier business object and not in an O/R map.

	 B. Incorrect: The SqlDataSource control can be used to connect to a SQL Server database.
However, in this case, it would ignore the O/R map.

	 c. Incorrect: The SiteMapDataSource control is used to connect to data found in a
sitemap file.

	 D. Correct: The LinqDataSource can be used to connect to a context map that is defined
for your database.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 12: Lesson Review Answers Answers	 915

	 2. Correct Answers: A and B

	 A. Correct: TypeName is used to indicate the name of the class you intend to use for your
object-based data source control.

	 B. Correct: SelectMethod is used to indicate a method on your object to be used for
selecting data.

	 c. Incorrect: The DataSourceId property is not part of the ObjectDataSource control.
Instead, it is used by a data-bound control to connect to a data source control.

	 D. Incorrect: The SelectParameters attribute is used to define parameters for your
ObjectDataSource select method. These parameters are optional and are not
mentioned in the question.

	 3. Correct Answers: B and C

	 A. Incorrect: There is no CacheTimeout attribute defined for data source controls.

	 B. Correct: The CacheDuration attribute defines the length of time that the data of the
control should be cached.

	 c. Correct: The EnableCaching attribute is used to turn on caching for a data source
control.

	 D. Incorrect: There is no DisableCaching attribute defined for data source controls.

	 4. Correct Answer: B

	 A. Incorrect: EntitySetName defines a table only (not a custom query) for the
EntityDataSource control.

	 B. Correct: The CommandText property can be used to define an entity SQL expression
as a custom query. You can use the parameter in the CommandText as @ParamName.

	 c. Incorrect: You define the parameters used by CommandText inside the
CommandParameters collection.

	 D. Incorrect: The parameter is named as ParamName. The @ ParamName is then used
inside the query to reference the named parameter.

Lesson 2
	 1. Correct Answers: B and C

	 A. Incorrect: The DataTextField is used to set the data displayed to the user. This would
display IDs to the user (and not names).

	 B. Correct: The DataTextField is used to display text to the user.

	 c. Correct: The DataValueField is used to return values for selected items.

	 D. Incorrect: The DataValueField is used to set the value returned for selected items. This
would return names, not IDs.

 916	 Answers

	 2. Correct Answers: C and D

	 A. Incorrect: The DetailsView control is used to show only one record at a time.

	 B. Incorrect: The Repeater control does not implicitly support the ability to edit data with a
data source control.

	 c. Correct: The GridView control allows for the display of multiple rows of data and allows
users to update that data.

	 D. Correct: The ListView implicitly supports displaying data in a list and updating that data.

	 3. Correct Answer: A

	 A. Correct: The DropDownList control can display a list that uses a minimum amount of space.

	 B. Incorrect: The RadioButtonList control does not provide a list in a minimum amount
of space.

	 c. Incorrect: The FormView control does not provide a list in a minimum amount of space.

	 D. Incorrect: The TextBox control does not provide a list.

Lesson 3
	 1. Correct Answers: A, B, and C

	 A. Correct: You use a partial class to extend auto-generated code for your data context.

	 B. Correct: You create a metadata class to be used for marking specific fields in your data
context with attributes. You use this class to decorate the Invoice partial class by using
MetadataType.

	 c. Correct: You use this class to indicate that InvoiceAnnotations defines the metadata to be
attached to the Invoice class.

	 D. Incorrect: You do not add this attribute to the class used to define the metadata. This attribute
can be used to indicate whether an individual entity should be included in the scaffold.

	 2. Correct Answer: D

	 A. Incorrect: The MetadataType attribute is used to indicate a metadata class to associate
with your data context type.

	 B. Incorrect: The Display attribute allows you to customize how a property is displayed—
for instance, by setting its name or order.

	 c. Incorrect: The Editable attribute class is used to indicate whether a property can be edited
by a user.

	 D. Correct: The UIHint attribute takes a name of a field template. Dynamic Data will use this
name to find your control in the FieldTemplates folder and render it accordingly.

	 3. Correct Answers: C and D

	 A. Incorrect: The field templates are used by all fields of type Integer within the site (and is
not limited to the InvoiceNumber field).

 Chapter 12: Case Scenario Answers Answers	 917

	 B. Incorrect: This event fires after the InvoiceNumber has already been changed. This is
too late for validation.

	 c. Correct: The OnInvoiceNumberChanging partial method allows you to validate the invoice
number before it is changed. To prevent the change, you need to throw an exception.

	 D. Correct: The ValidationException allows you to indicate a message to be displayed by
Dynamic Data if validation fails.

Chapter 12: Case scenario Answers

Case Scenario 1: Choosing Data Source Controls
	 1. The data is returned as XML. You could therefore configure an XML data source control to

work with this data. You can use the DataFile property to connect to the data.

	 2. A SqlDataSource control can be configured to provide access to this data.

	 3. You can configure an ObjectDataSource control to access the customer object.

Case Scenario 2: Implementing a Master-Detail Solution
	 1. A GridView is probably best suited to display the customers and orders, because the ability

to display this data as a list is a requirement.

	 2. The GridView does not natively support the ability to add new data records, but you can
modify the GridView to provide this functionality. You can also supply a Button control that
simply adds an empty data record and then places the record in edit mode.

Another solution is to provide a DetailsView control in addition to the GridView control for the
customers and orders. The DetailsView provides the ability to add new rows, and you can edit
all of the fields.

Case Scenario 3: Adding ASP.NET Dynamic Data to a Website
	 1. Because it is an existing site, you should copy the DynamicData folder from a blank Dynamic

Data site into your existing site. You should then create a DataContext or ObjectContent for
your database (if one does not already exist). Finally, you should edit the Global.asax file to
register a MetaModel and your DataContext.

	 2. You have a couple of options. First, you could add just those tables you want to expose to
your data context. You could then turn on scaffolding for all tables in the data context from
within the Global.asax MetaModel.RegisterContext code.

Alternatively, you could create partial classes to add metadata to your data context classes.
In these classes you could decorate each entity with the ScaffoldTable attribute and indicate
which tables to expose.

 918	 Answers

Chapter 13: Lesson Review Answers

Lesson 1
	 1. Correct Answer: A

	 A. Correct: User profiles are disabled by default for anonymous users. To enable anonymous
user profiles, add the <anonymousIdentification enabled="true" /> element to the
<system.Web> section of the Web.config file. Then in the <profile><properties> section,
add the variables you want to track and set allowAnonymous="true" for each variable.

	 B. Incorrect: You must specify the type of all variables except strings.

	 c. Incorrect: You must set allowAnonymous="true" for each variable that anonymous users
will access.

	 D. Incorrect: You must add the <anonymousIdentification enabled="true" /> element
to the <system.Web> section of the Web.config file. Additionally, you need to set
allowAnonymous="true" for each variable that anonymous users will access.

	 2. Correct Answers: A and B

	 A. Correct: Custom types that you want to use as profile properties must be marked as
serializable.

	 B. Correct: When you use a custom type, you must qualify it by namespace and class in the
type attribute of the profile property.

	 c. Incorrect: The group element is used to create a profile property group. It has nothing
to do with custom types.

	 D. Incorrect: You do not need to register a custom type with the Machine.config file in any way.

Lesson 2
	 1. Correct Answer: C

	 A. Incorrect: The Login control prompts the user for a user name and password.

	 B. Incorrect: The LoginView control enables you to display custom content for authenticated
or unauthenticated users.

	 c. Correct: The LoginStatus control displays “Login” with a link to a logon page if the user is
unauthenticated, or “Logout” to authenticated users.

	 D. Incorrect: The LoginName control displays the user’s name when he or she is authenticated.
The control is not visible when a user is not authenticated.

 Chapter 13: Lesson Review Answers Answers	 919

	 2. Correct Answers: A and D

	 A. Correct: The Login control is required on a logon page, because it prompts the user for a
user name and password.

	 B. Incorrect: The CreateUserWizard control enables a user to create an account. However, it
is a very large control, and a user should only need to access it once. Therefore, it should
be placed on its own page.

	 c. Incorrect: The LoginName control is not a good choice for a logon page because it
displays an authenticated user’s name. Because the user is not yet logged on when
accessing the logon page, there would not be a user name to display, and the control
would not be visible.

	 D. Correct: The PasswordRecovery control is a good choice for a logon page because it can
be used to recover a password if the user forgets his or her password.

	 3. Correct Answer: B

	 A. Incorrect: The Unload event is called when the control is unloaded and does not allow
you to redirect the user after a successful account creation.

	 B. Correct: After a user creates an account, he or she is notified of the successful account
creation and prompted to click Continue. The ContinueButtonClick event is called when
the user clicks that button.

	 c. Incorrect: The CreatedUser event is called when a user account is successfully created.
However, it is called before the user has been notified of the account creation. Therefore,
you should respond to ContinueButtonClick instead.

	 D. Incorrect: The Init event is called when the page is initialized, which would occur before
the user account had been created. Therefore, redirecting the user in response to this
event prevents him or her from being able to create an account.

	 4. Correct Answer: C

	 A. Incorrect: The asterisk (*) refers to all users, authenticated or unauthenticated. Therefore,
this Web.config file blocks all users.

	 B. Incorrect: The asterisk (*) refers to all users, authenticated or unauthenticated. Therefore,
this Web.config file grants access to all users without prompting them for credentials.

	 c. Correct: The question mark (?) refers to all unauthenticated users. Therefore, this
Web.config file correctly blocks unauthenticated access.

	 D. Incorrect: The question mark (?) refers to all unauthenticated users. Therefore, this
Web.config file grants access to unauthenticated users without prompting them for
credentials.

 920	 Answers

	 5. Correct Answer: B

	 A. Incorrect: Authenticated users who are not members of the FABRIKAM\Marketing group
are denied access, because the <deny users="*" /> element overrides the <allow users
="?" /> default element in the Machine.config file.

	 B. Correct: Only members of the FABRIKAM\Marketing group are allowed access, because
the settings in the <location> element override the settings in the parent folders.

	 c. Incorrect: The <deny users="*"> element in the <location> element blocks users who
are not members of the FABRIKAM\Marketing group.

	 D. Incorrect: The <allow roles="FABRIKAM\Marketing" /> element takes precedence over the
<deny users="*"> element, granting members of the FABRIKAM\Marketing group access.

	 6. Correct Answer: D

	 A. Incorrect: Unauthenticated users do not have access because the Web.config file denies
them access. Additionally, NTFS permissions also deny them access.

	 B. Incorrect: Authenticated users do not have access because the Web.config file denies
them access to the Marketing folder. Additionally, NTFS permissions deny them access,
because the NTFS permissions grant access only to John and Sam.

	 c. Incorrect: Members of the Domain Users group do not have access because the
Web.config file denies them access to the Marketing folder. Additionally, NTFS
permissions also deny them access, because the NTFS permissions grant access
only to John and Sam.

	 D. Correct: John has access because he is granted permissions through ASP.NET because
of his membership in the FABRIKAM\Marketing group. Additionally, he is granted NTFS
permission to access the folder.

	 E. Incorrect: Sam does not have access because the Web.config file denies him access to the
Marketing folder. However, he can access the webpages from a shared folder, because
NTFS permissions grant him access. Only ASP.NET blocks access.

Chapter 13: Case scenario Answers

Case Scenario 1: Configuring Website Authorization
	 1. Your Web.config file should resemble the following.

<configuration>

 <system.web>
 <authentication mode="Windows" />
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>

 Chapter 13: Case Scenario Answers Answers	 921

 <location path="IT">
 <system.web>
 <authorization>
 <allow roles="SOUTHRIDGE\IT" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>

 <location path="Production">
 <system.web>
 <authorization>
 <allow roles="SOUTHRIDGE\Production" />
 <allow users="SOUTHRIDGE\TJensen" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>

 <location path="Sales">
 <system.web>
 <authorization>
 <allow users="SOUTHRIDGE\TJensen" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
</configuration>

You also could have explicitly created a <location> section for the CustServ folder. However,
because its permissions are identical to those of the parent folder, creating the <location>
section is unnecessary.

	 2. You can use NTFS file permissions to further restrict access to the folders. This would provide
multiple layers of protection, a security technique known as defense-in-depth.

Case Scenario 2: Configuring Website Authentication
	 1. You should use Windows authentication, because you need the user to provide Windows

credentials that the application can use to access the file.

	 2. You should configure the <authentication> and <authorization> sections as follows.

<configuration>
 <system.web>
 <authentication mode="Windows" />
 <authorization>
 <deny users="?" />
 </authentication>
 </system.web>
</configuration>

 922	 Answers

Chapter 14: Lesson Review Answers

Lesson 1
	 1. Correct Answers: B and C

	 A. Incorrect: The default routing for ASP.NET MVC is based on naming conventions. You
need to create the controller, action method, view folder, and view according to conven-
tion. Answer A creates a controller and action method, but these do not match another
answer in the list.

	 B. Correct: This naming convention would be the most logical for the controller and action
method. It also matches answer C.

	 c. Correct: This naming convention would be the most logical for the view folder and view.
It also matches answer B.

	 D. Incorrect: The default routing for ASP.NET MVC is based on naming conventions. You
need to create the controller, action method, view folder, and view according to conven-
tion. This answer creates a view folder and view, but this view would not be located when
the ASP.NET MVC routing handler tried to match the desired view to the controller.
Routing is based on file location and name, and this answer uses an incorrect name.

	 2. Correct Answers: B, C, and D

	 A. Incorrect: You need to define an Areas folder. This folder should contain subfolders, each
based on a logical area in your site.

	 B. Correct: The RegisterAllAreas() method ensures that each area’s routes are registered by
ASP.NET MVC.

	 c. Correct: Each area folder contains its own Controllers, Models, and Views folders.

	 D. Correct: You add subareas to the Areas folder in the root of your site.

	 3. Correct Answers: A and B

	 A. Correct: You can use the ViewData collection to pass data to be read by the view.

	 B. Correct: You use inline code to work with data passed to the view. In this case, you
would write the following to display the view data.

<%: ViewData("ItemName") %>

	 c. Incorrect: You do not instantiate views and pass constructors by using standard
ASP.NET MVC.

	 D. Incorrect: By default, ASP.NET MVC views use the single-page model, and thus would
use an inline code and markup style, not a code-behind file.

 Chapter 14: Lesson Review Answers Answers	 923

Lesson 2
	 1. Correct Answer: B

	 A. Incorrect: You can return a different view by passing its name. However, you cannot call a
controller and an action method in this way.

	 B. Correct: The redirect helper method uses the RedirectResult ActionResult to redirect to
another action method based on the URL.

	 c. Incorrect: You cannot use Response.Redirect to call a controller and action method by
using the query string and page name.

	 D. Incorrect: The Content helper method uses ContentResult to return a different content
type as a result of an action method.

	 2. Correct Answer: D

	 A. Incorrect: The controller name should not include the Controller suffix in the route
table.

	 B. Incorrect: The default values do not match the parameter key names.

	 c. Incorrect: This route does not define default parameter values.

	 D. Correct: This will create a route that includes the default values for calling DefaultController
and the Default action method (which will return the Defaul.aspx view).

	 3. Correct Answers: A and B

	 A. Correct: You indicate that your view page inherits from the generic
ViewPage<TModel>, as in ViewPage<Customer>.

	 B. Correct: You pass the type as a parameter to the ViewResult, as in View(cust).

	 c. Incorrect: This will pass the data. However, it will not make the view strongly typed
to an element from your model.

	 D. Incorrect: There is no such attribute. However, this is an option (View Data Class)
in the Add View dialog box for creating strongly typed views.

 924	 Answers

Chapter 14: Case scenario Answers

Case Scenario: Creating an ASP.NET MVC Application
	 1. You should create a controller for each entity in the requirements: ProductController,

InventoryController, SupplierController, and OrderController.

	 2. You should create the following subfolders and views.

 Views
 Product
 Index.aspx
 Details.aspx
 Inventory
 Index.aspx
 Details.aspx
 Edit.aspx
 Supplier
 Index.aspx
 Details.aspx
 Edit.aspx
 Create.aspx
 Order
 Restock.aspx

	 3. You should consider a mix of custom classes and a generated model. You might use a custom
class to work with the product database web services. You might then generate a model by
using the ADO.NET Entity Framework for your new database tables.

	 4. You should consider strongly typing your views. This will allow you to more rapidly build your
application.

	 5. You might implement ASP.NET MVC areas to subdivide your application, given the anticipated
size of the project and the development team.

925

symbols
@ Control directive, 332
@ Page directive

Debug attribute, 391
MVC views and, 857

@ Register directive, 265, 339, 378
$.ajax() method, 535–537
$create method, 498

A
About method of HomeController class, 840
absolute positioning, avoiding, 304
ACCDB files, 702
Access

connecting to, 702
database engine, 702

access rules
creating, 806–807
creating (practice), 822–824

AccessDataSource control
configuring, 702
explained, 702

accessibility
benefits of, for all users, 318
controls and, 313–314
guidelines for, 313
keyboard shortcuts, 316–317
practice for, 322–324
Rehabilitation Act standards, 313
testing, 318–320
visual, 314–315

Accessibility Validation dialog box, 319
AccessKey property of controls, 166, 167, 316

action filters (MVC), 856
ActionLink method of HtmlHelper class, 858
ActionResult class, 853
ActionResult objects, 836
ActiveViewIndex property of View control, 208
Add method of Datatable.Rows object, 652
AddUserToRole method of Roles class, 816
administrative privileges, setting launch condition

for, 431
ADO.NET Entity Data Model. See Entity Framework (EF);

LINQ to Entities
AJAX

advantages of, 454
calling REST services from, 606–607
class libraries, creating, 513
client components, 495–492, 495–496
client components, creating (practice), 504–505
client life cycle events, 493–494
jQuery and, 535–539
in master pages, 459
Microsoft AJAX Library, 456, 458
overview of, 455
user control functionality, 459
uses for, 457
web services and, 583–585

AJAX applications
debugging, 409
tracing, 409

AJAX client controls
connecting with DOM elements, 498–499
creating, 496–498, 502–503, 505
creating (practice), 507–510
embedding as custom controls, 512–517
implementing on webpages, 498–499, 510–512,

517–518
AJAX Control Toolkit, 456

Index

 Contents

Index
925

926

AJAX Library
browser compatibility, 484
class inheritance, 490, 491, 498
client objects, 494
creating classes in, 487, 492
enumerations, 490–491
features and benefits, 484
files comprising, 484
functions, overriding, 491
globalization support, 484
interfaces, 490–491
namespaces, 485–486
overview of, 456
properties, naming, 488
pushing to client, 458
reference for, 486
referencing, 495
referencing (practice), 508
registering classes with, 490, 498
registering classes with (practice), 505, 510
registering events, 493
registering interfaces with, 491
unregistering events, 493
uses for, 486

AJAX server controls
base objects, 494
class inheritance, 458
connecting with DOM elements, 498–499
overview of, 456, 457–458
ScriptManager, 458

AjaxEnabled conflicts, 518
Align property of tables, avoiding, 304
aligning images, 190
AllowPartiallyTrustedCallers property, 442
AllowPasswordChange function, 489
AlternateText property of Image control, 190, 314
ampersands in query strings, 135
animations, adding to pages, 533–534
anonymous user profiles

authorizing, 819
enabling, 793, 794–795
enabling (practice), 798–802
impersonating, 821
migrating, 795

AnswerLookupError event of PasswordRecovery
control, 812

App_LocalResources folder, 293

App_Themes folder, 61
application caching, 75. See also Cache object
Application collection, 103
application events, 101–102
application extension mapping, 556–557
application MIME type, 9
Application object, 493
application state

overview of, 144
reading/writing data for, 103
vs. session state, 144
storing data in (practice), 151–152
temporary nature of, 145

application users, counting, 103
application variables, 49–50
ApplicationManager class, 100
applications. See web applications
ApplyStyleSheetSkin method of Control object, 106
AreaRegistration class, 839
arrays, LINQ queries against, 628
ASCX files, 331

in MVC, 865–866
overview of. See user controls

ASHX files, 557. See also HTTP handlers
ASMX files. See also web services

adding, 576
defined, 576

ASP pages, converting to ASP.NET, 178–179
ASP.NET

configuration files. See configuration files
debugging, 6
installing on IIS, 442–443
special folders, 23

ASP.NET 3.5, reverting to rendering engine, 166
ASP.NET application life cycle, 100–103
ASP.NET Dynamic Data

adding to existing website, 777
advantages of, 755
classes, 762
creating website, 756–758
creating website (practice), 780–781
custom page templates, 775–776
custom routing, 763–765
CustomPages folder, 775
enabling, 778–779
field template user controls, creating, 773
field templates, 772

AjAX Library

927

architecture of, 833–834
area mapping, 839
HtmlHelper class, 858–859
master pages in, 857
model, 834
model, creating custom, 848
namespaces, 839
overview of, 831, 832
partially generated model, 849–850
placeholders, 867
project template folders, 838
registering routes, 867
request life cycle, 834–835
route constraints, 868
route handling, preventing, 868–869
route parameters, 867
route segments, 867
routing in, 835–836
URL patterns, 867
validating model, 850–851
web application, creating (practice), 842–843,

870–871
ASP.NET pages. See ASPX pages
ASP.NET State Service, 148
ASP.NET websites

adding webpages to (practice), 31
ASPX pages. See ASPX pages
code languages in, 25
compiling, 28
configuration files. See configuration files
creating, 16
creating (practice), 30–31
default objects, 22
deploying, 418–425
error pages. See error pages
file-system-based, 15, 17–19
FTP-based, 15, 21
HTTP-based, 15
precompiling, 28, 441–442
project files, 22
special folders, 23
as startup project, setting, 382
user interface. See user interface
varying appearance by user. See themes
vs. web applications, 16–17

aspnet_regiis.exe, 442
Aspnet_regsql.exe, 791

field templates, customizing, 772–773
folder contents, 758
ListDetails.aspx file, 764
metadata annotation classes, 768–769
overview of, 755
route table, editing, 764
structure of, 756–758
template user interface, 761
templates for, 756
URI structure, editing, 764
validation, 769–771

ASP.NET master pages
advantages of, 43, 44
AJAX support and, 459
attaching to content pages, 48
class derivation, when multiple, 50
class inheritance, 44
control required for, 48
controls, referencing from content pages, 51
creating, 45–46
creating (practice), 54–57
dependencies on content pages, managing, 49
dynamically changing, 52–53
dynamically changing (practice), 57–58
example of, 45–46
file extension for, 44
InitializeCulture event and, 307
JavaScript references to controls in, 476
multiple, 50
in MVC, 857
nesting, 51–52
overview of, 44–45
public properties in, 49–50
referencing properties from content pages, 48–49, 50
reloading automatically after changes, 57
run time processing of, 45
selecting for ASPX pages, 47
settings inheritance, 47
style sheet reference in, 54
<title> tag, 46
varying by situation, 52–53

ASP.NET MVC
action filters, 856
action methods, 840
advantages of, 832
application areas, 838–839
application structure, 837–838

Aspnet_regsql.exe

928

authentication. See also authorization
cookies for, 814
defined, 818
enabling with Web Parts (practice), 278
forms, 813–814
logon controls, 807–808
logon pages, 810
overview of, 787
for remote debugging, 395
responsibility for, 788
of servers, 4, 5
sliding expiration, 814
timeout, resetting, 814
type, selecting, 804–805
type, selecting (practice), 822–824
user preference, setting, 808
of users, 4
of web services, 586
Windows, 817

authorization. See also authentication
access rules, creating, 806–807
of anonymous users, 819
defined, 818
of folders/files, 819–820
Machine.config section, 818
settings inheritance, 820
of users, 4
Web.config section, 818
Windows permissions and, 818, 821

automatic postback, 112
AutoPage attribute of EntityDataSource control, 706
AutoPostBack property, 112
AutoSort attribute of EntityDataSource control, 706

b
BackColor property of controls, 165
back-end, 3. See also servers
background color, accessibility considerations, 314
BackImageUrl property of Panel control, 205
bandwidth considerations

overview of, 81
state management and, 122

BaseDataBoundControl class, 722
BeginForm method of HtmlHelper class, 858
BeginProcessRequest method, 559, 565

ASPNETDB database, 264
ASPX pages. See also webpages

code section, 23, 27
converting ASP pages into, 178–179
creating, 27–28
page directives, 27
page layout, 23, 27
single-file vs. code-behind, 23–26

aspxErrorPath parameter, 393
assemblies

overview of, 29
referencing JavaScript in, 478
signing, 442
strong naming, enabling, 442

AssociatedControlID property of controls, 167
AssociatedHeaderCellID property of TableCell

control, 315
AssociatedUpdatePanelId property of UpdateProgress

control, 462
Association class, 768
asynchronous handlers

creating, 558–564
overview of, 558
webpages as, 564–566

Asynchronous Javascript and XML (AJAX)
advantages of, 454
calling REST services from, 606–607
class libraries, creating, 513
client components, 495–492, 495–496
client components, creating (practice), 504–505
client life cycle events, 493–494
jQuery and, 535–539
in master pages, 459
Microsoft AJAX Library, 456, 458
overview of, 455
user control functionality, 459
uses for, 457
web services and, 583–585

asynchronous postbacks, allowing users to cancel,
463, 494

asynchronous programming
benefits and drawbacks of, 558
overview of, 558

asynchronous webpages, creating, 564–566
audio MIME type, 9
Authenticate method of FormsAuthentication

class, 814

AsPnETDb database

929

Button.CausesValidation property, 177
Button.Click event, 107, 111, 176
Button.Command event, 176
Button.CommandArgument property, 177
Button.PostBackUrl property, 248

C
C#

event handlers, creating, 111
time display code, 24–25

Cache method of Response object, 84
Cache object, 76. See also application caching
cache profiles, 88
CacheDependency objects, 77
Cache.Insert method, 76–77
caching

absolute expiration, 77–52, 78
for applications, 88
dependencies, creating, 77
determining whether to regenerate page, 85–87
duration, setting, 83
and Google search results, 42
independent pages, 82–83
ObjectDataSource control, 697
overview of, 4
page-output, 80
partial-page, 84
priority for item removal, 77
process for, 75
referencing cache profiles, 88
reloading after file changes, 77
scavenging, 77
sliding expiration, 77, 79
SQLDataSource control, 701
substitution, 84–85
validating pages, 85–86

Calendar control
accessibility considerations, 315
caption, aligning, 197
caption, setting, 197
cell padding, setting, 197
cell spacing, setting, 197
displaying schedule with, 199
example code, 199

beginRequest event of PageRequestManager class, 494
behavior objects

vs. client objects, 502
creating, 502–503
ExtenderControl class, 502
implementing, 503
overview of, 494

Bind method of DataBinder class, 724
Bindable attribute for control properties, 367
binding data, 723–724. See also data-bound controls
bindings, WCF, 594
bitmaps, referencing in controls, 365
Boolean operators, 432
BorderColor property of controls, 165
BorderStyle property of controls, 165
BorderWidth property of controls, 165, 189
breadcrumb trail, 256
breakpoints. See also debugging

exporting/importing, 391
setting, 400

browser definition files, custom, 23
browser redirection

to error pages, 392–393
overview of, 3
as page navigation method, 247, 250–251

browsers, web
communication with servers, 3
DNS resolution, 5
error messages. See error pages; HTTP status codes
as front-end interface, 3
HTML display, 5
language preference, setting, 299
master page variation for, 52–53
redirection. See redirection
server authentication, 5
sniffer add-ons, 11

buffering web service responses, 579
BulletedList control, 727
business objects, 690–693. See also ObjectDataSource

control
Button control, 107

connecting to JavaScript method, 474–475
defining as command button, 176
defining Click event for, 111
rendering as image/hyperlink, 177
types of, 175

Calendar control

930

charts
configuring, 739
graphic file for, 738

CheckBox control, 172, 476
CheckBox method of HtmlHelper class, 858
CheckBox.CheckChanged event, 172
CheckBoxList control, 727
CheckedChanged event of CheckBox control, 172, 476
checkout page, accessibility (practice), 322–324
CheckPasswordStrength function, 489
child master pages, 51–52
class inheritance

of AJAX Library, 490, 491, 498
of AJAX server controls, 458
of custom web server controls, 356
of hot spots, 193
of master pages, 44
in Microsoft AJAX Library, 491
of user controls, 331
in WCF Data Services, 608

class libraries, creating, 513
classes

constructors, defining as functions, 504, 508
creating in AJAX Library, 487, 492, 498
defining for custom controls, 499
fields, defining, 488
LINQ queries against, 629
methods, adding to, 489
prototypes, creating, 508
referencing in scripts, 492
registering, 490

classes, listed
ActionResult, 853
ApplicationManager, 100
AreaRegistration, 839
Association, 768
BaseDataBoundControl, 722
Chart, 722
ClientScriptManager, 475–478
CompositeDataBoundControl, 722
ContentResult, 853
CustomValidation, 768
DashboardController, 865
DataAnnotations, 850–851, 860–864
DataBinder, 723–724
DataBoundControl, 722

Calendar control (continued)
formatting, 197
HTML generated by, 197
Label controls, adding, 199
navigational controls, formatting, 197
overview of, 197
properties, 197–199

Calendar.DayRender event, 199
Calendar.SelectionChanged event, 199
Calendar.SelectionMode property, 197
Calendar.VisibleMonthChanged event, 199
callbacks

creating, 480–483
defined, 480
overview of, 483

callBaseMethod method of Type class, 495
cancelling asynchronous postbacks, 463
Caption property

of Calendar control, 197
of Table control, 315

CaptionAlign property of Calendar control, 197
cascading style sheet (.css) files

adding to websites, 65–66
adding to websites (practice), 70
additional references on, 66
defined, 60, 61
example styles, 66
HTML reference to, 66
overview of, 65
referencing in master pages, 54
vs. skin files, 64
template for, 65

CatalogPart control, 263
CatalogZone control, 262, 263, 267
Category attribute for control properties, 367
CausesValidation property of Button control, 177
CDNs (content delivery networks), 523
CellPadding property of Calendar control, 197
cells, table. See TableCell control
CellSpacing property of Calendar control, 197
chaining functions in jQuery, 527
ChangePassword control, 167, 808, 812
ChangePassword.aspx page, 812
ChangePasswordSuccess.aspx page, 812
Chart class, 722
Chart control, 738–739

Calendar.DayRender event

931

Trace, 408
Type (AJAX), 487
UIHint, 769
UserControl, 331
ViewResult, 853
WebApplicationLifetimeEvent, 412
WebAuditEvent, 413
WebAuthenticationFailureAuditEvent, 413
WebAuthenticationSuccessAuditEvent, 413
WebBaseErrorEvent, 412
WebBaseEvent, 412
WebControl, 187, 356, 361–363
WebErrorEvent, 412
WebFailureAuditEvent, 413
WebHeartbeatEvent, 412
WebManagementEvent, 412
WebMethodAttribute, 579–580
WebRequestErrorEvent, 413
WebRequestEvent, 412
WebService, 577, 578
WebServiceAttribute, 578–579
WebSuccessAuditEvent, 413
WebViewStateFailureAuditEvent, 413

ClassName method of Namespace object, 487
Click event

for Button control, 107, 111, 176
for ImageButton control, 191
for ImageMap control, 193

client callbacks
creating, 480–483
defined, 480
overview of, 483

client scripts. See also JavaScript; jQuery
accessibility considerations, 315
adding to websites (practice), 504, 507
binding to client-side events, 530–533
calling web services from, 583–585
creating, with script blocks, 472–475
debugging, 396
debugging (practice), 400
dynamically adding, 475–478
embedding in custom controls, 499–502, 516
jQuery references in, 523
overview of, 472
referencing ASP.NET controls in, 475
registering on page submission only, 478
registering with ScriptManager control, 478–479

DataContract, 597
DataMember, 597
DataObject, 697–698
DataService, 608
DataType, 768
Display, 768
DisplayFormat, 768
Editable, 768
EmptyResult, 853
EnumDataType, 768
ExtenderControl, 502
FieldTemplateUserControl, 772
FileResult, 853
FilterAttribute, 856
FormsAuthentication, 813–814
HierarchicalDataBoundControl, 722, 741–746
HostingEnvironment, 100
HtmlHelper, 858–859
HttpApplication, 101–102, 566–567
HttpApplicationState, 103, 144
HttpSessionState, 145
JavaScriptResult, 853
JsonResult, 853
Key, 769
ListControl, 722, 724
MasterPage, 44
Membership, 815
MetadataType, 769
NetworkCredentials, 586
OperationContract, 597
PageRequestManager, 494
PartialViewResult, 853
ProfileProvider, 792
Range, 769
RedirectResult, 853
RedirectToRouteResult, 853
RegularExpression, 769
Required, 769
Roles, 816
ScaffoldColumn, 769
ScaffoldTable, 769
ScriptReference, 479
ServiceContract, 597
SiteMap, 253
SqlProfileProvider, 790
StringLength, 769
TemplateControl, 331

client scripts

932

companion media, xxviii
installing practice tests from, xxix
starting practice tests from, xxix

CompareValidator control, 232–233
CompareValidator.ControlToCompare property, 233
comparison operators, validating input with, 232–233
compiling websites

overview of, 28
precompiling, 441–442

component objects
creating, 495–496
overview of, 494

composite controls, 372–376
composite data-bound controls, 728
CompositeDataBoundControl class, 722
compressing session state data, 150
compressing view state data, 126
compression by servers, 5
compressionEnabled attribute, 150
concatenating LINQ query results, 639
conditional partial-page updates, 460
configuration files

creating (practice), 36–37
editing, 34–35
file extension for, 33
Machine.config, 33
for .NET Framework 4, 34
processing, 34
for specific websites, 33

Configure Data Source Wizard, 688
CONNECT method, 6
connecting Web Parts

dynamic connections, 272
overview of, 269
practice for, 282–286
static connections, 269–271

ConnectionsZone control, 272
consumer Web Parts, creating, 270
Content controls, 47
content delivery networks (CDNs), 523
Content folder (MVC), 838
content pages

attaching master pages to, 48
control required for, 48
controls, referencing in master pages, 51
creating, 47

ClientFunctionName property of CustomValidator
control, 236

ClientId property of controls, 475
clients

communication with servers, 3
overview of, 3

ClientScript property of Page object, 475
ClientScriptManager class, 475–478
ClientScriptManager object, 479
ClientScriptManager.RegisterOnSubmitStatement

method, 478
client-side effects, adding to pages, 533–534
client-side events

binding jQuery scripts to, 530–533
binding jQuery scripts to (practice), 544

client-side navigation
via JavaScript, 247–248
overview of, 247

client-side state management. See also control state;
view state

overview of, 120
vs. server-side, 121–123

code section (ASPX pages), 27
code-behind pages

benefits of, 26
C# sample, 25
opening, 109
vs. single-file pages, 23–26
Visual Basic sample, 25

Collapse method (JavaScript), 473
collections, LINQ queries against, 629
Command event for Button control, 176
command prompt, opening, 12
CommandArgument property of Button control, 177
commands, HTTP, 5

CONNECT, 6
DEBUG, 6
DELETE, 6
GET, 3, 5, 6, 10
HEAD, 6
OPTIONS, 6
POST, 6, 10
PUT, 6
retrieving list of, 6
TRACE, 6

communication protocols. See HTTP (Hypertext
Transfer Protocol)

ClientFunctionname property of Customvalidator control

933

authentication, for user name, 814
defined, 120
deleting, 131
encoding, 135
expiration, setting, 131
implementation of, 129
key values, 132
maximum size of, 132
multiple values in, 132
name, returning, 813
overview of, 129
path, returning, 813
reading, 130
scope of, 131–132
for session state, 146
for session state, disabling, 147
SSL, requiring, 813
storing data in (practice), 138–139
user resetting, enabling, 129–130
viewing, 131

Cookies method of Request object, 132
Cookies property, 130
Cookies.Add method of Response object, 130
Copy Web tool, 439–441
counting application users, 103
CreatedUser event of CreateUserWizard control, 810
CreateRole method of Roles class, 816
CreateUser method of Membership class, 815
CreateUserWizard control

customizing, 809
overview of, 314, 808
user account creation page, 808–810

CreateUserWizard.ContinueDestinationPageUrl
property, 809

CreateUserWizard.CreatedUser event, 810
CredentialCache object, 586
cross-page posting

overview of, 248
strongly typed properties and, 249

cross-table queries, 661
.css files

adding to websites, 65–66
adding to websites (practice), 70
additional references on, 66
defined, 60, 61
example styles, 66

creating (practice), 54–57
dependencies on master pages, managing, 49
example of, 47
master page setting precedence, 47
overview of, 44
referencing master page properties from, 48–49, 50
run time processing of, 45
title, setting, 47

ContentPlaceHolder controls, 44, 46
ContentResult class, 853
Content-Types. See MIME types
ContextTypeName attribute of LinqDataSource

control, 711
ContinueDestinationPageUrl property of CreateUser-

Wizard control, 809
contracts, WCF

configuring, 597
defining, 598
overview of, 594, 595

@ Control directive, 332
Control (postback) event, 105
control objects, 494
control state

defined, 120
implementing, 128
overview of, 128

Control.ApplyStyleSheetSkin method, 106
controllers, MVC

action methods, 836, 851, 853
action methods, passing data to, 854–855
creating (practice), 843–844
naming convention, 851
overview of, 834
storage location of, 851
template for, 852–853
template methods, 852

Controllers folder (MVC), 838
Control.RenderingCompatibility property, 166
controls. See data source controls; user controls; web

server controls
ControlToCompare property of CompareValidator

control, 233
cookies

adding, 130
for anonymous user profiles, 793
ASP.NET session state and, 129

.css files

934

registering client scripts for, 501
registering globally, 378
rendering display of, 357
templated, 377–378
Toolbox support, 364
Toolbox support (practice), 381
ViewState support, 360

<customErrors> element, 392–393
CustomValidation class, 768
CustomValidator control

client-side validation, 235–238
overview of, 235
server-side validation, 238–240

CustomValidator.ClientFunctionName property, 236

D
DashboardController class, 865
data contexts

defining, 758
metadata, adding, 765–768
partial methods and, 770
registering with MetaModel, 759–762

data object methods, 697–698
data source controls

for Access, 702
business object manipulation with, 690–693
code for, 699–688
for entity models, 703–706
ID, setting, 722
for LINQ-based data, 711–712
overview of, 687
passing parameters, 692–693
selecting data for, 688
for site navigation data, 712–713
templated binding, 723
wizard for, 688
for XML data, 707–710

data type, verifying in controls, 232–233
data validation

client-side, overview of, 231
client-side, security of, 229
with comparison operators, 232–233
custom code for. See custom validation
framework for, 229–232
practice for, 241–243

.css files (continued)
HTML reference to, 66
overview of, 65
referencing in master pages, 54
vs. skin files, 64
template for, 65

CssClass property of controls, 165
culture

abbreviations for, 294
allowing user to set, 305–306
declaring, 306

Culture property of Page object, 305
cultures, listing for user, 306
CurrentNode property of SiteMap class, 253
Custom Actions editor, 437–438
Custom Mode dialog box, on companion media, xxx
custom setup wizard pages, 435–437
custom validation

client-side, 235–238
example code, 236
overview of, 235
server-side, 238–240

custom web server controls. See also user controls;
web server controls

adding to webpages (practice), 381–382
advantages of, 356
class definitions, 499
class inheritance, 356
code-behind file for, 382
composite, 372–376
created in stand-alone Server Control project, 364
creating (practice), 379–380
creating from existing control, 357–360
creating from WebControl class, 361–363
custom designers for, 370–371
default property, setting, 366, 368
defined, 356
embedding AJAX client controls as, 512–517
embedding client scripts in, 499–502, 516
HTML display, 361
icons, creating, 365
localizing properties, 368
markup for, 363, 369
namespace prefix, setting, 369
properties, defining, 500
property attributes, 367–368
registering, 503

CssClass property of controls

935

querying with LINQ. See LINQ to DataSet
typed, creating, 656–658

DataSourceId attribute of Menu control, 254
DataTable object

adapting data from data store, 653
adding rows to, 652
overview of, 650
populating, 652–653
saving changes to, 654
strongly typed, 660

DataTable.Rows.Add method, 652
DataTips, pinning, 391
DataType class, 768
DateTime values, 772
DAV (Distributed Authoring and Versioning), 7
DayHeaderStyle property of Calendar control, 197
DayNameFormat property of Calendar control, 197
DayRender event of Calendar control, 199
DayStyle property of Calendar control, 197
DbDataAdapter object, 653, 654
DBML files

defined, 665
generating, 667

Debug attribute of @ Page directive, 391
DEBUG method, 6
debugging, 6. See also breakpoints

AJAX applications, 409
attaching to process, 396
authentication for, 395
client scripts, 396
client scripts (practice), 400
DataTips, viewing, 391
enabling, 390, 391
enabling (practice), 398
firewall configuration for, 394
JavaScript, 410
jQuery files, 522
page-level, 391
remotely, 394–396
security considerations, 390
in Visual Studio 2010, new features, 391–392
Web.config file for. See Web.config transformations
when to turn on, 390

declarative data binding, 688
DeclarativeCatalogPart control, 263
Decrypt method of FormsAuthentication class, 814
DefaultButton property of Panel control, 205

with regular expressions, 234–235
requiring field entry, 232
for sections of pages, 232
as usability feature, 228
for user name/password, 815
verifying range of acceptable values, 234
when to use, 231

DataAdapter.Fill method, 653
DataAdapter.Update method, 654
DataAnnotations class

overview of, 850–851
scaffolding, 860–864

database markup language files
defined, 665
generating, 667

database queries. See LINQ; LINQ queries
databases, deploying, 421–423
DataBind method of Page object, 346
DataBinder class, 723–724
DataBinder.Eval method, 723–724
data-bound controls

base classes, 721
classifications of, 721
composite, 728
connecting to data source, 722
defined, 721
hierarchical, 741–746
interfaces supported by, 722
simple, 724
templated binding, 723

DataBoundControl class, 722
DataContext object, 633
DataContext.GetTable method, 672
DataContract class, 597
DataControlField object

class hierarchy, 729
overview of, 728

DataList control, 740
DataMember class, 597
DataObject class, 697–698
DataObjectMethod attribute, 698
DataPager control, 738
DataRelation object, 650
DataRow object, 652
DataSet objects

comparing data in, 662–663
joining across tables, 661

Defaultbutton property of Panel control

936

parent class, 722
populating, 173

DropDownList method of HtmlHelper class, 858
DropDownList.SelectedIndexChanged event, 175
Dynamic Data

adding to existing website, 777
advantages of, 755
classes, 762
creating website, 756–758
creating website (practice), 780–781
custom page templates, 775–776
custom routing, 763–765
CustomPages folder, 775
enabling, 778–779
field template user controls, creating, 773
field templates, 772
field templates, customizing, 772–773
folder contents, 758
ListDetails.aspx file, 764
metadata annotation classes, 768–769
overview of, 755
route table, editing, 764
structure of, 756–758
template user interface, 761
templates for, 756
URI structure, editing, 764
validation, 769–771

dynamic Web Part connections, 272
dynamic website compilation, 28
dynamically adding client scripts, 475–478
dynamically changing master pages

practice for, 57–58
process for, 52–53

dynamically changing themes
practice for, 72
process for, 67–68

E
eBook version of training kit, xxviii
ECMAScript, 455
e-commerce page, accessibility (practice), 322–324
Editable class, 768
Editor method of HtmlHelper class, 858
EditorPart control, 263
EditorZone control, 263

DefaultFocus property of forms, 316
DefaultModel.RegisterContext method, 760
DefaultProperty attribute for control properties, 366
DefaultValue attribute for control properties, 368
DELETE method, 6
DeleteMethod attribute of ObjectDataSource control,

693–694
DeleteOnSubmit method, 672
DeleteRole method of Roles class, 816
DeleteUser method of Membership class, 815
dependencies, cache, 77
deploying websites. See also publishing web

applications; Web Setup Projects
with Copy Web tool, 439–441
with custom setup pages, 435–437
to deployment packages, 425
precompiling, 441–442
with Web Deployment Projects, 425–426

deployment packages, 425
Description attribute for control properties, 368
DescriptionUrl property of Image control, 190, 314
descriptive error messages, 317
design-time view of controls, customizing, 370–371
DetailsView control, 731–732

practice exercise, 748–752
sorting data, 731

dialog boxes, for custom setup pages, 437
digital signatures, 122
directing users to new webpage. See redirection
disability accessibility. See accessibility
disabling controls, 165
disabling themes for specific pages/controls, 67
Display class, 768
DisplayAfter property of UpdateProgress control, 462
DisplayFormat class, 768
DisplayMode property of WebPartManager control, 267
Distributed Authoring and Versioning (DAV), 7
DLL files, embedding (practice), 444
DNS resolution, 5
DocumentSource property of Xml control, 214
DOM elements

AJAX client controls for, 496–498
referencing in jQuery, 524–525

Domain property of HttpCookie class, 132
downloadable content for book, xxix
DropDownList control, 173–175

example code, 725
vs. ListBox control, 726

DefaultFocus property of forms

937

ordering results of, 705
paging data with, 706
parameters, defining, 705–706
practice exercise, 716–719
projections with, 704
returning specific data with, 704
sorting data with, 706
updating data with, 706

EntitySetName attribute of EntityDataSource
control, 704

EnumDataType class, 768
enumerations, 490–491
errata, submitting, xxxi
Error event, 101
error handling

of partial-page updates, 462
by servers, 4

error pages
error-specific, setting, 393–394
error-specific, setting (practice), 399–400
for remote clients only, 392
site-level, setting, 392–393

ErrorMessage property for validation controls, 230, 317
Eval method of DataBinder class, 723–724
event handlers

configuring (practice), 114–116
creating, in C#, 111
creating, in Visual Basic .NET, 109–111
creating, in Visual Studio, 109
for user controls, 333, 350, 352

event handling
for application events, 101–102
for webpage events, 104–106

events
ButtonClick, 107, 111, 176
Button.Command, 176
Calendar.DayRender, 199
Calendar.SelectionChanged, 199
Calendar.VisibleMonthChanged, 199
Control (postback), 105
CreateUserWizard.CreatedUser, 810
CustomValidator.ServerValidate, 238
DbDataAdapter.RowUpdated, 654
DropDownList.SelectedIndexChanged, 175, 725
End, 101
Error, 101
ImageButton.Click, 191

EDMX files, 672–674. See also Entity Framework (EF);
LINQ to Entities

EF (Entity Framework). See Entity Framework (EF)
effects, adding to pages, 533–534
email addresses, searching users by, 815
email servers, configuring, 812
emailing URLs, 134
embedding images in controls, 365
EmptyResult class, 853
EnableCaching attribute

of ObjectDataSource control, 697
of SqlDataSource control, 701

EnableClientScript property of validation controls,
231, 315

Enabled property of controls, 165
EnableDelete attribute of EntityDataSource control, 706
EnableInsert attribute of EntityDataSource control, 706
EnableSessionState page directive, 146
EnableTheming attribute, 67
EnableTheming property for controls, 67, 165
EnableUpdate attribute of EntityDataSource control, 706
EnableViewState property for controls, 125–126, 165
Encode mode for Literal control, 169
encoding data in Label controls, 168
Encrypt method of FormsAuthentication class, 814
encrypting view state, 124
End event, 101
endpoints, WCF

defining, 602
overview of, 594

EndProcessRequest method, 558, 565
endRequest event of PageRequestManager class, 494
Entity Framework (EF). See also EntityDataSource

control; LINQ to Entities
data model class inheritance, 675
data model, creating, 672–674
data model, creating (practice), 676–678, 715
defined, 627
vs. LINQ to SQL, 664

EntityDataSource control
adding to default.aspx page, 778
Boolean attributes, 706
configuring, 703
custom queries, 704
editing data with, 706
filtering results of, 705
object collections, specifying, 705

events

938

overview of, 128–129
storing data in (practice), 137–138

FieldTemplateUserControl class, 772
file authorization, 819–820
FileBytes property of FileUpload control, 202
FileContent property of FileUpload control, 202
FileResult class, 853
file-system-based websites

creating, 17
creating (practice), 30–31
on servers, 18
with WebDAV, 18–19

FileUpload control
example code, 203
HTML generated by, 202
maximum file size, 203
overview of, 202
properties, 202
saving files with, 203
security considerations, 203

FileUpload.SaveAs method, 203
Fill method of DataAdapter object, 653
FilterAttribute class, 856
FilterExpression attribute

of ObjectDataSource control, 694–695
of SqlDataSource control, 701

filtering
EntityDataSource control data, 705
jQuery functions, 526, 527–529
LINQ queries, 634
site map data, in SiteMapDataSource control,

713–714
XML, with XmlDataSource control, 710

FindControl method of Master object, 51
FindUsersByEmail method of Membership class, 815
FindUsersByName method of Membership class, 815
FindUsersInRole method of Roles class, 816
Firebug plug-in for Firefox, 410
Firefox web browser, 410
firewall, debugging, 394
FirstDayOfWeek property of Calendar control, 197
Focus method of controls, 231
folder authorization, 819–820
Font property of controls, 165
font size, accessibility considerations, 315
ForeColor property of controls, 165

events (continued)
ImageMap.Click, 193
Init, 105
InitComplete, 105
LoadComplete, 105
Login.LoginError, 812
LogRequest, 101
MigrateAnonymous, 795
PageRequestManager.beginRequest, 494
PageRequestManager.endRequest, 494
PageRequestManager.InitializeRequest, 494
PageRequestManager.pageLoaded, 494
PageRequestManager.pageLoading, 494
PasswordRecovery.AnswerLookupError, 812
PasswordRecovery.UserLookupError, 812
PostLogRequest, 101
PreInit, 105
PreLoad, 105
PreRender, 105
SaveStateComplete, 106
Session_Start, 148
Start, 101
Sys.Application.Load, 493
TextBox.TextChanged, 171
Timer.Tick, 463, 469
Unload, 106
ValidatePage, 85–86

expiration, cache, 75, 78, 79
Expires property, 131
explicit localization, 298
Expressions property for controls, 301–302
ExtenderControl class, 502

F
fade-in effects, scripting, 523–524, 533–534
feedback for book, xxxii
Fiddler browser add-on, 11
field template controls, 772
field templates for Dynamic Data websites, 772

customizing, 772–773
user controls, creating, 773

fields, hidden
defined, 120
HTTP POST method for, 129

expiration, cache

939

g
GenerateEmptyAlternateText property of Image

control, 190
GeneratePassword method of Membership class, 815
GET method, 3, 5

description of, 6
example of, 10
when to use, 10

GetAllRoles method of Roles class, 816
GetAllUsers method of Membership class, 815
GetAuthCookie method of FormsAuthentication

class, 814
GetCallbackResult method, 481
GetGlobalResourceObject method, 303
GetLocalResourceObject method, 303
GetNumberOfUsersOnline method of Membership

class, 815
GetRedirectUrl method of FormsAuthentication

class, 814
GetRolesForUser method of Roles class, 816
GetSchedule method of Calendar control, 201
GetScriptDescriptors method, 500, 514
GetScriptReferences method, 501, 514
GetTable method of DataContext object, 672
GetUser method of Membership class, 815
GetUserNameByEmail method of Membership

class, 815
GetValidators method of Page object, 232
Global Application Class. See Global.asax file
global assembly cache, 29
Global namespace (AJAX Library), 485
global resources

accessing programmatically, 303
control properties, attaching, 301–302
creating, 300–301
defined, 293
folder for, 300
non-string, creating, 301
overview of, 300

global themes
interaction with application themes, 63
location of, 63
overview of, 63

foreign language support. See globalization;
resource files

<form> tag, 9
forms. See also ASPX pages

accessibility considerations, 316–317
adding controls to, 106–107
example of, 9–10
focus, setting default, 316, 323
GET command, 10
hiding, 205
POST method, 10–11
postbacks, 116–118
submitting data from, 9–11
tab order, 316
width/height, best practices, 304

FormsAuthentication class, 813–814
FormsAuthentication.Authenticate method, 814
FormsAuthentication.Decrypt method, 814
FormsAuthentication.Encrypt method, 814
FormsAuthentication.FormsCookieName

property, 813
FormsAuthentication.FormsCookiePath

property, 813
FormsAuthentication.GetAuthCookie method, 814
FormsAuthentication.GetRedirectUrl method, 814
FormsAuthentication.HashPasswordForStoringIn-

ConfigFile method, 814
FormsAuthentication.RedirectFromLoginPage

method, 814
FormsAuthentication.RenewTicketIfOld method, 814
FormsAuthentication.RequireSSL property, 813
FormsAuthentication.SetAuthCookie method, 814
FormsAuthentication.SignOut method, 814
FormsAuthentication.SlidingExpiration property, 814
FormsCookieName property of FormsAuthentication

class, 813
FormsCookiePath property of FormsAuthentication

class, 813
FormView control

overview of, 167, 733–734
template definitions, 733

Front Page Server Extensions, 20
front-end interface, 3. See also web browsers
FTP-based website projects, 15

creating, 21
when to use, 21

global themes

940

heading tags, vs. font sizes, 315
health monitoring

configuring, 413–414
listeners, enabling, 413
overview of, 412
web event classes for, 412–413

Height property of controls, 165
hidden fields

defined, 120
HTTP POST method for, 129
overview of, 128–129
storing data in (practice), 137–138

Hidden method of HtmlHelper class, 858
HiddenField control, 128
hierarchical data-bound controls, 741–746
HierarchicalDataBoundControl class, 722, 741–746
HomeController.About method, 840
HomeController.Index method, 840
HorizontalAlignment property of Panel control, 205
HostingEnvironment class, 100
hot spots

alternate text, setting, 193
class inheritance, 193
destination URL, setting, 193
example code, 194
keyboard shortcuts, 193
properties, 193
target window, setting, 193

HotSpotMode property, 193, 194–196
HTML (Hypertext Markup Language)

browser display of, 5
hidden fields. See hidden fields
layout best practices, 304
raw, adding to page. See Literal control
style sheet reference in, 66

HTML character entity reference replacement, 167
HTML controls. See also web server controls

creating in Source view, 178–179
creating in Visual Studio designer, 179
overview of, 177
vs. web server controls, 180
when to use, 178

HtmlEncode method
of HttpUtility object, 168
of Server object, 126, 135, 168

HtmlHelper class, 858–859
HtmlHelper.ActionLink method, 858

Global.asax file
base class for, 100
creating, 101
example of, 102
vs. HTTP modules, 570

globalization. See also resource files
for AJAX Library, 484
culture overview, 294
HTML layout best practices, 304
importance of, 292
localizing text, 297
practice for, 307–310

Google search results, and website performance, 42
graphics. See also Image control

aligning, 190
alternate text, setting, 190, 314
embedding in controls, 365
handling requests for, 554, 556–557
handling requests for (practice), 571–573
hot spots, 193–196
in themes, 65

GridView control
binding to database, 465
formatting, 730–731
parent class, 722
practice exercise, 748–752
structure of, 728
styles, 730–731

GridViewRow object, 728
grouped launch conditions, 432
grouping

LINQ query results, 635
profile properties, 794
validation controls, 232

h
hardware requirements for practice exercises, xxviii
hashing data

overview of, 122
passwords, 814

HashPasswordForStoringInConfigFile method of Forms-
Authentication class, 814

HEAD method, 6
HeaderText attribute of WebPartZone control,

264–265

global.asax file

941

OPTIONS, 6
POST, 6, 10
PUT, 6
retrieving list of, 6
TRACE, 6

HTTP modules
creating, 566
defined, 552
example code, 567
function of, 566
vs. Global.asax file, 570
registering, 566, 569–570

HTTP requests
methods, 5
Request object, 7
URIs, 5
website name in, 6

HTTP responses
components of, 9
Response object, 7
status codes, 8

HTTP Secure (HTTPS)
overview of, 3
port assigned to, 3
publishing web applications via, 424

HTTP status codes, 3, 8
decimal point values in, 394
list of, 393
setting error pages for, 393–394
setting error pages for (practice), 399–400

HttpApplication class
overview of, 101–102, 566
resource request processing, 567

HttpApplicationState class, 103, 144
HTTP-based website projects, 15

creating, 19
prerequisites for, 19

HttpCookie object, 130
HttpCookie.Domain property, 132
HttpPost attribute for action methods, 854
HTTPS (HTTP Secure)

overview of, 3
port assigned to, 3
publishing web applications via, 424

HttpSessionState class, 145
HttpValidationStatus attribute, 85–87

HtmlHelper.BeginForm method, 858
HtmlHelper.CheckBox method, 858
HtmlHelper.DropDownList method, 858
HtmlHelper.Editor method, 858
HtmlHelper.Hidden method, 858
HtmlHelper.Label method, 858
HtmlHelper.ListBox method, 858
HtmlHelper.Password method, 858
HtmlHelper.RadioButton method, 858
HtmlHelper.RenderAction method, 858
HtmlHelper.RenderPartial method, 858
HtmlHelper.RouteLink method, 858
HtmlHelper.TextArea method, 859
HtmlHelper.TextBox method, 859
HtmlHelper.Validate method, 859
HtmlHelper.ValidationMessage method, 859
HtmlHelper.ValidationSummary method, 859
HtmlTable control, 187
HTTP (Hypertext Transfer Protocol)

monitoring (practice), 13
overview of, 5
port assigned to, 3
status codes, 3, 8
versions, 5

HTTP forms. See forms
HTTP handlers

application extension mapping, 556–557
.ashx file extension, 557
asynchronous, 558
asynchronous, creating, 558–564
creating, 553, 554
creating (practice), 571–573
defined, 552
file location, 554
for image requests, 554
for image requests (practice), 571–573
importance of understanding, 552
overview of, 553
registering with IIS, 553–556
reusing, 553
webpages as, 564–566

HTTP methods, 5
CONNECT, 6
DEBUG, 6
DELETE, 6
GET, 3, 5, 6, 10
HEAD, 6

httpvalidationstatus attribute

942

ImageMap control
HTML generated by, 192
vs. ImageButton control, 192
settings inheritance, 189, 193

ImageMap.Click event, 193
images. See also Image control

aligning, 190
alternate text, setting, 190, 314
embedding in controls, 365
handling requests for, 554, 556–557
handling requests for (practice), 571–573
hot spots, 193–196
in themes, 65

ImageUrl property
of Image control, 190
of ImageButton control, 191

 tag, 189
impersonation

overview of, 821
when to use, 822

implicit localization, 297–298
Index method of HomeController class, 840
inheritance, class

of AJAX Library, 490, 491, 498
of AJAX server controls, 458
of custom web server controls, 356
of hot spots, 193
of master pages, 44
of user controls, 331
in WCF Data Services, 608

Init event, 105
InitComplete event, 105
InitializeCulture method of Page object, 305, 307
InitializeRequest event of PageRequestManager

class, 494
InitialValue property of RequiredFieldValidator

control, 232
InProc mode for session state, 148
input validation

client-side, overview of, 231
client-side, security of, 229
with comparison operators, 232–233
custom code for. See custom validation
framework for, 229–232
practice for, 241–243
with regular expressions, 234–235
requiring field entry, 232
for sections of pages, 232

HttpWatch browser add-on, 11
HyperLink control, page navigation with, 247–248
hyperlink text, accessibility of, 316
Hyperlink.NavigateUrl property, 247–248
Hypertext Transfer Protocol (HTTP). See HTTP

(Hypertext Transfer Protocol)

i
ICallbackEventHandler, 481
ICallbackEventHandler.RaiseCallbackEvent method, 480
icons, for custom web server controls, 365
IEnumerable interface, 625–628
IHttpAsyncHandler interface, 558–566
IHttpHandler interface, 553, 554, 571
IHttpModule interface, 566
IIS (Internet Information Services). See also servers

application life cycle on, 100
checking version before deployment, 431
configuring request forwarding, 556–557
HTTP status codes in, 394
installing ASP.NET 4 on, 442–443
registering HTTP handlers with, 553–556

Image control, 65
aligning, 190
clickable. See ImageButton control
example code, 190
function of, 189
properties, 190
settings inheritance, 189
syntax of, 189
when to use, 189

image maps. See ImageButton control; ImageMap
control

image MIME type, 9
ImageAlign property of Image control, 190
Image.AlternateText property, 190, 314
ImageButton control, 177

accessibility considerations, 315
example code, 191
vs. ImageMap control, 192
overview of, 191
properties, 191
settings inheritance, 189

ImageButton.Click event, 191
Image.DescriptionUrl property, 314

httpWatch browser add-on

943

AJAX methods, 538–539
base function, 524
binding to client-side events, 530–533
binding to client-side events (practice), 544
calling web service with, 535–537
CDN hosting, 523
chaining functions, 527
effects and animations with, 533–534
file location, 522
files for, 522
filtering functions, 526, 527–529
manipulation functions, 529–530
overview of, 456, 520
referencing, 523
referencing (practice), 543
search characters, 525
selection manipulation, 529–530
selectors, 524
selectors, advanced, 524–525
selectors, examples of, 525–526
shortcut methods, 532–533
syntax, 524
traversing functions, 526, 527–529
turning off effects, 534
uses for, 521–522
version, 522
webpage callbacks with, 537
website for, 522
widespread use of, 520
writing script in, 523–524

.js files. See client scripts; JavaScript
JSON (JavaScript Object Notation)

overview of, 603
transforming LINQ queries into, 640–641

JsonResult class, 853

k
Key class, 769
key files, 442
keyboard accessibility, 316–317
keyboard shortcuts

for accessibility, 316–317
for hot spots, 193
for Label controls, 167
specifying in web controls, 166

as usability feature, 228
for user name/passwords, 815
verifying range of acceptable values, 234
when to use, 231

Insert method of Cache object, 76–77
InsertMethod attribute of ObjectDataSource control,

693–694
InsertOnSubmit method, 671
InsertQuery property of SqlDataSource control, 466
installing ASP.NET on IIS, 442–443
instant messaging, sending URLs via, 134
integer values in code, 490–491
IntelliSense

including in library, 495
user properties, 337–338

international support. See globalization; resource files
Internet Information Services (IIS). See IIS (Internet

Information Services); servers
IsUserInRole method of Roles class, 816
IsValid property of Page object, 232

j
JavaScript. See also AJAX; client scripts; jQuery

in assemblies, referencing, 478
class references in, 492
connecting Button controls to, 474–475
constructors, defining as functions, 508
creating .js files for, 474
debugging, 396, 410
debugging (practice), 400
dynamically adding, 475–478
history of, 471–472
including with script blocks, 472–475
namespaces, 486–487
referencing ASP.NET controls in, 475
referencing master page controls in, 476
registering, with ScriptManager control, 479
registering events, 493
unregistering events, 493
in web server controls, 456

JavaScript Object Notation (JSON) services
overview of, 603
transforming LINQ queries into, 640–641

JavaScriptResult class, 853
joining data with LINQ, 636
jQuery. See also JavaScript

 keyboard shortcuts

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

944

LINQ data sources
defining, 628–633
joining, 636
merging, 638

LINQ keywords, 628
Descending, 634
From, 633
Group, 635
Join, 635
Order By, 634
Select, 634, 637–638, 639
Where, 634

LINQ queries
anonymous types, 637–638
against collection classes, 629
concatenating results, 639
executing, 626–627
filtering results of, 634
grouping results of, 635
iterating over, 626–627
joining data, 636
JSON format, 640–641
keywords in, 625
mapping to types, 637–638
mathematical operations on, 639
merging data, 638
against .NET arrays, 628
operators, 662
practice exercise, 642–646
range variables, 633
selections, 633–634
sorting results of, 634
syntax of, 626
transforming data with, 639–641
typed syntax, 626
var keyword, 626
against XML data, 630, 639

LINQ to DataSet
cross-table queries, 661
defining schema, 650
example code, 659
overview of, 649–650
populating DataSet, 652–653
querying with, 658–659
querying with typed DataSets, 660
saving database changes, 654
singleton queries, 659
typed DataSets, creating, 654

L
Label control, 107, 297

adding (practice), 219
adding to Calendar control, 199
associating with TextBox control, 167
associating with user input control, 167
as caption for user input control, 167
defining access keys with, 316
vs. Literal control, 169
security and, 168
when to use, 167

Label method of HtmlHelper class, 858
LabeledTextBox control, 369
language

abbreviations for, 294
allowing user to set, 305–306
allowing user to set (practice), 307
setting in web browser, 299

Language-Integrated Query (LINQ). See LINQ
(Language-Integrated Query)

launch conditions. See also Web Setup Projects
adding, 431
adding (practice), 445
Boolean operators, 432
configuring, 431
grouping, 432
list of, 431
overview of, 429
properties, 434
syntax for, 431–432

Launch Conditions editor, 429
Launch Conditions branch, 430
search conditions, adding, 430–431
Search Target Machine branch, 430

lesson reviews, xxx
License Agreement template, 437
license agreements, deploying with, 435
link text, accessibility of, 316
LinkButton control

accessibility considerations, 315
overview of, 177

LINQ (Language-Integrated Query)
advantages of, 625
data providers, 627
IEnumerable interface, 625–627, 628
overview of, 625
projections, 634

Label control

945

Localizable attribute for control properties, 368
Localize control, 297
localizing text, 297. See also globalization; resource files
LocalSqlServer connection string, 790
locking objects, 103
Login control, 167, 808, 811
Login.aspx page, 810
LoginError event of Login control, 812
Login.LoginError event, 812
LoginName control, 808
LoginStatus control, 808
LoginView control, 808
logon controls, 807–808
logon pages

overview of, 810
password recovery, 811–812
redirect URLs, returning, 814
redirecting user to original request, 814

logos, accessibility, 323
LogRequest event, 101

m
MAC (message authentication code), 124
Machine.config files

authorization in, 818
impersonation settings, 821
overview of, 33

manipulation functions in jQuery, 529–530
master pages

advantages of, 43, 44
AJAX support and, 459
attaching to content pages, 48
class derivation, when multiple, 50
class inheritance, 44
control required for, 48
controls, referencing from content pages, 51
creating, 45–46
creating (practice), 54–57
dependencies on content pages, managing, 49
dynamically changing, 52–53
dynamically changing (practice), 57–58
example of, 45–46
file extension for, 44
InitializeCulture event and, 307

LINQ to Entities, 664. See also Entity Framework (EF)
class inheritance, 675
data model, creating, 672–674
data model, creating (practice), 676–678
data model, editing, 674
overview of, 672
querying data with, 675
querying data with (practice), 678–680

LINQ to Objects, 627
LINQ to SQL

and ADO.NET, 665
deleting data with, 672
enabling, 664–665
inserting data with, 671
vs. LINQ to Entities, 664
O/R mapping, 665–670
overview of, 631–633, 664
querying data with, 670–671
rapid adoption of, 649
updating data with, 672

LinqDataSource control, 711–712
ListBox control, 175

configuring, 726
vs. DropDownList control, 726
example code, 726
when to use, 175

ListBox method of HtmlHelper class, 858
ListControl class, 722, 724
listeners, enabling for monitoring, 413
lists, bulleted, 727
ListView control, 736–738
Literal control

vs. Label control, 169
modes for, 169

Load event, 105
Load event of Sys.Application object, 493
LoadComplete event, 105
LoadControl method of Page class, 339–340
loading controls dynamically, 339–340
local resources

creating manually, 295
defined, 293
editing, 296
folder for, 293
generating, 295
naming, 293

 master pages

946

metadata
adding to data contexts, 765–768
annotation classes, 768–769
validating, 769–771

MetadataType class, 769
MetaModel of Dynamic Data website

overview of, 757
registering data contexts with, 759–762

methods, ASP.NET
BeginProcessRequest, 559, 565
Cache.Insert, 76–77
Calendar.GetSchedule, 201
ClientScriptManager.RegisterClientScriptBlock, 480
ClientScriptManager.RegisterOnSubmitStatement, 478
Control.ApplyStyleSheetSkin, 106
DataAdapter.Fill, 653
DataAdapter.Update, 654
DataBinder.Bind, 724
DataBinder.Eval, 723–724
DataContext.GetTable, 672
Datatable.Rows.Add, 652
DefaultModel.RegisterContext, 760
EndProcessRequest, 558, 565
FileUpload.SaveAs, 203
FormsAuthentication.Authenticate, 814
FormsAuthentication.Decrypt, 814
FormsAuthentication.Encrypt, 814
FormsAuthentication.GetAuthCookie, 814
FormsAuthentication.GetRedirectUrl, 814
FormsAuthentication.HashPasswordForStoringIn-

ConfigFile, 814
FormsAuthentication.RedirectFromLoginPage, 814
FormsAuthentication.RenewTicketIfOld, 814
FormsAuthentication.SetAuthCookie, 814
FormsAuthentication.SignOut, 814
GetCallbackResult, 481
GetGlobalResourceObject, 303
GetLocalResourceObject, 303
GetScriptDescriptors, 500, 514
GetScriptReferences, 501, 514
HomeController.About, 840
HomeController.Index, 840
HtmlHelper.ActionLink, 858
HtmlHelper.BeginForm, 858
HtmlHelper.CheckBox, 858
HtmlHelper.DropDownList, 858
HtmlHelper.Editor, 858

master pages (continued)
JavaScript references to controls in, 476
multiple, 50
in MVC, 857
nesting, 51–52
overview of, 44–45
public properties in, 49–50
referencing properties from content pages,

48–49, 50
reloading automatically after changes, 57
run time processing of, 45
selecting for ASPX pages, 47
settings inheritance, 47
style sheet reference in, 54
<title> tag, 46
varying by situation, 52–53

Master.FindControl method, 51
MasterPage class, 44
MasterPageFile property, 48
MasterType declaration, 50
mathematical operations, on LINQ query results, 639
MaximumValue property of RangeValidator control.

See input validation
MaxLength property of TextBox control, 171
MDF files, 702
Membership class, 815
Membership.CreateUser method, 815
Membership.DeleteUser method, 815
Membership.FindUsersByEmail method, 815
Membership.FindUsersByName method, 815
Membership.GeneratePassword method, 815
Membership.GetAllUsers method, 815
Membership.GetNumberOfUsersOnline method, 815
Membership.GetUser method, 815
Membership.GetUserNameByEmail method, 815
Membership.UpdateUser method, 815
Membership.ValidateUser method, 815
Menu control, 254, 745–746

adding (practice), 258
data source, configuring, 746
example code, 254, 746
skipping links with, 314

merging data sources in LINQ, 638
message authentication code (MAC), 124
meta tags

resourcekey attribute, 297–298
retrieving, 6

master.FindControl method

947

Roles.CreateRole, 816
Roles.DeleteRole, 816
Roles.FindUsersInRole, 816
Roles.GetAllRoles, 816
Roles.GetRolesForUser, 816
Roles.IsUserInRole, 816
Roles.RemoveUserFromRole, 816
Server.HtmlEncode, 126, 135
Server.Transfer, 57, 250–251
StartAsync, 559
Sys.Application.notifyScriptLoaded, 492
Sys.Component.create, 498
TextBox.Render, 357
Trace.Write, 408
Type.callBaseMethod, 495
Type.registerEnum, 490
View.SetActiveView, 208
WebControl.Render, 361
WebControl.RenderBeginTag, 361
WebControl.RenderChildren, 361
WebControl.RenderContents, 361

methods, HTTP, 5
CONNECT, 6
DEBUG, 6
DELETE, 6
GET, 3, 5, 6, 10
HEAD, 6
OPTIONS, 6
POST, 6, 10
PUT, 6
retrieving list of, 6
TRACE, 6

methods, jQuery, 532–533
Microsoft Access. See Access
Microsoft AJAX Library

browser compatibility, 484
class inheritance, 490, 491, 498
client objects, 494
creating classes in, 487, 492
enumerations, 490–491
features and benefits, 484
files comprising, 484
functions, overriding, 491
globalization support, 484
interfaces, 491
interfaces, defining, 490
namespaces, 485–486

HtmlHelper.Hidden, 858
HtmlHelper.Label, 858
HtmlHelper.ListBox, 858
HtmlHelper.Password, 858
HtmlHelper.RadioButton, 858
HtmlHelper.RenderAction, 858
HtmlHelper.RenderPartial, 858
HtmlHelper.RouteLink, 858
HtmlHelper.TextArea, 859
HtmlHelper.TextBox, 859
HtmlHelper.Validate, 859
HtmlHelper.ValidationMessage, 859
HtmlHelper.ValidationSummary, 859
ICallbackEventHandler.RaiseCallbackEvent, 480
Master.FindControl, 51
Membership.CreateUser, 815
Membership.DeleteUser, 815
Membership.FindUsersByEmail, 815
Membership.FindUsersByName, 815
Membership.GeneratePassword, 815
Membership.GetAllUsers, 815
Membership.GetNumberOfUsersOnline, 815
Membership.GetUser, 815
Membership.GetUserNameByEmail, 815
Membership.UpdateUser, 815
Membership.ValidateUser, 815
MyServerCall, 482–483
Namespace.ClassName, 487
OnInit, 128
Page_Prelnit, 58
Page.ClientScript.RegisterClientScriptBlock, 475
Page.DataBind, 346
Page.GetValidators, 232
Page.InitializeCulture, 305
Page.LoadControl, 339–340
Page.Render, 106
Page.Validate, 230–231
ProcessRequest, 553, 554, 572
Profile.Save, 796
registerClass, 490, 510
registerNamespace, 487
RegisterRoutes, 760
RemoveAttributes(), 421
Response.Cache, 84
Response.Redirect, 250–251
Response.WriteSubstitution, 84
Roles.AddUserToRole, 816

 microsoft AjAX Library

948

model, creating custom, 848
namespaces, 839
overview of, 831, 832
partially generated model, 849–850
placeholders, 867
project template folders, 838
registering routes, 867
request life cycle, 834–835
route constraints, 868
route handling, preventing, 868–869
route parameters, 867
route segments, 867
routing in, 835–836
URL patterns, 867
validating model, 850–851
web application, creating (practice), 842–843,

870–871
monitoring. See also health monitoring

application users, 103
HTTP (practice), 13

msvsmon.exe, 394–396
Multipurpose Internet Mail Extensions (MIME) types

defining, 573
list of, 9
processing of, 9
syntax of, 9

MultiView control. See also View control
example code, 208
overview of, 207

MVC (model-view controller)
action filters, 856
action methods, 840
advantages of, 832
application areas, 838–839
application structure, 837–838
architecture of, 833–834
area mapping, 839
HtmlHelper class, 858–859
master pages in, 857
model, 834
model, creating custom, 848
namespaces, 839
overview of, 831, 832
partially generated model, 849–850
placeholders, 867
project template folders, 838
registering routes, 867

Microsoft AJAX Library (continued)
overview of, 456
properties, naming, 488
pushing to client, 458
reference for, 486
referencing, 495
referencing (practice), 508
registering classes with, 490, 498
registering classes with (practice), 505, 510
registering events, 493
registering interfaces with, 491
unregistering events, 493
uses for, 486

Microsoft certified professional program, xxxi
Microsoft .NET Framework 4. See .NET Framework 4
Microsoft Network Monitor, 11, 388
Microsoft Press website, xxxi
Microsoft SQL Server Profiler, 388
Microsoft Visual Basic. See Visual Basic
Microsoft Visual C#. See C#
Microsoft Visual Studio 2010. See Visual Studio 2010
MicrosoftAjax.js, 484
MicrosoftAjaxWebForms.js, 484
middle-tier objects, 690–693. See also ObjectData-

Source control
MigrateAnonymous event, 795
migrating anonymous user profiles, 795
MIME types

defining, 573
list of, 9
processing of, 9
syntax of, 9

MinimumValue property of RangeValidator control.
See input validation

Model.IsValid property, 851
Models folder (MVC), 838
model-view controller (MVC). See also MVC controllers

action filters, 856
action methods, 840
advantages of, 832
application areas, 838–839
application structure, 837–838
architecture of, 833–834
area mapping, 839
HtmlHelper class, 858–859
master pages in, 857
model, 834

microsoft certified professional program

949

NavigateUrl property of HyperLink control, 247–248
navigation. See page navigation; site navigation
navigation controls, 254
navigation links, skipping, 314
nesting master pages, 51–52
.NET arrays, LINQ queries against, 628
.NET Framework 4

configuration file changes, 34
installing, 442–443

Network Monitor
HTTP monitoring (practice), 13
overview of, 388

NetworkCredentials class, 586
NextMonthText property of Calendar control, 197
NextPrevFormat property of Calendar control, 198
NextPrevStyle property of Calendar control, 198
nodes, in TreeViews

expanding, 744
overview of, 741–742

notifyScriptLoaded method of Sys.Application
object, 492

NoWrap property, avoiding, 304

O
ObjectContext object, 675
ObjectDataSource control

binding to web control, 691
caching, 697
connecting to classes with, 690
data manipulation with, 693–694
DataObject class for, 697–698
deleting data with, 693–694
filtering, 694–695
inserting data with, 693–694
interfaces supported by, 692
paging data with, 695–697
parameters for, 692–693
selecting data with, 690–691
sorting data with, 695–697
stateless nature of, 690
TypeName attribute, 690–691
updating data with, 693–694

OData (Open Data Protocol) services
creating, 607–611
specification, 609

request life cycle, 834–835
route constraints, 868
route handling, preventing, 868–869
route parameters, 867
route segments, 867
routing in, 835–836
URL patterns, 867
validating model, 850–851
web application, creating (practice), 842–843,

870–871
MVC controllers

action methods, 836, 851, 853
action methods, passing data to, 854–855
creating (practice), 843–844, 871–875
naming convention, 851
overview of, 834
storage location of, 851
template for, 852–853

MVC views
@ Page directive, 857
class inheritance, 857
creating, 856–857
markup for, 857
overview of, 834
partial, creating, 865–866
passing data to, 855
strongly typed, 859–860

MyServerCall method, 482–483

n
Namespace.ClassName method, 487
namespaces

adding classes to, 487–488
conflicts, 518
defined, 486
defining, 487
in IntelliSense, 486
for MVC areas, 839
registering, 504
setting prefixes, 369
for web services, 578–579

naming containers, 340
binding to templated layout, 346
defining, 343

NavigateUrl property, 193

 OData (Open Data Protocol) services

950

Page.LoadControl method, 339–340
pageLoaded event of PageRequestManager class, 494
pageLoading event of PageRequestManager class, 494
Page.Render method, 106
PageRequestManager class of Sys.WebForms

namespace, 494
Page.RequestQueryString property, 133
Page.Trace object, 408
Page.UICulture property, 299, 305
Page.ViewState property, 123
Panel control

accessibility considerations, 317, 323
background image, setting, 205
hiding/displaying forms with, 205–206
horizontal alignment, setting, 205
HTML generated by, 205
overview of, 205
properties, 205

parallelization, 81
parent master pages, 51–52
partial methods, 770
partial-page updates

conditional, 460
enabling, 458
enabling (practice), 464–467
error handling, 462
overview of, 459
progress indicators, 462–463, 467–468
setting up, 459–461
timing updates of, 463, 469
triggering, 460–461, 463

PartialViewResult class, 853
PassThrough mode for Literal control, 169
Password method of HtmlHelper class, 858
PasswordRecovery control, 167, 808, 811–812
PasswordRecovery.AnswerLookupError event, 812
PasswordRecovery.UserLookupError event, 812
passwords

changing, enabling, 808, 812–813
generating, 815
hashing, 814
masking input, 171
retained by browser, 817
retrieval, enabling, 808, 811–812
validating, 815

Path property of HttpCookie class, 131

OnInit method, 128
Open Data Protocol (OData)

creating, 607–611
specification, 609

Open Web Site dialog box, 440
OperationContract class, 597
OPTIONS method, 6
O/R mapping, 665–670
ordered lists, 727
OtherMonthDayStyle property of Calendar control, 198
OutputCache directive, 82–83, 84

P
Package/Publish SQL dialog box, 421
packaging websites for deployment, 425
@ Page directive

Debug attribute, 391
MVC views and, 857

page directives (ASPX pages), 27
page hierarchy. See site maps
page load time, 42, 80–81, 558. See also caching
page navigation. See also site navigation

with browser redirect, 250–251
client-side, 247–248
methods for, 246–247
with server-side transfers, 251
weighing necessity of, 246

page output caching
enabling (practice), 88–90
overview of, 75, 80
profiles, creating, 87
programmatically applying, 84
rendering time and, 80–81

Page_Prelnit method, 58
page processing life cycle, 103–112
page refreshes, limiting, 455
Page Speed, 388
page validation, on Button control, 177
PageCatalogPart control, 263
Page.ClientScript property, 475
Page.ClientScript.RegisterClientScriptBlock method, 475
Page.Culture property, 305
Page.DataBind method, 346
Page.InitializeCulture method, 305, 307

Oninit method

951

profiles
anonymous, 793, 794–795
anonymous, enabling (practice), 798–802
anonymous, migrating, 795
automatically loading, 797
custom property types, 794
defined, 788
defining, 792
editing, enabling, 796, 810
editing, enabling (practice), 798–802
enabling, 794–795
enabling (practice), 798–802
grouping properties, 794
profile databases, 790
profile databases, configuring, 791
properties, specifying, 792
provider class, configuring, 790
recognizing, 797
saving, 796
setup overview, 789
setup wizard, 791
tables, setting up, 791
time of most recent access, setting, 796
troubleshooting, 790

Profile.Save method, 796
programmatically applying themes

practice for, 72
process for, 67–68

programmatically changing master pages
practice for, 57–58
process for, 52–53

progress indicators
adding, 462
adding (practice), 467–468
Cancel button, including, 463

project output groups, 428. See also Web Setup Projects
projections, LINQ, 634
Property Pages dialog box, 390
prototypes, class, 508
provider class

custom, creating, 792
overview of, 790

provider Web Parts, creating, 269
proxy classes

overview of, 582
viewing, 590

performance. See rendering time
permissions, Windows, 818, 821. See also authorization
personalization, troubleshooting, 790. See also user

profiles
personalizing Web Parts, 274

disabling, 275
shared personalization, 275

physical memory, setting launch condition for, 431
pictures. See images
ports

for HTTP, 3
for HTTPS, 3

POST method
description of, 6
example of, 10
when to use, 10

postbacks, 11
allowing users to cancel, 463, 494
automatic, 112
configuring (practice), 116–118
Timer control intervals and, 463
from user controls, 333–334

PostBackUrl property of Button control, 248
PostBackValue property, 193
PostedFile property of FileUpload control, 202
PostLogRequest event, 101
practice exercises

hardware requirements, xxviii
software requirements, xxviii

practice tests
installing, xxix
options for, xxx
starting software, xxix
uninstalling, xxxi

precompiling websites, 28, 441–442
PreInit event, 105
PreLoad event, 105
PreRender event, 105
PrevMonthText property of Calendar control, 198
priority of cache items, 77
processor requirement for practice exercises, xxviii
ProcessRequest method of IHttpHandler interface,

553, 554, 572
product keys, prompting for, 435
ProfileProvider class, 792

 proxy classes

952

Redirect method of Page.Response object, 250–251
RedirectFromLoginPage method of FormsAuthentica-

tion class, 814
redirection

to error pages, 392–393
overview of, 3
as page navigation method, 247, 250–251

RedirectResult class, 853
RedirectToRouteResult class, 853
referencing jQuery

practice for, 543
process for, 523

referencing web services
practice for, 590–591
process for, 580–581

refreshing webpages
partial-page. See partial-page updates
at timed intervals, 463, 469

@ Register directive, 265, 339, 378
Register.aspx page, 808
registerClass method, 490, 491, 495, 510
RegisterClientScriptBlock method

of ClientScriptManager control, 480
of Page object, 475

RegisterContext method of DefaultModel object, 760
registerEnum method of Type class, 490
registering classes

practice for, 505, 510
process for, 490, 498

registering client scripts
for custom web server controls, 501
dynamically, 475–478
on page submissions only, 476
with ScriptManager control, 478–479, 479

registering custom controls, 503
registering events, 493
registering HTTP handlers, 553–554, 555–556
registering HTTP modules, 566, 569–570
registering interfaces, 491
registering namespaces, 504
registering user controls

globally, 378
process for, 265, 339

registerNamespace method of Type class, 487
RegisterOnSubmitStatement method of ClientScript-

Manager object, 478
RegisterRoutes method, 760

Publish Web dialog box, 419, 424–425
Publish Web Site dialog box, 441
publishing web applications, 418–425. See also Web

Setup Projects
with Copy Web tool, 439–441
with custom setup pages, 435–437
database configuration, 421–423
to deployment packages, 425
publish profile, saving, 424–425
settings, 424–425
zip file, creating, 423

PUT method, 6

Q
query strings

character limits, 134
creating, 135
defined, 120
drawbacks of, 133
encoding, 135
error tracking with, 393
parameter access, 133
reading parameters from, 135
storing data in (practice), 140
syntax of, 133
user modification of, 134
validating data from, 133, 134

queryable types, 626
querying databases. See LINQ; LINQ queries

R
RadioButton control, 172
RadioButton method of HtmlHelper class, 858
RadioButtonList control, 172, 727
RaiseCallbackEvent method for ICallbackEvent-

Handler, 480
RAM requirement for practice exercises, xxviii
Range class, 769
RangeValidator control, 234
RangeValidator.MaximumValue property, 234–235
RangeValidator.MinimumValue property. See input

validation
recognizing returning visitors, 797. See also user profiles

Publish Web dialog box

953

requests, HTTP
methods, 5
Request object, 7
URIs (Uniform Resource Identifiers), 5
website name in, 6

Required class, 769
RequiredFieldValidator control, 232
RequireSSL property of FormsAuthentication class, 813
resolving domains. See DNS resolution
resource files. See also globalization

creating, 294, 298, 300
creating manually, 295
culture designation, 294
editing, 296, 300
explicit localization, 298
generating, 295
implicit localization, 297–298
language/culture abbreviations, 294
manually defining, 298
naming, 293, 298
overview of, 293
testing, 299
XML markup in, 295

Resources.Resource object, 303
Response object, 7
Response.Cache method, 84
Response.Redirect object, 250–251
responses, HTTP

components of, 9
Response object, 7
status codes, 8

Response.WriteSubstitution method, 84
REST services

calling from AJAX, 606–607
overview of, 603–606
security of, 603

restricting access. See authorization
RIAs (rich Internet applications), 453
roles

access rules for, 806–807
adding (practice), 822–824
adding users to, 810, 816
authorization of, 819
creating, 816
deleting, 816
enabling, 806

registry
removing keys during uninstallation, 435
searching for launch conditions, 430
writing to, with Web Setup Projects, 434–435

Registry editor, 434
Regular Expression Editor, 235
regular expressions, 234–235
RegularExpression class, 769
RegularExpressionValidator control, 234–235
RegularExpressionValidator.ValidationExpression

property, 234
relational database connections. See SqlDataSource

control
release version, Web.config file for. See Web.config

transformations
remote debugging

attaching to remote process, 396
authentication, 395
process for, 394–396

RemoveAttributes() method, 421
RemoveUserFromRole method of Roles class, 816
Render method

of Page object, 106
of Textbox control, 357
of WebControl class, 361

RenderAction method of HtmlHelper class, 858
RenderBeginTag method of WebControl class, 361
RenderChildren method of WebControl class, 361
RenderContents method of WebControl class, 361
rendering display of controls

customizing, 370–371
process for, 357

rendering engine, reverting to previous, 166
rendering time, 42, 80–81, 558. See also caching
RenderingCompatibility property of Control

object, 166
RenderPartial method of HtmlHelper class, 858
RenewTicketIfOld method of FormsAuthentication

class, 814
Repeater control, 735
representational state transfer services

calling from AJAX, 606–607
overview of, 603–606
security of, 603

Request object, 7
RequestQueryString property of Page object, 133

 roles

954

calling web services from, 583–585
creating, with script blocks, 472–475
debugging, 396
debugging (practice), 400
dynamically adding, 475–478
embedding in custom controls, 499–502, 516
jQuery references in, 523
overview of, 472
referencing ASP.NET controls in, 475
registering on page submission only, 478
registering with ScriptManager control, 478–479

search engine optimization, 127
security. See also authentication; authorization

of debugging, 390
of FileUpload control, 203
of settings inheritance, 820
SSL, requiring for cookies, 813
of tracing, 407
of view state, 124
web-based, 805

SelectedDate property of Calendar control, 198
SelectedDates property of Calendar control, 198
SelectedDayStyle property of Calendar control, 198
SelectedIndexChanged event of DropDownList

control, 175, 725
SelectionChanged event of Calendar control, 199
SelectionMode property of Calendar control, 197, 198
SelectMonthText property of Calendar control, 198
selectors, jQuery

advanced, 524–525
examples of, 525–526
overview of, 524

SelectorStyle property of Calendar control, 198
SelectWeekText property of Calendar control, 198
Serializable attribute class

overview of, 580
for profile properties, 794

server controls. See also custom web server controls;
data source controls; data-bound controls; HTML
controls

accessibility, 313–314
adding (practice), 217–223
adding in Source view, 164
adding in Source view (practice), 181–184
adding to forms, 106–107
advantages of, 162
AJAX. See AJAX server controls

roles (continued)
enabling (practice), 822–824
finding users in, 816
managing, 816
removing users from, 816
returning list of, 816

Roles class, 816
Roles.AddUserToRole method, 816
Roles.CreateRole method, 816
Roles.DeleteRole method, 816
Roles.FindUsersInRole method, 816
Roles.GetAllRoles method, 816
Roles.GetRolesForUser method, 816
Roles.IsUserInRole method, 816
Roles.RemoveUserFromRole method, 816
RootNode property of SiteMap class, 253
RouteLink method of HtmlHelper class, 858
RouteValueDictionary object, 867
rows, table. See TableRow control
RowUpdated event of DbDataAdapter object, 654

s
Save method of Profile object, 796
SaveAs method of FileUpload control, 203
SaveStateComplete event, 106
ScaffoldColumn class, 769
ScaffoldTable class, 769
scavenging settings, 77
screen readers. See accessibility
script blocks, 472
ScriptManager control, 409, 458

vs. ClientScriptManager object, for registering
scripts, 479

markup for, 458
partial-page updates, enabling, 458
referencing client controls with, 498, 505
referencing jQuery with, 523
registering classes with, 492
registering client scripts with, 478–479, 479

ScriptManagerProxy control, 459
ScriptReference class, 479
scripts, client. See also JavaScript; jQuery

accessibility considerations, 315
adding to websites (practice), 504, 507
binding to client-side events, 530–533

Roles class

955

servers
access logging, 5
authentication of, 4, 5
commands, retrieving list of, 6
communication with clients, 3
compression by, 5
deleting resources from, 6
error handling, 4
output caching, 4
overview of, 3
request handling, 4
request verification by, 4
user authorization, 4

server-side state management. See also application
state; session state

vs. client-side, 121–123
overview of, 143
whether to use, 144

server-side transfers, as page navigation method,
247, 251

Server.Transfer method, 57, 250–251, 251
ServerValidate event of CustomValidator control,

238–240
ServiceContract class, 597
Session_End event, 148
session events, responding to, 147
Session object, 145
Session_Start event, 148
session state

vs. application state, 144
compressing, 150
cookieless, configuring, 147
cookies and, 129, 146
disabling, 146, 149
drawbacks of, 149
initializing variables, 147
mode configuration, 149–150
modes for, 148–149
overview of, 145
reading/writing to, 145
responding to events, 147
storage location of, 145
storing data in (practice), 152–154
for web methods, 579
whether to use, 144

session variables, 49–50
SetActiveView method of View control, 208

applying themes to, 68
ASP.NET-generated name, finding, 83
background color, setting, 165
binding properties to data, 367
border color, setting, 165
border style, setting, 165
border width, setting, 165
in client scripts, 475
comparing, 233
composite, 372–376
Content, 47
ContentPlaceHolder, 44, 46
CSS class, assigning, 165
data type verification, 232–233
default events, 109
disabling, 165
disabling themes for, 67
dynamically adding, 105
foreground color, setting, 165
grouping, 205–206
height, setting, 165
vs. HTML controls, 180
HTML location of, 164
HTML rendering of, 163
Image, 65
in JavaScript, 475
JavaScript and, 456
life cycle of, 109
for logons, 807–808
namespace prefix, setting, 369
overview of, 163–164
personalization, enabling, 274
positioning, best practices, 304
properties, attaching to resources, 301–302
properties, precedence order for, 66–67
properties, setting, 165–166
rendering engine, reverting to previous, 166
requiring entry in, 232
skins for. See skin files
vs. style sheet, for appearance attributes, 166
Substitution, 84–85
tab order position, setting, 166
themes, enabling, 165
ToolTip, setting, 166
for validation, 229–230
view state, disabling, 124–126
view state persistence, enabling, 165
width, setting, 166

setActiveview method of view control

956

creating (practice), 69–70
default, 64
defined, 60, 61
example of, 64
images in, 65
named, 64
overview of, 64
vs. style sheets, 64

SkinID property, 64, 68, 166
SkipLinkText property of controls, 314
skipping links for accessibility, 314
SlidingExpiration property of FormsAuthentication

class, 814
.sln files

file extension for, 21
location of, 22
settings in, 21

sniffer applications, 11
software requirements for practice exercises, xxviii
Solution Explorer, 22
solution files

file extension for, 21
location of, 22
settings in, 21

solution user options files
file extension for, 21
settings in, 21

sorting LINQ query results, 634
SortParameterName attribute of ObjectDataSource

control, 696
Source view, 164
SQL databases, LINQ querying. See LINQ to SQL
SQL Server Profiler, 388
SqlDataSource control

caching, 701
configuring, 698
data manipulation with, 700–701
DataSet vs. DataReader, 699
filtering data with, 701
ID property, 698
parameters for, 700–701
practice exercise, 748–752
retrieving data with, 699

SqlDataSource.InsertQuery property, 466
SqlMetal.exe, O/R mapping with, 667
SqlProfileProvider class, 790

SetAuthCookie method of FormsAuthentication
class, 814

SetFocusOnError property of validation controls, 231
setup projects. See Web Setup Projects
Setup.exe file, 438
SharedInfo property, 49
shortcut keys. See keyboard shortcuts
shortcut methods for jQuery, 532–533
ShowDayHeader property of Calendar control, 198
ShowGridLines property of Calendar control, 198
ShowNextPrevMonth property of Calendar control, 198
ShowTitle property of Calendar control, 198
SignOut method of FormsAuthentication class, 814
single-file pages

C# sample, 24–25
vs. code-behind pages, 23–26
disadvantages of, 26
Visual Basic sample, 24

site maps. See also site navigation
accessing nodes, 253
adding, 253
adding (practice), 257
displaying to users, 254–256
example of, 253
function of, 253
overview of, 252

site navigation. See also page navigation; site maps
breadcrumb trail, 256
as menu, 254, 745–746
as tree, 255, 741–744

SiteMap class, 253
SiteMap.CurrentNode property, 253
SiteMapDataSource control, 254

adding (practice), 258
configuring, 254
connecting to site navigation data with, 712–713
filtering data in, 713–714

<siteMapNode> elements
adding (practice), 257
explained, 253

SiteMapPath control, 256
adding (practice), 258
skipping links with, 314

SiteMap.RootNode property, 253
skin files. See also themes

applying to controls, 166
creating, 64

setAuthCookie method of FormsAuthentication class

957

Sys.Application.notifyScriptLoaded method, 492
Sys.Component object

creating, 495–496
indicating inheritance from, 495
overview of, 494

Sys.Component.create method, 498
Sys.Debug namespace, 409
System.ComponentModel.DataAnnotations

namespace, 768–769
System.Configuration.ConfigurationManager

object, 653
System.Data.Common.DbConnection object, 653
System.Data.Linq namespace, 631
System.Data.Linq.Mapping namespace, 631
System.Data.Objects.ObjectContext object, 675
System.Data.Services.DataService class, 608
System.Globalization.CultureInfo.GetCultures

method, 306
System.Net.CredentialCache.DefaultCredentials

property, 586
System.Runtime.Serialization namespace, 597
System.Runtime.Serialization.Json namespace,

640–641
System.ServiceModel namespace, 597
System.Web.Mvc.ActionResult class, 836
System.Web.Mvc.HtmlHelper class, 858–859
System.Web.Mvc.ViewDataDictionary collection, 855
System.Web.Profile namespace, 790
System.Web.Routing namespace, 834
System.Web.Security.Membership class, 815
System.Web.Security.Roles class, 816
System.Web.Services.WebService class, 577
System.Web.UI.ICallbackEventHandler, 480
System.Web.UI.WebControls namespace, 687
System.Web.UI.WebControls.WebParts namespace,

263, 283
System.Xml.Linq namespace, 630, 639
Sys.UI.Behavior object

creating, 502–503
implementing, 503
overview of, 494

Sys.UI.Control object
overriding initialize method for, 496
overview of, 494

Sys.WebForms.PageRequestManager class, 494

SQLServer mode for session state, 148
staging, Web.config file for. See Web.config

transformations
Start event, 101
StartAsync method, 559
startup project, setting, 382
state management. See also application state; session

state; view state
bandwidth considerations, 122
client-side vs. server-side, 121–123
for multiple web servers, 122
scalability of, 122

StateServer mode for session state, 148
static Web Part connections, 269–271
status codes, HTTP, 3, 8

decimal point values in, 394
list of, 393
setting error pages for, 393–394
setting error pages for (practice), 399–400

String object, 76
StringLength class, 769
strong typing

for variables, 49–50
for views, 859–860

Style property of controls, 165
style sheets

adding to websites, 65–66
adding to websites (practice), 70
additional references on, 66
defined, 60, 61
example styles, 66
HTML reference to, 66
overview of, 65
referencing in master pages, 54
vs. skin files, 64
template for, 65

StyleSheetTheme attribute, 62
Substitution control, 84–85
.suo files

file extension for, 21
settings in, 21

support for book, xxxi
synchronizing web server files, 440–441
Sys namespaces (AJAX Library), 484, 485–486
Sys.Application.Load event, 493

sys.WebForms.PageRequestmanager class

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

958

templates
for Dynamic Data websites, 756, 772, 775–776
for grouping data, 736
repeating data with, 735, 740
for single record display, 733
for style sheets, 65

testing accessibility, 318–320
testing resource files for other cultures, 299
text color, accessibility considerations, 314
text MIME type, 9
Text property of controls, 167, 168, 188, 230
text size, accessibility considerations, 315
TextAlign property of TextBox control, 172
TextArea control, 410–411
TextArea method of HtmlHelper class, 859
TextBox control, 107

associating with Label control, 167
masking input, 171
maximum length, setting, 171
overview of, 171
size, setting, 171

TextBox method of HtmlHelper class, 859
TextBox.Render method, 357
TextBox.TextChanged event, 171
TextChanged event of TextBox control, 171
TextMode property of controls, 171
Theme property, 67
themes. See also skin files

applying to controls, 68, 165
creating, 61–62
creating (practice), 69–73
defined, 60
disabling, 67
dynamically changing, 67–68
dynamically changing (practice), 72
global, 63
images in, 65
interaction with global themes, 63
location of, 61
overview of, 60–61
precedence order for, 66–67
programmatically applying, 67–68
programmatically applying (practice), 72

thread pooling, 558
Tick event of Timer control, 463, 469
time display code samples, 24

T
tab order

accessibility considerations, 316
for controls, 166
for hot spots, 193

TabIndex property of controls, 166
Table control

rows and cells, adding, 187–189
settings inheritance, 187
when to use, 187

Table.Caption property, 315
TableCell control, 187

adding to Table control, 187–189
border width, 189
settings inheritance, 187

TableRow control, 187
adding to Table control, 187–189
settings inheritance, 187

tables. See also Table control; TableCell control;
TableRow control

accessibility considerations, 315
alignment, avoiding, 304
creating, 187
displaying single record, 731–732, 733–734
formatting, 189
headers, creating, 315
layout best practices, 304
uses for, 187
word wrapping, avoiding, 304

TagPrefix attribute for controls, 339
Target property, 193
TCP ports

for HTTP, 3
for HTTPS, 3

Telnet, starting/configuring (practice), 12–13
template controls, 331, 723
TemplateControl class, 331
templated binding, 723
templated custom web server controls

class inheritance, 377
overview of, 377–378

templated user controls, 340–341
binding naming containers to layout, 346
code-behind file for, 342–343
implementing, 344–347
markup for, 344

tab order

959

TransformFile attribute of XmlDataSource control,
708–710

TransformSource property of Xml control, 214
translating applications for international markets. See

globalization; resource files
traversing functions in jQuery, 526, 527–529
TreeView control, 255

adding (practice), 258
binding to data sources, 742
configuring, 742
example code, 742
nodes, expanding, 744
populating, 742–744
skipping links with, 314
structure of, 741–742

triggering UpdatePanel controls
with outside controls, 463
overview of, 460–461

troubleshooting. See also health monitoring; tracing
Twitter site for Microsoft Press, xxxii
Type class (AJAX), 487
Type.callBaseMethod method, 495
typed DataSets, 654
Type.registerEnum method, 490

U
UI. See user interface
UICulture property of Page object, 299, 305
UIHint class, 769
Uniform Resource Identifiers (URIs), 5
uninstalling applications, 435
Unload event, 106
Update method of DataAdapter object, 654
UpdateMethod attribute of ObjectDataSource control,

693–694
UpdateMode property of UpdatePanel control, 460
UpdatePanel control, 459–462

properties, 459–461
Timer control, adding to, 463, 468–469
triggering with outside control, 463
UpdateProgress control, adding to, 462

UpdatePanel.UpdateMode property, 460
UpdateProgress control, 462

adding (practice), 467–468
Cancel button, including, 463

Timer control
adding, 463
adding (practice), 468–469

Timer.Tick event, 463, 469
TimeSpan objects, 77, 79
<title> tag, 46
TitleFormat property of Calendar control, 198
TitleStyle property of Calendar control, 198
TodayDayStyle property of Calendar control, 198
TodaysDate property of Calendar control, 198
Toolbox

adding controls from, 164
adding controls to, 364
adding controls to (practice), 381
custom icons, creating, 365

ToolboxBitmap attribute for controls, 365
ToolboxData attribute of controls, 369
ToolTip property of controls, 166, 230
Trace class of Page object, 408
TRACE method, 6
Trace.axd page

overview of, 405
viewing cookies with, 131

Trace.Write method, 408
tracing

AJAX applications, 409
custom messages, setting, 408
display options, 404
enabling, with Web.config file, 405
enabling, with Web.config file (practice), 415
enabling, with WSAT, 403–404
enabling, with WSAT (practice), 415
overview of, 402
security considerations, 407
settings, 404
for specific pages, 405
viewing output of, 405–408
viewing output of (practice), 415

tracking application health. See health monitoring
training kit topics, xxvii
Transfer method of Server object, 57, 250–251
Transform mode for Literal control, 169
transformations

overview of, 419–420
replacing settings in, 420–421
settings, adding, 420
settings, removing, 421

UpdateProgress control

960

postbacks, 333–334
properties, defining, 337–338
properties, defining (practice), 348–351
properties, markup for, 339
registering, 265, 339
registering globally, 378
templated, 340–343, 344–347
testing (practice), 353

user input controls, 167
user input, validating. See input validation
user interface

common elements of, 43
consistency of. See master pages; user controls

User Interface editor, 436
user names, displaying, 808
user profiles

anonymous, 793, 794–795
anonymous, enabling (practice), 798–802
anonymous, migrating, 795
automatically loading, 797
custom property types, 794
defined, 788
defining, 792
editing, enabling, 796, 810
editing, enabling (practice), 798–802
enabling, 794–795
enabling (practice), 798–802
grouping properties, 794
profile databases, 790
profile databases, configuring, 791
properties, specifying, 792
provider class, configuring, 790
recognizing, 797
saving, 796
setup overview, 789
setup wizard, 791
tables, setting up, 791
time of most recent access, setting, 796
troubleshooting, 790

user roles
access rules for, 806–807
adding (practice), 822–824
adding users to, 810, 816
authorization of, 819
creating, 816
deleting, 816
enabling, 806

UpdateProgress.AssociatedUpdatePanelId property, 462
UpdateProgress.DisplayAfter property, 462
UpdateUser method of Membership class, 815
updating webpages

partial-page. See partial-page updates
at timed intervals, 463, 469

uploading files. See FileUpload control
URIs (Uniform Resource Identifiers), 5
URL patterns, 867
URLs

length limitation, 133
query strings in. See query strings
sending by email, 134

UseAccessibleHeader property of Calendar control, 199
user accounts. See also users

adding to database, 815
adding to roles, 810
centralized control, 822
creating, 314, 808
creation page, 808–810
deleting, 815
impersonating, 821
returning list of, 815
validating, 815

user controls, 323
@ Control directive, 332
accessing controls in, 338
adding (practice), 277, 348–351
adding controls to, 332
adding to webpages, 339
AJAX functionality, 459
ASCX files, 331
benefits of, 330
binding naming containers to layout, 346
class inheritance, 331
code-behind file for, 342–343
creating, 332
defined, 331
in Dynamic Data field templates, 773
dynamically loading, 339–340
event handlers, 333, 352
event model, 333
events, passing to webpage, 334–337
hosting on webpages (practice), 351–353
markup for, 339, 344
naming containers, 340–341
naming containers, defining, 343

UpdateProgress.AssociatedUpdatePanelid property

961

error messages, accessibility of, 317
error messages, setting, 230
initial entry, invalidating, 232
naming, 229
setting focus on error, 231
tooltip properties, setting, 230

validation groups, 232
ValidationException object, 851
ValidationExpression property of RegularExpression-

Validator control, 234
ValidationGroup property of validation controls, 232
ValidationMessage method of HtmlHelper class, 859
ValidationSummary control, 230

on logon pages, 811
in MVC, 851

ValidationSummary method of HtmlHelper class, 859
ValueToCompare property of CompareValidator

control, 233
versioning conflicts with Copy Web tool, 441
versions, HTTP, 5
video card requirement for practice exercises, xxviii
video MIME type, 9
View control. See also MultiView control

changing view programmatically, 208
example code, 208
overview of, 207

view state
compressing, 126
defined, 120
disabling, 124–126
encrypting, 124
hashing data, 122
MAC (message authentication code), 124
moving within webpage, 127
overview of, 123
search engine optimization considerations, 127
security considerations, 124
setting, 106
size considerations, 124–125
splitting across multiple fields, 123
storing data in (practice), 136–137
Unicode implementations, 123
writing custom data to, 126–127

ViewData property, 855
ViewResult class, 853
Views folder (MVC), 838
ViewState property of controls, 360

enabling (practice), 822–824
finding users in, 816
managing, 816
removing users from, 816
returning list of, 816

UserControl class, 331
UserLookupError event of PasswordRecovery

control, 812
users. See also user accounts

authentication of, 4
authorization of, 4, 818–819
counting, 103
creating, with WSAT, 804–805
creating, with WSAT (practice), 822–824
master page variation for, 52–53
returning list of, 815

UsersOnline variable, 102

v
Validate method

of HtmlHelper class, 859
of Page object, 230–231

ValidatePage event, 85–86
ValidateUser method of Membership class, 815
validating input

client-side, overview of, 231
client-side, security of, 229
with comparison operators, 232–233
custom code for. See custom validation
framework for, 229–232
practice for, 241–243
with regular expressions, 234–235
requiring field entry, 232
for sections of pages, 232
as usability feature, 228
for user name/passwords, 815
verifying range of acceptable values, 234
when to use, 231

validating MVC model, 850–851
validating query string data, 133, 134
validation controls

adding to webpages, 229–230
adding to webpages (practice), 241–243
client-side validation, turning off, 231
colors, setting, 230

viewstate property of controls

962

testing accessibility, 319
vs. websites, 16–17

web browsers
communication with servers, 3
DNS resolution, 5
error messages. See error pages; HTTP status codes
as front-end interface, 3
HTML display, 5
language preference, setting, 299
master page variation for, 52–53
redirection. See redirection
server authentication, 5
sniffer add-ons, 11

Web Content Accessibility Guidelines (WCAG),
313, 315

Web Deployment Projects, 425–426
web event classes

configuring, 413–414
overview of, 412–413

web forms. See ASPX pages; forms
web methods

overview of, 579–580
session state, enabling/disabling, 579

Web One-Click Publish toolbar, 425
Web Part zones

creating, 264–265
defined, 264
user controls, adding, 266

Web Parts
authentication, enabling (practice), 278
catalog for, 262, 267
chrome, 264
connecting (practice), 282–286
connections, overview of, 269
consumer, creating, 270
creating, overview of, 265
creating webpage with (practice), 276–278
creating, with ASP.NET controls, 266
creating, with user controls, 265–266
database for, 264
defined, 261
display modes, 267, 267–268
dynamic connections, 272
example of, 261, 266
namespace, 263
personalization, 274

ViewStateEncryptionMode attribute of pages
element, 124

ViewStateMode property, 125–126
VisibleDate property of Calendar control, 199
VisibleMonthChanged event of Calendar control, 199
visual accessibility, 314–315
Visual Basic

event handlers, creating, 109–111
time display code, 24

Visual Studio 2010, 391–392
Visual Studio designer, creating HTML controls in, 179
Visual Studio Remote Debugging Monitor, 394–396
Visual Studio Solution Explorer, 22

W
WCAG (Web Content Accessibility Guidelines), 313, 315
WCF (Windows Communication Foundation)

ABCs of, 594
application layers, 595–596
architecture of, 595–596
attribute classes, 597
contracts, defining, 598
endpoints, defining, 602
function of, 594
JSON services and, 604–606
namespaces, 597, 601
overview of, 593
proxy classes, 601
REST services and, 603–606
service application, creating, 612–616
service, consuming, 600–603, 616–618
service, implementing, 598–599
service templates, 597–598
services, creating, 596–597

WCF Data Services
class inheritance, 608
creating, 607–611

web applications
components of, 3
health monitoring. See health monitoring
history of, 454
project files, 22
publishing, 418–425
server-client communication, 3

viewstateEncryptionmode attribute of pages element

963

JavaScript and, 456
life cycle of, 109
for logons, 807–808
namespace prefix, setting, 369
overview of, 163–164
personalization, enabling, 274
positioning, best practices, 304
properties, attaching to resources, 301–302
properties, precedence order for, 66–67
properties, setting, 165–166
rendering engine, reverting to previous, 166
requiring entry in, 232
skins for. See skin files
vs. style sheet, for appearance attributes, 166
Substitution, 84–85
tab order position, setting, 166
themes, enabling, 165
ToolTip, setting, 166
for validation, 229–230
view state, disabling, 124–126
view state persistence, enabling, 165
width, setting, 166

web servers
access logging, 5
authentication of, 4, 5
commands, retrieving list of, 6
communication with clients, 3
compression by, 5
deleting resources from, 6
error handling, 4
output caching, 4
overview of, 3
request handling, 4
request verification by, 4
user authorization, 4

web services
adding to websites (practice), 541
AJAX support, 583–585
ASMX files, adding, 576
authentication, 586
base class for, 578
benefits of, 575
binding to, 583
buffering, 579
calling, 582–583
calling from client scripts, 583–585

personalization (practice), 278–282
personalization, disabling, 275
provider, creating, 269
shared personalization, 275
static connections, 269–271
tables, defining, 791
user editing, enabling, 267, 272–273
user movement of, enabling, 267
uses for, 262–263
when to use, 228

web server controls. See also custom web server
controls; data source controls; data-bound
controls; HTML controls

accessibility, 313–314
adding (practice), 217–223
adding in Source view, 164
adding in Source view (practice), 181–184
adding to forms, 106–107
advantages of, 162
AJAX. See AJAX server controls
applying themes to, 68
ASP.NET-generated name, finding, 83
background color, setting, 165
binding properties to data, 367
border color, setting, 165
border style, setting, 165
border width, setting, 165
in client scripts, 475
comparing, 233
composite, 372–376
Content, 47
ContentPlaceHolder, 44, 46
CSS class, assigning, 165
data type verification, 232–233
default events, 109
disabling, 165
disabling themes for, 67
dynamically adding, 105
foreground color, setting, 165
grouping, 205–206
height, setting, 165
vs. HTML controls, 180
HTML location of, 164
HTML rendering of, 163
Image, 65
in JavaScript, 475

web services

964

Web.config files
authorization, configuring, 818
case sensitivity of, 48
creating (practice), 36–37
different versions of, 419–420
enabling debugging in, 391
enabling debugging in (practice), 398
enabling health monitoring in, 413–414
enabling tracing in, 402, 405
enabling tracing in (practice), 415
error page configuration, 392–393
file/folder access restrictions, 819–820
logon pages, enabling, 811
profile property groups in, 794
registering controls in, 378
registering HTTP handlers with, 555–556, 573
registering HTTP modules with, 566
user profile fields, defining, 792
Windows authentication, enabling, 817

Web.config transformations
overview of, 419–420
replacing settings in, 420–421
settings, adding, 420
settings, removing, 421

WebControl class, 187, 356
creating custom web server controls from, 361–363
rendering methods, 361

WebDAV, 18–19
WebErrorEvent class, 412
WebFailureAuditEvent class, 413
WebHeartbeatEvent class, 412
WebManagementEvent class, 412
WebMethodAttribute class, 579–580
webpages. See also ASPX pages

adding to websites (practice), 31
asynchronous, creating, 564–566
disabling themes for, 67
dynamically adding controls, 105
event handling, 104–106
fade-in effect, scripting, 523–524
life cycle, 103–112
manually releasing resources, 106
testing accessibility, 318
tracing, 405

WebPagetest, 388

web services (continued)
calling with jQuery, 535–537
class inheritance, 577
creating (practice), 587–590
design considerations, 578
example code, 576, 578
IIS features, 576
namespace, setting, 578–579
objects used by, 577
overview of, 576
passing credentials, 586
proxy classes, viewing, 590
proxy objects and, 580–581
referencing, 580–581
referencing (practice), 590–591
URLs for, 576

Web Setup Projects
building, 428
building (practice), 445
creating, 427–428
creating (practice), 444–446
custom actions, adding, 437–438
custom setup pages, 435–437
deploying web applications with, 438
files generated by, 438
launch conditions, 429–434
Setup.exe file, 438
Windows Installer file, 438
writing to registry with, 434–435

Web Site Administration Tool (WSAT)
editing configuration files with, 34–35
email server configuration with, 812
enabling tracing with, 403–404
enabling tracing with (practice), 415
opening, 403
role-based access rules, creating, 806–807
user creation with, 804–805
user role creation with, 806

web user controls. See user controls
WebApplicationLifetimeEvent class, 412
WebAuditEvent class, 413
WebAuthenticationFailureAuditEvent class, 413
WebAuthenticationSuccessAuditEvent class, 413
WebBaseErrorEvent class, 412
WebBaseEvent class, 412

Web setup Projects

965

example code, 211–212
overview of, 210
skipping links with, 314

wizards, creating with MultiView controls, 207
WizardStep control, 210
word wrapping, avoiding, 304
Wrap property of Panel control, 205
Write method of Trace object, 408
WriteSubstitution method of Response object, 84
WSAT (Web Site Administration Tool)

editing configuration files with, 34–35
email server configuration with, 812
enabling tracing with, 403–404
enabling tracing with (practice), 415
opening, 403
role-based access rules, creating, 806–807
user creation with, 804–805
user role creation with, 806

WSE 3.0, 586

X
xcopy command, 419
xdt:Locator property, 420–421
XElement object, 630
XML configuration files. See configuration files
Xml control

applying XSL transformation file, 214
document source, setting, 214
example code, 214
overview of, 214

XML files
connecting to, 707–710
LINQ queries against, 630, 639
site maps. See site maps

XML Schema Definition (XSD) files, 657
XML web services

adding to websites (practice), 541
AJAX support, 583–585
ASMX files, adding, 576
authentication, 586
base class for, 578
benefits of, 575
binding to, 583
buffering, 579

WebPartConnection control, 271
WebPartManager control, 263, 265
WebPartManager.DisplayMode property, 267
WebPartZone control, 263, 264–265, 276
WebRequestErrorEvent class, 413
WebRequestEvent class, 412
WebService class, 577, 578
WebServiceAttribute class, 578–579
website navigation. See also page navigation; site maps

breadcrumb trail, 256
as menu, 254, 745–746
as tree, 255, 741–744

web.sitemap files, 712–713
websites

adding webpages to (practice), 31
ASPX pages. See ASPX pages
code languages in, 25
compiling, 28
configuration files. See configuration files
creating, 16
creating (practice), 30–31
default objects, 22
deploying, 418–425
error pages. See error pages
file-system-based, 15, 17–19
FTP-based, 15, 21
HTTP-based, 15
precompiling, 28, 441–442
project files, 22
special folders, 23
as startup project, setting, 382
user interface. See user interface
varying appearance by user. See themes
vs. web applications, 16–17

WebSuccessAuditEvent class, 413
WebViewStateFailureAuditEvent class, 413
WeekendDayStyle property of Calendar control, 199
Width property of controls, 166
Windows authentication, 817. See also authentication
Windows Communication Foundation (WCF). See WCF

(Windows Communication Foundation)
Windows Installer file, for Web Setup Projects, 438
Windows permissions, 818, 821. See also authorization
Wizard control

adding (practice), 217
customizing, 211

XmL web services

966

XmlDataSource control
binding to string values, 707
configuring, 707
filtering XML with, 710
overview of, 707
transforming XML data with, 708–710

XPath attribute of XmlDataSource control, 710
XSD files, 657
XSL transformation files, 214

Z
zip file of project files, creating, 423
zones, Web Part

creating, 264–265
defined, 264
user controls, adding, 266

ZoneTemplate control, 265
<ZoneTemplate> element, 266

XML web services (continued)
calling, 582–583
calling from client scripts, 583–585
calling with jQuery, 535–537
class inheritance, 577
creating (practice), 587–590
design considerations, 578
example code, 576, 578
IIS features, 576
namespace, setting, 578–579
objects used by, 577
overview of, 576
passing credentials, 586
proxy classes, viewing, 590
proxy objects and, 580–581
referencing, 580–581
referencing (practice), 590–591
URLs for, 576

XmlDatasource control

967

About the Authors

TOny nORThRUP, MCSE, MCTS, and CISSP, is a consultant and author living in New London,
Connecticut. Tony started programming before Windows 1.0 was released but has focused
on Windows administration and development for the past 15 years. He has written more
than 25 books covering Windows development, networking, and security. Among other titles,
Tony is author of MCTS Self-Paced Training Kit (Exam 70-536): Microsoft .NET Framework—
Application Development Foundation, Second Edition, and co-author of MCTS Self-Paced
Training Kit (Exam 70-562): Microsoft .NET Framework 3.5—ASP.NET Application Development.
You can learn more about Tony by visiting his personal website at http://www.northrup.org
and his technical blog at http://vistaclues.com.

mikE snELL spends his work life helping teams build great software that exceeds the expec-
tations of end users. Mike runs the consulting practices at CEI (www.ceiamerica.com). He is
also a Microsoft Regional Director (www.theregion.com); Regional Directors act as community
liaisons between developers and Microsoft. Mike has written several books on programming
the .NET Framework, including books in the Microsoft Press Training Kit series and the
Microsoft Visual Studio Unleashed series. You can learn more by visiting Mike’s blog at
http://www.visualstudiounleashed.com. You can also follow him on Twitter @mksnell.

 Contents

About the Authors 967

	Contents
	Acknowledgments
	Introduction
	Hardware Requirements
	Software Requirements
	Using the Companion Media
	How to Install the Practice Tests
	How to Use the Practice Tests
	How to Uninstall the Practice Tests

	Microsoft Certified Professional Program
	Errata and Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 1: Introducing ASP.NET 4
	Before You Begin
	Lesson 1: Understanding Web Communications
	The Web Server’s Role
	The Web Browser’s Role
	Understanding the Role of HTTP
	Lesson Summary
	Lesson Review

	Lesson 2: Creating a Website and Adding New Webpages
	Creating Websites
	Creating ASPX Pages
	Website Compilation
	Using Assemblies
	Lesson Summary
	Lesson Review

	Lesson 3: Working with Web Configuration Files
	Understanding the Configuration File Hierarchy
	Processing the Configuration Files
	Changes to .NET Framework 4 Configuration Files
	Editing Configuration Files
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Creating a New Website
	Case Scenario 2: Placing Files in the Proper Folders

	Suggested Practices
	Create a New Website by Using Visual Studio 2010
	Add a Webpage to the Website
	Program a Web Application
	Examine Settings for a Web Application

	Take a Practice Test

	Chapter 2: Using Master Pages, Themes, and Caching
	Before You Begin
	Lesson 1: Using Master Pages
	Overview of Master and Content Pages
	Creating a Master Page
	Creating Content Pages
	Attaching Master Pages to Content Pages
	Referencing Custom Master Page Properties, Methods, and Controls from Content Pages
	Creating Nested Master Pages
	Dynamically Changing Master Pages
	Lesson Summary
	Lesson Review

	Lesson 2: Using Themes
	Themes Overview
	Creating a Theme
	Creating a Skin File
	Adding a Cascading Style Sheet to Your Theme
	Rules for Applying Themes
	Applying a Theme Programmatically
	Lesson Summary
	Lesson Review

	Lesson 3: Caching
	Application Caching
	Page Output Caching
	Programmatically Invalidating Cached Pages
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Providing Consistent Formatting for an External Web Application
	Case Scenario 2: Improving the Performance of a Public Website

	Suggested Practices
	Implement Master Pages and Themes
	Implement Caching

	Take a Practice Test

	Chapter 3: Handling Events and Managing State
	Before You Begin
	Lesson 1: Understanding the ASP.NET Life Cycle and Handling Events
	The ASP.NET Application Life Cycle
	Understanding the Life Cycle of an ASP.NET Webpage and Its Controls
	Lesson Summary
	Lesson Review

	Lesson 2: Using Client-Side State Management
	Choosing Client-Side or Server-Side State Management
	View State
	Hidden Fields
	Cookies
	Query Strings
	Lesson Summary
	Lesson Review

	Lesson 3: Using Server-Side State Management
	Application State
	Session State
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Selecting the Proper Events to Use
	Case Scenario 2: Remembering User Credentials
	Case Scenario 3: Analyzing Information for Individual Users and for All Users

	Suggested Practices
	Respond to Application and Session Events
	Create Event Handlers for Pages and Controls
	Manage State by Using Client-Based State Management Options
	Manage State by Using Server-Based State Management Options
	Maintain State by Using Database Technology

	Take a Practice Test

	Chapter 4: Using Server Controls
	Before You Begin
	Lesson 1: Exploring Common Server Controls
	Web Server Controls
	The Label Control
	The Literal Control
	The TextBox Control
	The CheckBox Control
	The RadioButton Control
	The DropDownList Control
	The ListBox Control
	The Button Control
	HTML Server Controls
	Lesson Summary
	Lesson Review

	Lesson 2: Exploring Specialized Server Controls
	The Table, TableRow, and TableCell Controls
	The Image Control
	The ImageButton Control
	The ImageMap Control
	The Calendar Control
	The FileUpload Control
	The Panel Control
	The MultiView and View Controls
	The Wizard Control
	The Xml Control
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Determining the Type of Controls to Use
	Case Scenario 2: Determining How to Prompt for Data
	Case Scenario 3: Implementing a Calendar Solution

	Suggested Practices
	Implement Server Controls

	Take a Practice Test

	Chapter 5: Input Validation and Site Navigation
	Before You Begin
	Lesson 1: Performing Input Validation
	Understanding the Validation Framework
	Understanding the RequiredFieldValidator Control
	Using the CompareValidator Control
	Using the RangeValidator Control
	Using the RegularExpressionValidator Control
	The CustomValidator Control
	Lesson Summary
	Lesson Review

	Lesson 2: Performing Site Navigation
	Is Page Navigation Necessary?
	Choosing a Method to Navigate Pages
	Client-Side Navigation
	Cross-Page Posting
	Client-Side Browser Redirect
	Server-Side Transfer
	Using the Site Map Web Server Control
	Lesson Summary
	Lesson Review

	Lesson 3: Using Web Parts
	What Are Web Parts?
	The WebParts Namespace
	Defining Web Part Zones
	Creating Web Parts
	Enabling Users to Arrange and Edit Web Parts
	Connecting Web Parts
	Personalizing Web Parts
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Determining the Proper Validation Controls to Implement on a User Name
	Case Scenario 2: Implementing a Site Map
	Case Scenario 3: Meeting Customization Requirements for an Internal Insurance Application

	Suggested Practices
	Validate User Input
	Create Page Layout

	Take a Practice Test

	Chapter 6: Globalization and Accessibility
	Before You Begin
	Lesson 1: Configuring Globalization and Localization
	About ASP.NET Resources
	Using Local Resource Files
	Using Global Resources
	HTML Layout Best Practices
	Setting the Culture
	Lesson Summary
	Lesson Review

	Lesson 2: Configuring Accessibility
	Public Accessibility Guidelines
	How ASP.NET Controls Support Accessibility
	Improving Visual Accessibility
	Improving the Accessibility of Forms That Require User Input
	Testing Accessibility
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Upgrading an Application for Multiple Languages
	Case Scenario 2: Making a Web Application Accessible

	Suggested Practices
	Implement Globalization
	Implement Accessibility

	Take a Practice Test

	Chapter 7: Creating Custom Web Controls
	Before You Begin
	Lesson 1: Creating User Controls
	Creating User Controls
	Defining User Control Events
	Defining Properties in User Controls
	Adding a User Control to a Page
	Dynamically Loading User Controls
	Creating a Templated User Control
	Lesson Summary
	Lesson Review

	Lesson 2: Creating Custom Web Server Controls
	Creating a Custom Web Server Control
	Adding Toolbox Support for a Custom Web Server Control
	Creating a Custom Designer for a Custom Web Server Control
	Creating a Composite Control
	Creating a Templated Custom Web Server Control
	Registering Your Controls in Web.config
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Sharing Controls Between Applications
	Case Scenario 2: Providing Layout Flexibility

	Suggested Practices
	Create a New User Control
	Create a New Custom Web Server Control
	Create a New Composite Web Server Control
	Create a New Templated Control

	Take a Practice Test

	Chapter 8: Debugging and Deploying
	Before You Begin
	Lesson 1: Debugging Websites
	Configuring ASP.NET for Debugging
	Defining Custom Error Pages
	Debugging Remotely
	Debugging Client-Side Script
	Lesson Summary
	Lesson Review

	Lesson 2: Troubleshooting Websites
	Implementing Tracing
	Monitoring a Running Web Application
	Lesson Summary
	Lesson Review

	Lesson 3: Deploying Websites
	Publishing Web Applications
	Web Deployment Projects
	Web Setup Projects
	Deploying Web Applications by Using the Copy Web Tool
	Precompiling and Publishing ASP.NET Websites
	Installing ASP.NET 4 on IIS
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Debugging
	Case Scenario 2: Troubleshooting
	Case Scenario 3: Deploying a Website

	Suggested Practices
	Debug a Website
	Troubleshoot a Website
	Publish a Web Application
	Use a Web Setup Project
	Use the Copy Web Tool
	Precompile and Publish a Web Application

	Take a Practice Test

	Chapter 9: Working with Client-Side Scripting, AJAX, and jQuery
	Before You Begin
	Lesson 1: Creating AJAX-Enabled Web Forms
	Introducing ASP.NET AJAX
	The AJAX Server Controls
	Lesson Summary
	Lesson Review

	Lesson 2: Creating Client Scripts with the Microsoft AJAX Library
	Creating Your Own Client Scripts
	Creating Your Own Client Callbacks
	Working with the Microsoft AJAX Library
	Building Client Capabilities with AJAX
	Lesson Summary
	Lesson Review

	Lesson 3: Implementing jQuery
	Introducing the jQuery Library
	Selecting and Traversing the DOM
	Handling Client-Side Events
	Adding Effects and Animations to a Page
	Implementing AJAX with jQuery
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Using the ASP.NET AJAX Extensions
	Case Scenario 2: Using the Microsoft AJAX Library
	Case Scenario 3: Using jQuery

	Suggested Practices
	Add Partial-Page Update Support to a Page
	Create Client Code by Using the Microsoft AJAX Library
	Write Interactive Client Code with jQuery

	Take a Practice Test

	Chapter 10: Writing and Working with HTTP Modules and Web Services
	Before You Begin
	Lesson 1: Creating HTTP Handlers and HTTP Modules
	Creating a Custom HTTP Handler
	Asynchronous Handlers and Pages
	Creating a Custom HTTP Module
	Lesson Summary
	Lesson Review

	Lesson 2: Creating and Consuming XML Web Services
	Creating an ASP.NET Web Service
	Consuming an ASP.NET Web Service
	Authentication and XML Web Services
	Lesson Summary
	Lesson Review

	Lesson 3: Creating and Consuming WCF Services
	Introducing WCF
	Creating a WCF Service with ASP.NET
	Consuming a WCF Service in an ASP.NET Page
	Calling a WCF Service from Client Script by Using AJAX
(REST and JSON)
	Creating WCF Data Services
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Working with HTTP Requests
	Case Scenario 2: Selecting a Service Model

	Suggested Practices
	Work with XML HTTP Handlers and Modules
	Work with XML Web Services
	Work with WCF Services

	Take a Practice Test

	Chapter 11: Connecting to and Querying Data with LINQ
	Before You Begin
	Lesson 1: Getting Started with LINQ
	Introducing LINQ
	Querying Data with LINQ
	Transforming Data with LINQ
	Lesson Summary
	Lesson Review

	Lesson 2: LINQ and ADO.NET
	LINQ to DataSet
	LINQ to SQL
	LINQ to Entities
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Writing LINQ Queries
	Case Scenario 2: Working with LINQ and ADO.NET

	Suggested Practices
	Write LINQ Queries
	Work with LINQ and ADO.NET

	Take a Practice Test

	Chapter 12: Working with Data Source Controls and Data-Bound Controls
	Before You Begin
	Lesson 1: Connecting to Data with Data Source Controls
	Understanding the Data Source Controls
	Using Objects as Data Sources with ObjectDataSource
	Connecting to Relational Databases by Using SqlDataSource
	Working with Access Data Files and AccessDataSource Controls
	Connecting to an Entity Model by Using EntityDataSource
	Connecting to XML Data by Using XmlDataSource
	Connecting to LINQ-Based Data by Using LinqDataSource
	Connecting to Site Navigation Data by Using SiteMapDataSource
	Lesson Summary
	Lesson Review

	Lesson 2: Working with Data-Bound Web Server Controls
	Introducing Data-Bound Controls
	Simple Data-Bound Controls
	Composite Data-Bound Controls
	Hierarchical Data-Bound Controls
	Lesson Summary
	Lesson Review

	Lesson 3: Working with ASP.NET Dynamic Data
	Getting Started with Dynamic Data Websites
	Extending and Customizing Dynamic Data
	Using Dynamic Controls in Existing Sites
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Choosing Data Source Controls
	Case Scenario 2: Implementing a Master-Detail Solution
	Case Scenario 3: Adding ASP.NET Dynamic Data to a Website

	Suggested Practices
	Create Pages by Using Each of the Controls
	Create a Master-Detail Solution by Using the Data-Bound Server Controls
	Work with Dynamic Data Websites

	Take a Practice Test

	Chapter 13: Implementing User Profiles, Authentication, and Authorization
	Before You Begin
	Lesson 1: Working with User Profiles
	User Profile Basics
	Configuring a User Profile Provider
	Defining the User Profile
	Identifying Users
	Setting and Saving a User Profile
	Recognizing a Returning Visitor
	Lesson Summary
	Lesson Review

	Lesson 2: Using ASP.NET Membership
	Using the WSAT to Configure Security
	Logon Controls
	The FormsAuthentication Class
	The Membership Class
	The Roles Class
	Configuring Websites to Require Windows Authentication
	Restricting Access to ASP.NET Websites, Files, and Folders
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Configuring Website Authorization
	Case Scenario 2: Configuring Website Authentication

	Suggested Practices
	Configure Authentication and Authorization
	Configure Profiles

	Take a Practice Test

	Chapter 14: Creating Websites with ASP.NET MVC 2
	Before You Begin
	Lesson 1: Understanding ASP.NET MVC Applications
	The ASP.NET MVC Architecture
	The Structure of an ASP.NET MVC Application
	Running Your First ASP.NET MVC Webpage
	Lesson Summary
	Lesson Review

	Lesson 2: Creating Models, Views, and Controllers
	Defining a Model and Business Rules
	Creating Controllers
	Creating Views
	Customizing MVC Routing
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario: Creating an ASP.NET MVC Application

	Suggested Practices
	Work with Controllers, Views, and Routing

	Take a Practice Test

	Answers
	Chapter 1: Lesson Review Answers
	Chapter 1: Case Scenario Answers
	Chapter 2: Lesson Review Answers
	Chapter 2: Case Scenario Answers
	Chapter 3: Lesson Review Answers
	Chapter 3: Case Scenario Answers
	Chapter 4: Lesson Review Answers
	Chapter 4: Case Scenario Answers
	Chapter 5: Lesson Review Answers
	Chapter 5: Case Scenario Answers
	Chapter 6: Lesson Review Answers
	Chapter 6: Case Scenario Answers
	Chapter 7: Lesson Review Answers
	Chapter 7: Case Scenario Answers
	Chapter 8: Lesson Review Answers
	Chapter 8: Case Scenario Answers
	Chapter 9: Lesson Review Answers
	Chapter 9: Case Scenario Answers
	Chapter 10: Lesson Review Answers
	Chapter 10: Case Scenario Answers
	Chapter 11: Lesson Review Answers
	Chapter 11: Case Scenario Answers
	Chapter 12: Lesson Review Answers
	Chapter 12: Case Scenario Answers
	Chapter 13: Lesson Review Answers
	Chapter 13: Case Scenario Answers
	Chapter 14: Lesson Review Answers
	Chapter 14: Case Scenario Answers

	Index
	About the Authors
	System Requirements

